1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102 #define SD_MINORS 16
103 #else
104 #define SD_MINORS 0
105 #endif
106
107 static void sd_config_discard(struct scsi_disk *, unsigned int);
108 static void sd_config_write_same(struct scsi_disk *);
109 static int sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static int sd_probe(struct device *);
112 static int sd_remove(struct device *);
113 static void sd_shutdown(struct device *);
114 static int sd_suspend_system(struct device *);
115 static int sd_suspend_runtime(struct device *);
116 static int sd_resume(struct device *);
117 static void sd_rescan(struct device *);
118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120 static int sd_done(struct scsi_cmnd *);
121 static void sd_eh_reset(struct scsi_cmnd *);
122 static int sd_eh_action(struct scsi_cmnd *, int);
123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124 static void scsi_disk_release(struct device *cdev);
125
126 static DEFINE_IDA(sd_index_ida);
127
128 /* This semaphore is used to mediate the 0->1 reference get in the
129 * face of object destruction (i.e. we can't allow a get on an
130 * object after last put) */
131 static DEFINE_MUTEX(sd_ref_mutex);
132
133 static struct kmem_cache *sd_cdb_cache;
134 static mempool_t *sd_cdb_pool;
135 static mempool_t *sd_page_pool;
136
137 static const char *sd_cache_types[] = {
138 "write through", "none", "write back",
139 "write back, no read (daft)"
140 };
141
sd_set_flush_flag(struct scsi_disk * sdkp)142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 bool wc = false, fua = false;
145
146 if (sdkp->WCE) {
147 wc = true;
148 if (sdkp->DPOFUA)
149 fua = true;
150 }
151
152 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154
155 static ssize_t
cache_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 const char *buf, size_t count)
158 {
159 int ct, rcd, wce, sp;
160 struct scsi_disk *sdkp = to_scsi_disk(dev);
161 struct scsi_device *sdp = sdkp->device;
162 char buffer[64];
163 char *buffer_data;
164 struct scsi_mode_data data;
165 struct scsi_sense_hdr sshdr;
166 static const char temp[] = "temporary ";
167 int len;
168
169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 /* no cache control on RBC devices; theoretically they
171 * can do it, but there's probably so many exceptions
172 * it's not worth the risk */
173 return -EINVAL;
174
175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 buf += sizeof(temp) - 1;
177 sdkp->cache_override = 1;
178 } else {
179 sdkp->cache_override = 0;
180 }
181
182 ct = sysfs_match_string(sd_cache_types, buf);
183 if (ct < 0)
184 return -EINVAL;
185
186 rcd = ct & 0x01 ? 1 : 0;
187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188
189 if (sdkp->cache_override) {
190 sdkp->WCE = wce;
191 sdkp->RCD = rcd;
192 sd_set_flush_flag(sdkp);
193 return count;
194 }
195
196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 sdkp->max_retries, &data, NULL))
198 return -EINVAL;
199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 data.block_descriptor_length);
201 buffer_data = buffer + data.header_length +
202 data.block_descriptor_length;
203 buffer_data[2] &= ~0x05;
204 buffer_data[2] |= wce << 2 | rcd;
205 sp = buffer_data[0] & 0x80 ? 1 : 0;
206 buffer_data[0] &= ~0x80;
207
208 /*
209 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
210 * received mode parameter buffer before doing MODE SELECT.
211 */
212 data.device_specific = 0;
213
214 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
215 sdkp->max_retries, &data, &sshdr)) {
216 if (scsi_sense_valid(&sshdr))
217 sd_print_sense_hdr(sdkp, &sshdr);
218 return -EINVAL;
219 }
220 sd_revalidate_disk(sdkp->disk);
221 return count;
222 }
223
224 static ssize_t
manage_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)225 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
226 char *buf)
227 {
228 struct scsi_disk *sdkp = to_scsi_disk(dev);
229 struct scsi_device *sdp = sdkp->device;
230
231 return sprintf(buf, "%u\n", sdp->manage_start_stop);
232 }
233
234 static ssize_t
manage_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)235 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
236 const char *buf, size_t count)
237 {
238 struct scsi_disk *sdkp = to_scsi_disk(dev);
239 struct scsi_device *sdp = sdkp->device;
240 bool v;
241
242 if (!capable(CAP_SYS_ADMIN))
243 return -EACCES;
244
245 if (kstrtobool(buf, &v))
246 return -EINVAL;
247
248 sdp->manage_start_stop = v;
249
250 return count;
251 }
252 static DEVICE_ATTR_RW(manage_start_stop);
253
254 static ssize_t
allow_restart_show(struct device * dev,struct device_attribute * attr,char * buf)255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
256 {
257 struct scsi_disk *sdkp = to_scsi_disk(dev);
258
259 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
260 }
261
262 static ssize_t
allow_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)263 allow_restart_store(struct device *dev, struct device_attribute *attr,
264 const char *buf, size_t count)
265 {
266 bool v;
267 struct scsi_disk *sdkp = to_scsi_disk(dev);
268 struct scsi_device *sdp = sdkp->device;
269
270 if (!capable(CAP_SYS_ADMIN))
271 return -EACCES;
272
273 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
274 return -EINVAL;
275
276 if (kstrtobool(buf, &v))
277 return -EINVAL;
278
279 sdp->allow_restart = v;
280
281 return count;
282 }
283 static DEVICE_ATTR_RW(allow_restart);
284
285 static ssize_t
cache_type_show(struct device * dev,struct device_attribute * attr,char * buf)286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288 struct scsi_disk *sdkp = to_scsi_disk(dev);
289 int ct = sdkp->RCD + 2*sdkp->WCE;
290
291 return sprintf(buf, "%s\n", sd_cache_types[ct]);
292 }
293 static DEVICE_ATTR_RW(cache_type);
294
295 static ssize_t
FUA_show(struct device * dev,struct device_attribute * attr,char * buf)296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
297 {
298 struct scsi_disk *sdkp = to_scsi_disk(dev);
299
300 return sprintf(buf, "%u\n", sdkp->DPOFUA);
301 }
302 static DEVICE_ATTR_RO(FUA);
303
304 static ssize_t
protection_type_show(struct device * dev,struct device_attribute * attr,char * buf)305 protection_type_show(struct device *dev, struct device_attribute *attr,
306 char *buf)
307 {
308 struct scsi_disk *sdkp = to_scsi_disk(dev);
309
310 return sprintf(buf, "%u\n", sdkp->protection_type);
311 }
312
313 static ssize_t
protection_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)314 protection_type_store(struct device *dev, struct device_attribute *attr,
315 const char *buf, size_t count)
316 {
317 struct scsi_disk *sdkp = to_scsi_disk(dev);
318 unsigned int val;
319 int err;
320
321 if (!capable(CAP_SYS_ADMIN))
322 return -EACCES;
323
324 err = kstrtouint(buf, 10, &val);
325
326 if (err)
327 return err;
328
329 if (val <= T10_PI_TYPE3_PROTECTION)
330 sdkp->protection_type = val;
331
332 return count;
333 }
334 static DEVICE_ATTR_RW(protection_type);
335
336 static ssize_t
protection_mode_show(struct device * dev,struct device_attribute * attr,char * buf)337 protection_mode_show(struct device *dev, struct device_attribute *attr,
338 char *buf)
339 {
340 struct scsi_disk *sdkp = to_scsi_disk(dev);
341 struct scsi_device *sdp = sdkp->device;
342 unsigned int dif, dix;
343
344 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
345 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
346
347 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
348 dif = 0;
349 dix = 1;
350 }
351
352 if (!dif && !dix)
353 return sprintf(buf, "none\n");
354
355 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
356 }
357 static DEVICE_ATTR_RO(protection_mode);
358
359 static ssize_t
app_tag_own_show(struct device * dev,struct device_attribute * attr,char * buf)360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
361 {
362 struct scsi_disk *sdkp = to_scsi_disk(dev);
363
364 return sprintf(buf, "%u\n", sdkp->ATO);
365 }
366 static DEVICE_ATTR_RO(app_tag_own);
367
368 static ssize_t
thin_provisioning_show(struct device * dev,struct device_attribute * attr,char * buf)369 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
370 char *buf)
371 {
372 struct scsi_disk *sdkp = to_scsi_disk(dev);
373
374 return sprintf(buf, "%u\n", sdkp->lbpme);
375 }
376 static DEVICE_ATTR_RO(thin_provisioning);
377
378 /* sysfs_match_string() requires dense arrays */
379 static const char *lbp_mode[] = {
380 [SD_LBP_FULL] = "full",
381 [SD_LBP_UNMAP] = "unmap",
382 [SD_LBP_WS16] = "writesame_16",
383 [SD_LBP_WS10] = "writesame_10",
384 [SD_LBP_ZERO] = "writesame_zero",
385 [SD_LBP_DISABLE] = "disabled",
386 };
387
388 static ssize_t
provisioning_mode_show(struct device * dev,struct device_attribute * attr,char * buf)389 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
390 char *buf)
391 {
392 struct scsi_disk *sdkp = to_scsi_disk(dev);
393
394 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
395 }
396
397 static ssize_t
provisioning_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)398 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
399 const char *buf, size_t count)
400 {
401 struct scsi_disk *sdkp = to_scsi_disk(dev);
402 struct scsi_device *sdp = sdkp->device;
403 int mode;
404
405 if (!capable(CAP_SYS_ADMIN))
406 return -EACCES;
407
408 if (sd_is_zoned(sdkp)) {
409 sd_config_discard(sdkp, SD_LBP_DISABLE);
410 return count;
411 }
412
413 if (sdp->type != TYPE_DISK)
414 return -EINVAL;
415
416 mode = sysfs_match_string(lbp_mode, buf);
417 if (mode < 0)
418 return -EINVAL;
419
420 sd_config_discard(sdkp, mode);
421
422 return count;
423 }
424 static DEVICE_ATTR_RW(provisioning_mode);
425
426 /* sysfs_match_string() requires dense arrays */
427 static const char *zeroing_mode[] = {
428 [SD_ZERO_WRITE] = "write",
429 [SD_ZERO_WS] = "writesame",
430 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
431 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
432 };
433
434 static ssize_t
zeroing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)435 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
436 char *buf)
437 {
438 struct scsi_disk *sdkp = to_scsi_disk(dev);
439
440 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
441 }
442
443 static ssize_t
zeroing_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)444 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
445 const char *buf, size_t count)
446 {
447 struct scsi_disk *sdkp = to_scsi_disk(dev);
448 int mode;
449
450 if (!capable(CAP_SYS_ADMIN))
451 return -EACCES;
452
453 mode = sysfs_match_string(zeroing_mode, buf);
454 if (mode < 0)
455 return -EINVAL;
456
457 sdkp->zeroing_mode = mode;
458
459 return count;
460 }
461 static DEVICE_ATTR_RW(zeroing_mode);
462
463 static ssize_t
max_medium_access_timeouts_show(struct device * dev,struct device_attribute * attr,char * buf)464 max_medium_access_timeouts_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
466 {
467 struct scsi_disk *sdkp = to_scsi_disk(dev);
468
469 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
470 }
471
472 static ssize_t
max_medium_access_timeouts_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)473 max_medium_access_timeouts_store(struct device *dev,
474 struct device_attribute *attr, const char *buf,
475 size_t count)
476 {
477 struct scsi_disk *sdkp = to_scsi_disk(dev);
478 int err;
479
480 if (!capable(CAP_SYS_ADMIN))
481 return -EACCES;
482
483 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
484
485 return err ? err : count;
486 }
487 static DEVICE_ATTR_RW(max_medium_access_timeouts);
488
489 static ssize_t
max_write_same_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
491 char *buf)
492 {
493 struct scsi_disk *sdkp = to_scsi_disk(dev);
494
495 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
496 }
497
498 static ssize_t
max_write_same_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
500 const char *buf, size_t count)
501 {
502 struct scsi_disk *sdkp = to_scsi_disk(dev);
503 struct scsi_device *sdp = sdkp->device;
504 unsigned long max;
505 int err;
506
507 if (!capable(CAP_SYS_ADMIN))
508 return -EACCES;
509
510 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
511 return -EINVAL;
512
513 err = kstrtoul(buf, 10, &max);
514
515 if (err)
516 return err;
517
518 if (max == 0)
519 sdp->no_write_same = 1;
520 else if (max <= SD_MAX_WS16_BLOCKS) {
521 sdp->no_write_same = 0;
522 sdkp->max_ws_blocks = max;
523 }
524
525 sd_config_write_same(sdkp);
526
527 return count;
528 }
529 static DEVICE_ATTR_RW(max_write_same_blocks);
530
531 static ssize_t
zoned_cap_show(struct device * dev,struct device_attribute * attr,char * buf)532 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
533 {
534 struct scsi_disk *sdkp = to_scsi_disk(dev);
535
536 if (sdkp->device->type == TYPE_ZBC)
537 return sprintf(buf, "host-managed\n");
538 if (sdkp->zoned == 1)
539 return sprintf(buf, "host-aware\n");
540 if (sdkp->zoned == 2)
541 return sprintf(buf, "drive-managed\n");
542 return sprintf(buf, "none\n");
543 }
544 static DEVICE_ATTR_RO(zoned_cap);
545
546 static ssize_t
max_retries_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)547 max_retries_store(struct device *dev, struct device_attribute *attr,
548 const char *buf, size_t count)
549 {
550 struct scsi_disk *sdkp = to_scsi_disk(dev);
551 struct scsi_device *sdev = sdkp->device;
552 int retries, err;
553
554 err = kstrtoint(buf, 10, &retries);
555 if (err)
556 return err;
557
558 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
559 sdkp->max_retries = retries;
560 return count;
561 }
562
563 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
564 SD_MAX_RETRIES);
565 return -EINVAL;
566 }
567
568 static ssize_t
max_retries_show(struct device * dev,struct device_attribute * attr,char * buf)569 max_retries_show(struct device *dev, struct device_attribute *attr,
570 char *buf)
571 {
572 struct scsi_disk *sdkp = to_scsi_disk(dev);
573
574 return sprintf(buf, "%d\n", sdkp->max_retries);
575 }
576
577 static DEVICE_ATTR_RW(max_retries);
578
579 static struct attribute *sd_disk_attrs[] = {
580 &dev_attr_cache_type.attr,
581 &dev_attr_FUA.attr,
582 &dev_attr_allow_restart.attr,
583 &dev_attr_manage_start_stop.attr,
584 &dev_attr_protection_type.attr,
585 &dev_attr_protection_mode.attr,
586 &dev_attr_app_tag_own.attr,
587 &dev_attr_thin_provisioning.attr,
588 &dev_attr_provisioning_mode.attr,
589 &dev_attr_zeroing_mode.attr,
590 &dev_attr_max_write_same_blocks.attr,
591 &dev_attr_max_medium_access_timeouts.attr,
592 &dev_attr_zoned_cap.attr,
593 &dev_attr_max_retries.attr,
594 NULL,
595 };
596 ATTRIBUTE_GROUPS(sd_disk);
597
598 static struct class sd_disk_class = {
599 .name = "scsi_disk",
600 .owner = THIS_MODULE,
601 .dev_release = scsi_disk_release,
602 .dev_groups = sd_disk_groups,
603 };
604
605 static const struct dev_pm_ops sd_pm_ops = {
606 .suspend = sd_suspend_system,
607 .resume = sd_resume,
608 .poweroff = sd_suspend_system,
609 .restore = sd_resume,
610 .runtime_suspend = sd_suspend_runtime,
611 .runtime_resume = sd_resume,
612 };
613
614 static struct scsi_driver sd_template = {
615 .gendrv = {
616 .name = "sd",
617 .owner = THIS_MODULE,
618 .probe = sd_probe,
619 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
620 .remove = sd_remove,
621 .shutdown = sd_shutdown,
622 .pm = &sd_pm_ops,
623 },
624 .rescan = sd_rescan,
625 .init_command = sd_init_command,
626 .uninit_command = sd_uninit_command,
627 .done = sd_done,
628 .eh_action = sd_eh_action,
629 .eh_reset = sd_eh_reset,
630 };
631
632 /*
633 * Dummy kobj_map->probe function.
634 * The default ->probe function will call modprobe, which is
635 * pointless as this module is already loaded.
636 */
sd_default_probe(dev_t devt,int * partno,void * data)637 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
638 {
639 return NULL;
640 }
641
642 /*
643 * Device no to disk mapping:
644 *
645 * major disc2 disc p1
646 * |............|.............|....|....| <- dev_t
647 * 31 20 19 8 7 4 3 0
648 *
649 * Inside a major, we have 16k disks, however mapped non-
650 * contiguously. The first 16 disks are for major0, the next
651 * ones with major1, ... Disk 256 is for major0 again, disk 272
652 * for major1, ...
653 * As we stay compatible with our numbering scheme, we can reuse
654 * the well-know SCSI majors 8, 65--71, 136--143.
655 */
sd_major(int major_idx)656 static int sd_major(int major_idx)
657 {
658 switch (major_idx) {
659 case 0:
660 return SCSI_DISK0_MAJOR;
661 case 1 ... 7:
662 return SCSI_DISK1_MAJOR + major_idx - 1;
663 case 8 ... 15:
664 return SCSI_DISK8_MAJOR + major_idx - 8;
665 default:
666 BUG();
667 return 0; /* shut up gcc */
668 }
669 }
670
scsi_disk_get(struct gendisk * disk)671 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
672 {
673 struct scsi_disk *sdkp = NULL;
674
675 mutex_lock(&sd_ref_mutex);
676
677 if (disk->private_data) {
678 sdkp = scsi_disk(disk);
679 if (scsi_device_get(sdkp->device) == 0)
680 get_device(&sdkp->dev);
681 else
682 sdkp = NULL;
683 }
684 mutex_unlock(&sd_ref_mutex);
685 return sdkp;
686 }
687
scsi_disk_put(struct scsi_disk * sdkp)688 static void scsi_disk_put(struct scsi_disk *sdkp)
689 {
690 struct scsi_device *sdev = sdkp->device;
691
692 mutex_lock(&sd_ref_mutex);
693 put_device(&sdkp->dev);
694 scsi_device_put(sdev);
695 mutex_unlock(&sd_ref_mutex);
696 }
697
698 #ifdef CONFIG_BLK_SED_OPAL
sd_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)699 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
700 size_t len, bool send)
701 {
702 struct scsi_disk *sdkp = data;
703 struct scsi_device *sdev = sdkp->device;
704 u8 cdb[12] = { 0, };
705 int ret;
706
707 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
708 cdb[1] = secp;
709 put_unaligned_be16(spsp, &cdb[2]);
710 put_unaligned_be32(len, &cdb[6]);
711
712 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
713 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
714 RQF_PM, NULL);
715 return ret <= 0 ? ret : -EIO;
716 }
717 #endif /* CONFIG_BLK_SED_OPAL */
718
719 /*
720 * Look up the DIX operation based on whether the command is read or
721 * write and whether dix and dif are enabled.
722 */
sd_prot_op(bool write,bool dix,bool dif)723 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
724 {
725 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
726 static const unsigned int ops[] = { /* wrt dix dif */
727 SCSI_PROT_NORMAL, /* 0 0 0 */
728 SCSI_PROT_READ_STRIP, /* 0 0 1 */
729 SCSI_PROT_READ_INSERT, /* 0 1 0 */
730 SCSI_PROT_READ_PASS, /* 0 1 1 */
731 SCSI_PROT_NORMAL, /* 1 0 0 */
732 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
733 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
734 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
735 };
736
737 return ops[write << 2 | dix << 1 | dif];
738 }
739
740 /*
741 * Returns a mask of the protection flags that are valid for a given DIX
742 * operation.
743 */
sd_prot_flag_mask(unsigned int prot_op)744 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
745 {
746 static const unsigned int flag_mask[] = {
747 [SCSI_PROT_NORMAL] = 0,
748
749 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
750 SCSI_PROT_GUARD_CHECK |
751 SCSI_PROT_REF_CHECK |
752 SCSI_PROT_REF_INCREMENT,
753
754 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
755 SCSI_PROT_IP_CHECKSUM,
756
757 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
758 SCSI_PROT_GUARD_CHECK |
759 SCSI_PROT_REF_CHECK |
760 SCSI_PROT_REF_INCREMENT |
761 SCSI_PROT_IP_CHECKSUM,
762
763 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
764 SCSI_PROT_REF_INCREMENT,
765
766 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
767 SCSI_PROT_REF_CHECK |
768 SCSI_PROT_REF_INCREMENT |
769 SCSI_PROT_IP_CHECKSUM,
770
771 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
772 SCSI_PROT_GUARD_CHECK |
773 SCSI_PROT_REF_CHECK |
774 SCSI_PROT_REF_INCREMENT |
775 SCSI_PROT_IP_CHECKSUM,
776 };
777
778 return flag_mask[prot_op];
779 }
780
sd_setup_protect_cmnd(struct scsi_cmnd * scmd,unsigned int dix,unsigned int dif)781 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
782 unsigned int dix, unsigned int dif)
783 {
784 struct bio *bio = scmd->request->bio;
785 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
786 unsigned int protect = 0;
787
788 if (dix) { /* DIX Type 0, 1, 2, 3 */
789 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
790 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
791
792 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
793 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
794 }
795
796 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
797 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
798
799 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
800 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
801 }
802
803 if (dif) { /* DIX/DIF Type 1, 2, 3 */
804 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
805
806 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
807 protect = 3 << 5; /* Disable target PI checking */
808 else
809 protect = 1 << 5; /* Enable target PI checking */
810 }
811
812 scsi_set_prot_op(scmd, prot_op);
813 scsi_set_prot_type(scmd, dif);
814 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
815
816 return protect;
817 }
818
sd_config_discard(struct scsi_disk * sdkp,unsigned int mode)819 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
820 {
821 struct request_queue *q = sdkp->disk->queue;
822 unsigned int logical_block_size = sdkp->device->sector_size;
823 unsigned int max_blocks = 0;
824
825 q->limits.discard_alignment =
826 sdkp->unmap_alignment * logical_block_size;
827 q->limits.discard_granularity =
828 max(sdkp->physical_block_size,
829 sdkp->unmap_granularity * logical_block_size);
830 sdkp->provisioning_mode = mode;
831
832 switch (mode) {
833
834 case SD_LBP_FULL:
835 case SD_LBP_DISABLE:
836 blk_queue_max_discard_sectors(q, 0);
837 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
838 return;
839
840 case SD_LBP_UNMAP:
841 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
842 (u32)SD_MAX_WS16_BLOCKS);
843 break;
844
845 case SD_LBP_WS16:
846 if (sdkp->device->unmap_limit_for_ws)
847 max_blocks = sdkp->max_unmap_blocks;
848 else
849 max_blocks = sdkp->max_ws_blocks;
850
851 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
852 break;
853
854 case SD_LBP_WS10:
855 if (sdkp->device->unmap_limit_for_ws)
856 max_blocks = sdkp->max_unmap_blocks;
857 else
858 max_blocks = sdkp->max_ws_blocks;
859
860 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
861 break;
862
863 case SD_LBP_ZERO:
864 max_blocks = min_not_zero(sdkp->max_ws_blocks,
865 (u32)SD_MAX_WS10_BLOCKS);
866 break;
867 }
868
869 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
870 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
871 }
872
sd_setup_unmap_cmnd(struct scsi_cmnd * cmd)873 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
874 {
875 struct scsi_device *sdp = cmd->device;
876 struct request *rq = cmd->request;
877 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
878 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
879 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
880 unsigned int data_len = 24;
881 char *buf;
882
883 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
884 if (!rq->special_vec.bv_page)
885 return BLK_STS_RESOURCE;
886 clear_highpage(rq->special_vec.bv_page);
887 rq->special_vec.bv_offset = 0;
888 rq->special_vec.bv_len = data_len;
889 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
890
891 cmd->cmd_len = 10;
892 cmd->cmnd[0] = UNMAP;
893 cmd->cmnd[8] = 24;
894
895 buf = page_address(rq->special_vec.bv_page);
896 put_unaligned_be16(6 + 16, &buf[0]);
897 put_unaligned_be16(16, &buf[2]);
898 put_unaligned_be64(lba, &buf[8]);
899 put_unaligned_be32(nr_blocks, &buf[16]);
900
901 cmd->allowed = sdkp->max_retries;
902 cmd->transfersize = data_len;
903 rq->timeout = SD_TIMEOUT;
904
905 return scsi_alloc_sgtables(cmd);
906 }
907
sd_setup_write_same16_cmnd(struct scsi_cmnd * cmd,bool unmap)908 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
909 bool unmap)
910 {
911 struct scsi_device *sdp = cmd->device;
912 struct request *rq = cmd->request;
913 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
914 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
915 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
916 u32 data_len = sdp->sector_size;
917
918 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
919 if (!rq->special_vec.bv_page)
920 return BLK_STS_RESOURCE;
921 clear_highpage(rq->special_vec.bv_page);
922 rq->special_vec.bv_offset = 0;
923 rq->special_vec.bv_len = data_len;
924 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
925
926 cmd->cmd_len = 16;
927 cmd->cmnd[0] = WRITE_SAME_16;
928 if (unmap)
929 cmd->cmnd[1] = 0x8; /* UNMAP */
930 put_unaligned_be64(lba, &cmd->cmnd[2]);
931 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
932
933 cmd->allowed = sdkp->max_retries;
934 cmd->transfersize = data_len;
935 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
936
937 return scsi_alloc_sgtables(cmd);
938 }
939
sd_setup_write_same10_cmnd(struct scsi_cmnd * cmd,bool unmap)940 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
941 bool unmap)
942 {
943 struct scsi_device *sdp = cmd->device;
944 struct request *rq = cmd->request;
945 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
946 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
947 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
948 u32 data_len = sdp->sector_size;
949
950 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
951 if (!rq->special_vec.bv_page)
952 return BLK_STS_RESOURCE;
953 clear_highpage(rq->special_vec.bv_page);
954 rq->special_vec.bv_offset = 0;
955 rq->special_vec.bv_len = data_len;
956 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
957
958 cmd->cmd_len = 10;
959 cmd->cmnd[0] = WRITE_SAME;
960 if (unmap)
961 cmd->cmnd[1] = 0x8; /* UNMAP */
962 put_unaligned_be32(lba, &cmd->cmnd[2]);
963 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
964
965 cmd->allowed = sdkp->max_retries;
966 cmd->transfersize = data_len;
967 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
968
969 return scsi_alloc_sgtables(cmd);
970 }
971
sd_setup_write_zeroes_cmnd(struct scsi_cmnd * cmd)972 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
973 {
974 struct request *rq = cmd->request;
975 struct scsi_device *sdp = cmd->device;
976 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
977 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
978 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
979
980 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
981 switch (sdkp->zeroing_mode) {
982 case SD_ZERO_WS16_UNMAP:
983 return sd_setup_write_same16_cmnd(cmd, true);
984 case SD_ZERO_WS10_UNMAP:
985 return sd_setup_write_same10_cmnd(cmd, true);
986 }
987 }
988
989 if (sdp->no_write_same) {
990 rq->rq_flags |= RQF_QUIET;
991 return BLK_STS_TARGET;
992 }
993
994 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
995 return sd_setup_write_same16_cmnd(cmd, false);
996
997 return sd_setup_write_same10_cmnd(cmd, false);
998 }
999
sd_config_write_same(struct scsi_disk * sdkp)1000 static void sd_config_write_same(struct scsi_disk *sdkp)
1001 {
1002 struct request_queue *q = sdkp->disk->queue;
1003 unsigned int logical_block_size = sdkp->device->sector_size;
1004
1005 if (sdkp->device->no_write_same) {
1006 sdkp->max_ws_blocks = 0;
1007 goto out;
1008 }
1009
1010 /* Some devices can not handle block counts above 0xffff despite
1011 * supporting WRITE SAME(16). Consequently we default to 64k
1012 * blocks per I/O unless the device explicitly advertises a
1013 * bigger limit.
1014 */
1015 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1016 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1017 (u32)SD_MAX_WS16_BLOCKS);
1018 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1019 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1020 (u32)SD_MAX_WS10_BLOCKS);
1021 else {
1022 sdkp->device->no_write_same = 1;
1023 sdkp->max_ws_blocks = 0;
1024 }
1025
1026 if (sdkp->lbprz && sdkp->lbpws)
1027 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1028 else if (sdkp->lbprz && sdkp->lbpws10)
1029 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1030 else if (sdkp->max_ws_blocks)
1031 sdkp->zeroing_mode = SD_ZERO_WS;
1032 else
1033 sdkp->zeroing_mode = SD_ZERO_WRITE;
1034
1035 if (sdkp->max_ws_blocks &&
1036 sdkp->physical_block_size > logical_block_size) {
1037 /*
1038 * Reporting a maximum number of blocks that is not aligned
1039 * on the device physical size would cause a large write same
1040 * request to be split into physically unaligned chunks by
1041 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1042 * even if the caller of these functions took care to align the
1043 * large request. So make sure the maximum reported is aligned
1044 * to the device physical block size. This is only an optional
1045 * optimization for regular disks, but this is mandatory to
1046 * avoid failure of large write same requests directed at
1047 * sequential write required zones of host-managed ZBC disks.
1048 */
1049 sdkp->max_ws_blocks =
1050 round_down(sdkp->max_ws_blocks,
1051 bytes_to_logical(sdkp->device,
1052 sdkp->physical_block_size));
1053 }
1054
1055 out:
1056 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1057 (logical_block_size >> 9));
1058 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1059 (logical_block_size >> 9));
1060 }
1061
1062 /**
1063 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1064 * @cmd: command to prepare
1065 *
1066 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1067 * the preference indicated by the target device.
1068 **/
sd_setup_write_same_cmnd(struct scsi_cmnd * cmd)1069 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1070 {
1071 struct request *rq = cmd->request;
1072 struct scsi_device *sdp = cmd->device;
1073 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1074 struct bio *bio = rq->bio;
1075 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1076 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1077 blk_status_t ret;
1078
1079 if (sdkp->device->no_write_same)
1080 return BLK_STS_TARGET;
1081
1082 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1083
1084 rq->timeout = SD_WRITE_SAME_TIMEOUT;
1085
1086 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1087 cmd->cmd_len = 16;
1088 cmd->cmnd[0] = WRITE_SAME_16;
1089 put_unaligned_be64(lba, &cmd->cmnd[2]);
1090 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1091 } else {
1092 cmd->cmd_len = 10;
1093 cmd->cmnd[0] = WRITE_SAME;
1094 put_unaligned_be32(lba, &cmd->cmnd[2]);
1095 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1096 }
1097
1098 cmd->transfersize = sdp->sector_size;
1099 cmd->allowed = sdkp->max_retries;
1100
1101 /*
1102 * For WRITE SAME the data transferred via the DATA OUT buffer is
1103 * different from the amount of data actually written to the target.
1104 *
1105 * We set up __data_len to the amount of data transferred via the
1106 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1107 * to transfer a single sector of data first, but then reset it to
1108 * the amount of data to be written right after so that the I/O path
1109 * knows how much to actually write.
1110 */
1111 rq->__data_len = sdp->sector_size;
1112 ret = scsi_alloc_sgtables(cmd);
1113 rq->__data_len = blk_rq_bytes(rq);
1114
1115 return ret;
1116 }
1117
sd_setup_flush_cmnd(struct scsi_cmnd * cmd)1118 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1119 {
1120 struct request *rq = cmd->request;
1121 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1122
1123 /* flush requests don't perform I/O, zero the S/G table */
1124 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1125
1126 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1127 cmd->cmd_len = 10;
1128 cmd->transfersize = 0;
1129 cmd->allowed = sdkp->max_retries;
1130
1131 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1132 return BLK_STS_OK;
1133 }
1134
sd_setup_rw32_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1135 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1136 sector_t lba, unsigned int nr_blocks,
1137 unsigned char flags)
1138 {
1139 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1140 if (unlikely(cmd->cmnd == NULL))
1141 return BLK_STS_RESOURCE;
1142
1143 cmd->cmd_len = SD_EXT_CDB_SIZE;
1144 memset(cmd->cmnd, 0, cmd->cmd_len);
1145
1146 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1147 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1148 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1149 cmd->cmnd[10] = flags;
1150 put_unaligned_be64(lba, &cmd->cmnd[12]);
1151 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1152 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1153
1154 return BLK_STS_OK;
1155 }
1156
sd_setup_rw16_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1157 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1158 sector_t lba, unsigned int nr_blocks,
1159 unsigned char flags)
1160 {
1161 cmd->cmd_len = 16;
1162 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1163 cmd->cmnd[1] = flags;
1164 cmd->cmnd[14] = 0;
1165 cmd->cmnd[15] = 0;
1166 put_unaligned_be64(lba, &cmd->cmnd[2]);
1167 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1168
1169 return BLK_STS_OK;
1170 }
1171
sd_setup_rw10_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1172 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1173 sector_t lba, unsigned int nr_blocks,
1174 unsigned char flags)
1175 {
1176 cmd->cmd_len = 10;
1177 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1178 cmd->cmnd[1] = flags;
1179 cmd->cmnd[6] = 0;
1180 cmd->cmnd[9] = 0;
1181 put_unaligned_be32(lba, &cmd->cmnd[2]);
1182 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1183
1184 return BLK_STS_OK;
1185 }
1186
sd_setup_rw6_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1187 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1188 sector_t lba, unsigned int nr_blocks,
1189 unsigned char flags)
1190 {
1191 /* Avoid that 0 blocks gets translated into 256 blocks. */
1192 if (WARN_ON_ONCE(nr_blocks == 0))
1193 return BLK_STS_IOERR;
1194
1195 if (unlikely(flags & 0x8)) {
1196 /*
1197 * This happens only if this drive failed 10byte rw
1198 * command with ILLEGAL_REQUEST during operation and
1199 * thus turned off use_10_for_rw.
1200 */
1201 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1202 return BLK_STS_IOERR;
1203 }
1204
1205 cmd->cmd_len = 6;
1206 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1207 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1208 cmd->cmnd[2] = (lba >> 8) & 0xff;
1209 cmd->cmnd[3] = lba & 0xff;
1210 cmd->cmnd[4] = nr_blocks;
1211 cmd->cmnd[5] = 0;
1212
1213 return BLK_STS_OK;
1214 }
1215
sd_setup_read_write_cmnd(struct scsi_cmnd * cmd)1216 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1217 {
1218 struct request *rq = cmd->request;
1219 struct scsi_device *sdp = cmd->device;
1220 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1221 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1222 sector_t threshold;
1223 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1224 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1225 bool write = rq_data_dir(rq) == WRITE;
1226 unsigned char protect, fua;
1227 blk_status_t ret;
1228 unsigned int dif;
1229 bool dix;
1230
1231 ret = scsi_alloc_sgtables(cmd);
1232 if (ret != BLK_STS_OK)
1233 return ret;
1234
1235 ret = BLK_STS_IOERR;
1236 if (!scsi_device_online(sdp) || sdp->changed) {
1237 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1238 goto fail;
1239 }
1240
1241 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1242 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1243 goto fail;
1244 }
1245
1246 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1247 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1248 goto fail;
1249 }
1250
1251 /*
1252 * Some SD card readers can't handle accesses which touch the
1253 * last one or two logical blocks. Split accesses as needed.
1254 */
1255 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1256
1257 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1258 if (lba < threshold) {
1259 /* Access up to the threshold but not beyond */
1260 nr_blocks = threshold - lba;
1261 } else {
1262 /* Access only a single logical block */
1263 nr_blocks = 1;
1264 }
1265 }
1266
1267 if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1268 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1269 if (ret)
1270 goto fail;
1271 }
1272
1273 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1274 dix = scsi_prot_sg_count(cmd);
1275 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1276
1277 if (dif || dix)
1278 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1279 else
1280 protect = 0;
1281
1282 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1283 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1284 protect | fua);
1285 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1286 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1287 protect | fua);
1288 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1289 sdp->use_10_for_rw || protect) {
1290 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1291 protect | fua);
1292 } else {
1293 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1294 protect | fua);
1295 }
1296
1297 if (unlikely(ret != BLK_STS_OK))
1298 goto fail;
1299
1300 /*
1301 * We shouldn't disconnect in the middle of a sector, so with a dumb
1302 * host adapter, it's safe to assume that we can at least transfer
1303 * this many bytes between each connect / disconnect.
1304 */
1305 cmd->transfersize = sdp->sector_size;
1306 cmd->underflow = nr_blocks << 9;
1307 cmd->allowed = sdkp->max_retries;
1308 cmd->sdb.length = nr_blocks * sdp->sector_size;
1309
1310 SCSI_LOG_HLQUEUE(1,
1311 scmd_printk(KERN_INFO, cmd,
1312 "%s: block=%llu, count=%d\n", __func__,
1313 (unsigned long long)blk_rq_pos(rq),
1314 blk_rq_sectors(rq)));
1315 SCSI_LOG_HLQUEUE(2,
1316 scmd_printk(KERN_INFO, cmd,
1317 "%s %d/%u 512 byte blocks.\n",
1318 write ? "writing" : "reading", nr_blocks,
1319 blk_rq_sectors(rq)));
1320
1321 /*
1322 * This indicates that the command is ready from our end to be queued.
1323 */
1324 return BLK_STS_OK;
1325 fail:
1326 scsi_free_sgtables(cmd);
1327 return ret;
1328 }
1329
sd_init_command(struct scsi_cmnd * cmd)1330 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1331 {
1332 struct request *rq = cmd->request;
1333
1334 switch (req_op(rq)) {
1335 case REQ_OP_DISCARD:
1336 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1337 case SD_LBP_UNMAP:
1338 return sd_setup_unmap_cmnd(cmd);
1339 case SD_LBP_WS16:
1340 return sd_setup_write_same16_cmnd(cmd, true);
1341 case SD_LBP_WS10:
1342 return sd_setup_write_same10_cmnd(cmd, true);
1343 case SD_LBP_ZERO:
1344 return sd_setup_write_same10_cmnd(cmd, false);
1345 default:
1346 return BLK_STS_TARGET;
1347 }
1348 case REQ_OP_WRITE_ZEROES:
1349 return sd_setup_write_zeroes_cmnd(cmd);
1350 case REQ_OP_WRITE_SAME:
1351 return sd_setup_write_same_cmnd(cmd);
1352 case REQ_OP_FLUSH:
1353 return sd_setup_flush_cmnd(cmd);
1354 case REQ_OP_READ:
1355 case REQ_OP_WRITE:
1356 case REQ_OP_ZONE_APPEND:
1357 return sd_setup_read_write_cmnd(cmd);
1358 case REQ_OP_ZONE_RESET:
1359 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1360 false);
1361 case REQ_OP_ZONE_RESET_ALL:
1362 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1363 true);
1364 case REQ_OP_ZONE_OPEN:
1365 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1366 case REQ_OP_ZONE_CLOSE:
1367 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1368 case REQ_OP_ZONE_FINISH:
1369 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1370 default:
1371 WARN_ON_ONCE(1);
1372 return BLK_STS_NOTSUPP;
1373 }
1374 }
1375
sd_uninit_command(struct scsi_cmnd * SCpnt)1376 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1377 {
1378 struct request *rq = SCpnt->request;
1379 u8 *cmnd;
1380
1381 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1382 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1383
1384 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1385 cmnd = SCpnt->cmnd;
1386 SCpnt->cmnd = NULL;
1387 SCpnt->cmd_len = 0;
1388 mempool_free(cmnd, sd_cdb_pool);
1389 }
1390 }
1391
sd_need_revalidate(struct block_device * bdev,struct scsi_disk * sdkp)1392 static bool sd_need_revalidate(struct block_device *bdev,
1393 struct scsi_disk *sdkp)
1394 {
1395 if (sdkp->device->removable || sdkp->write_prot) {
1396 if (bdev_check_media_change(bdev))
1397 return true;
1398 }
1399
1400 /*
1401 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1402 * nothing to do with partitions, BLKRRPART is used to force a full
1403 * revalidate after things like a format for historical reasons.
1404 */
1405 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1406 }
1407
1408 /**
1409 * sd_open - open a scsi disk device
1410 * @bdev: Block device of the scsi disk to open
1411 * @mode: FMODE_* mask
1412 *
1413 * Returns 0 if successful. Returns a negated errno value in case
1414 * of error.
1415 *
1416 * Note: This can be called from a user context (e.g. fsck(1) )
1417 * or from within the kernel (e.g. as a result of a mount(1) ).
1418 * In the latter case @inode and @filp carry an abridged amount
1419 * of information as noted above.
1420 *
1421 * Locking: called with bdev->bd_mutex held.
1422 **/
sd_open(struct block_device * bdev,fmode_t mode)1423 static int sd_open(struct block_device *bdev, fmode_t mode)
1424 {
1425 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1426 struct scsi_device *sdev;
1427 int retval;
1428
1429 if (!sdkp)
1430 return -ENXIO;
1431
1432 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1433
1434 sdev = sdkp->device;
1435
1436 /*
1437 * If the device is in error recovery, wait until it is done.
1438 * If the device is offline, then disallow any access to it.
1439 */
1440 retval = -ENXIO;
1441 if (!scsi_block_when_processing_errors(sdev))
1442 goto error_out;
1443
1444 if (sd_need_revalidate(bdev, sdkp))
1445 sd_revalidate_disk(bdev->bd_disk);
1446
1447 /*
1448 * If the drive is empty, just let the open fail.
1449 */
1450 retval = -ENOMEDIUM;
1451 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1452 goto error_out;
1453
1454 /*
1455 * If the device has the write protect tab set, have the open fail
1456 * if the user expects to be able to write to the thing.
1457 */
1458 retval = -EROFS;
1459 if (sdkp->write_prot && (mode & FMODE_WRITE))
1460 goto error_out;
1461
1462 /*
1463 * It is possible that the disk changing stuff resulted in
1464 * the device being taken offline. If this is the case,
1465 * report this to the user, and don't pretend that the
1466 * open actually succeeded.
1467 */
1468 retval = -ENXIO;
1469 if (!scsi_device_online(sdev))
1470 goto error_out;
1471
1472 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1473 if (scsi_block_when_processing_errors(sdev))
1474 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1475 }
1476
1477 return 0;
1478
1479 error_out:
1480 scsi_disk_put(sdkp);
1481 return retval;
1482 }
1483
1484 /**
1485 * sd_release - invoked when the (last) close(2) is called on this
1486 * scsi disk.
1487 * @disk: disk to release
1488 * @mode: FMODE_* mask
1489 *
1490 * Returns 0.
1491 *
1492 * Note: may block (uninterruptible) if error recovery is underway
1493 * on this disk.
1494 *
1495 * Locking: called with bdev->bd_mutex held.
1496 **/
sd_release(struct gendisk * disk,fmode_t mode)1497 static void sd_release(struct gendisk *disk, fmode_t mode)
1498 {
1499 struct scsi_disk *sdkp = scsi_disk(disk);
1500 struct scsi_device *sdev = sdkp->device;
1501
1502 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1503
1504 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1505 if (scsi_block_when_processing_errors(sdev))
1506 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1507 }
1508
1509 scsi_disk_put(sdkp);
1510 }
1511
sd_getgeo(struct block_device * bdev,struct hd_geometry * geo)1512 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1513 {
1514 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1515 struct scsi_device *sdp = sdkp->device;
1516 struct Scsi_Host *host = sdp->host;
1517 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1518 int diskinfo[4];
1519
1520 /* default to most commonly used values */
1521 diskinfo[0] = 0x40; /* 1 << 6 */
1522 diskinfo[1] = 0x20; /* 1 << 5 */
1523 diskinfo[2] = capacity >> 11;
1524
1525 /* override with calculated, extended default, or driver values */
1526 if (host->hostt->bios_param)
1527 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1528 else
1529 scsicam_bios_param(bdev, capacity, diskinfo);
1530
1531 geo->heads = diskinfo[0];
1532 geo->sectors = diskinfo[1];
1533 geo->cylinders = diskinfo[2];
1534 return 0;
1535 }
1536
1537 /**
1538 * sd_ioctl - process an ioctl
1539 * @bdev: target block device
1540 * @mode: FMODE_* mask
1541 * @cmd: ioctl command number
1542 * @p: this is third argument given to ioctl(2) system call.
1543 * Often contains a pointer.
1544 *
1545 * Returns 0 if successful (some ioctls return positive numbers on
1546 * success as well). Returns a negated errno value in case of error.
1547 *
1548 * Note: most ioctls are forward onto the block subsystem or further
1549 * down in the scsi subsystem.
1550 **/
sd_ioctl_common(struct block_device * bdev,fmode_t mode,unsigned int cmd,void __user * p)1551 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode,
1552 unsigned int cmd, void __user *p)
1553 {
1554 struct gendisk *disk = bdev->bd_disk;
1555 struct scsi_disk *sdkp = scsi_disk(disk);
1556 struct scsi_device *sdp = sdkp->device;
1557 int error;
1558
1559 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1560 "cmd=0x%x\n", disk->disk_name, cmd));
1561
1562 error = scsi_verify_blk_ioctl(bdev, cmd);
1563 if (error < 0)
1564 return error;
1565
1566 /*
1567 * If we are in the middle of error recovery, don't let anyone
1568 * else try and use this device. Also, if error recovery fails, it
1569 * may try and take the device offline, in which case all further
1570 * access to the device is prohibited.
1571 */
1572 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1573 (mode & FMODE_NDELAY) != 0);
1574 if (error)
1575 goto out;
1576
1577 if (is_sed_ioctl(cmd))
1578 return sed_ioctl(sdkp->opal_dev, cmd, p);
1579
1580 /*
1581 * Send SCSI addressing ioctls directly to mid level, send other
1582 * ioctls to block level and then onto mid level if they can't be
1583 * resolved.
1584 */
1585 switch (cmd) {
1586 case SCSI_IOCTL_GET_IDLUN:
1587 case SCSI_IOCTL_GET_BUS_NUMBER:
1588 error = scsi_ioctl(sdp, cmd, p);
1589 break;
1590 default:
1591 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1592 break;
1593 }
1594 out:
1595 return error;
1596 }
1597
set_media_not_present(struct scsi_disk * sdkp)1598 static void set_media_not_present(struct scsi_disk *sdkp)
1599 {
1600 if (sdkp->media_present)
1601 sdkp->device->changed = 1;
1602
1603 if (sdkp->device->removable) {
1604 sdkp->media_present = 0;
1605 sdkp->capacity = 0;
1606 }
1607 }
1608
media_not_present(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1609 static int media_not_present(struct scsi_disk *sdkp,
1610 struct scsi_sense_hdr *sshdr)
1611 {
1612 if (!scsi_sense_valid(sshdr))
1613 return 0;
1614
1615 /* not invoked for commands that could return deferred errors */
1616 switch (sshdr->sense_key) {
1617 case UNIT_ATTENTION:
1618 case NOT_READY:
1619 /* medium not present */
1620 if (sshdr->asc == 0x3A) {
1621 set_media_not_present(sdkp);
1622 return 1;
1623 }
1624 }
1625 return 0;
1626 }
1627
1628 /**
1629 * sd_check_events - check media events
1630 * @disk: kernel device descriptor
1631 * @clearing: disk events currently being cleared
1632 *
1633 * Returns mask of DISK_EVENT_*.
1634 *
1635 * Note: this function is invoked from the block subsystem.
1636 **/
sd_check_events(struct gendisk * disk,unsigned int clearing)1637 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1638 {
1639 struct scsi_disk *sdkp = scsi_disk_get(disk);
1640 struct scsi_device *sdp;
1641 int retval;
1642
1643 if (!sdkp)
1644 return 0;
1645
1646 sdp = sdkp->device;
1647 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1648
1649 /*
1650 * If the device is offline, don't send any commands - just pretend as
1651 * if the command failed. If the device ever comes back online, we
1652 * can deal with it then. It is only because of unrecoverable errors
1653 * that we would ever take a device offline in the first place.
1654 */
1655 if (!scsi_device_online(sdp)) {
1656 set_media_not_present(sdkp);
1657 goto out;
1658 }
1659
1660 /*
1661 * Using TEST_UNIT_READY enables differentiation between drive with
1662 * no cartridge loaded - NOT READY, drive with changed cartridge -
1663 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1664 *
1665 * Drives that auto spin down. eg iomega jaz 1G, will be started
1666 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1667 * sd_revalidate() is called.
1668 */
1669 if (scsi_block_when_processing_errors(sdp)) {
1670 struct scsi_sense_hdr sshdr = { 0, };
1671
1672 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1673 &sshdr);
1674
1675 /* failed to execute TUR, assume media not present */
1676 if (host_byte(retval)) {
1677 set_media_not_present(sdkp);
1678 goto out;
1679 }
1680
1681 if (media_not_present(sdkp, &sshdr))
1682 goto out;
1683 }
1684
1685 /*
1686 * For removable scsi disk we have to recognise the presence
1687 * of a disk in the drive.
1688 */
1689 if (!sdkp->media_present)
1690 sdp->changed = 1;
1691 sdkp->media_present = 1;
1692 out:
1693 /*
1694 * sdp->changed is set under the following conditions:
1695 *
1696 * Medium present state has changed in either direction.
1697 * Device has indicated UNIT_ATTENTION.
1698 */
1699 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1700 sdp->changed = 0;
1701 scsi_disk_put(sdkp);
1702 return retval;
1703 }
1704
sd_sync_cache(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1705 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1706 {
1707 int retries, res;
1708 struct scsi_device *sdp = sdkp->device;
1709 const int timeout = sdp->request_queue->rq_timeout
1710 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1711 struct scsi_sense_hdr my_sshdr;
1712
1713 if (!scsi_device_online(sdp))
1714 return -ENODEV;
1715
1716 /* caller might not be interested in sense, but we need it */
1717 if (!sshdr)
1718 sshdr = &my_sshdr;
1719
1720 for (retries = 3; retries > 0; --retries) {
1721 unsigned char cmd[10] = { 0 };
1722
1723 cmd[0] = SYNCHRONIZE_CACHE;
1724 /*
1725 * Leave the rest of the command zero to indicate
1726 * flush everything.
1727 */
1728 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1729 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1730 if (res == 0)
1731 break;
1732 }
1733
1734 if (res) {
1735 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1736
1737 if (driver_byte(res) == DRIVER_SENSE)
1738 sd_print_sense_hdr(sdkp, sshdr);
1739
1740 /* we need to evaluate the error return */
1741 if (scsi_sense_valid(sshdr) &&
1742 (sshdr->asc == 0x3a || /* medium not present */
1743 sshdr->asc == 0x20 || /* invalid command */
1744 (sshdr->asc == 0x74 && sshdr->ascq == 0x71))) /* drive is password locked */
1745 /* this is no error here */
1746 return 0;
1747
1748 switch (host_byte(res)) {
1749 /* ignore errors due to racing a disconnection */
1750 case DID_BAD_TARGET:
1751 case DID_NO_CONNECT:
1752 return 0;
1753 /* signal the upper layer it might try again */
1754 case DID_BUS_BUSY:
1755 case DID_IMM_RETRY:
1756 case DID_REQUEUE:
1757 case DID_SOFT_ERROR:
1758 return -EBUSY;
1759 default:
1760 return -EIO;
1761 }
1762 }
1763 return 0;
1764 }
1765
sd_rescan(struct device * dev)1766 static void sd_rescan(struct device *dev)
1767 {
1768 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1769 int ret;
1770
1771 ret = sd_revalidate_disk(sdkp->disk);
1772 revalidate_disk_size(sdkp->disk, ret == 0);
1773 }
1774
sd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1775 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1776 unsigned int cmd, unsigned long arg)
1777 {
1778 void __user *p = (void __user *)arg;
1779 int ret;
1780
1781 ret = sd_ioctl_common(bdev, mode, cmd, p);
1782 if (ret != -ENOTTY)
1783 return ret;
1784
1785 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1786 }
1787
1788 #ifdef CONFIG_COMPAT
sd_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1789 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1790 unsigned int cmd, unsigned long arg)
1791 {
1792 void __user *p = compat_ptr(arg);
1793 int ret;
1794
1795 ret = sd_ioctl_common(bdev, mode, cmd, p);
1796 if (ret != -ENOTTY)
1797 return ret;
1798
1799 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1800 }
1801 #endif
1802
sd_pr_type(enum pr_type type)1803 static char sd_pr_type(enum pr_type type)
1804 {
1805 switch (type) {
1806 case PR_WRITE_EXCLUSIVE:
1807 return 0x01;
1808 case PR_EXCLUSIVE_ACCESS:
1809 return 0x03;
1810 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1811 return 0x05;
1812 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1813 return 0x06;
1814 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1815 return 0x07;
1816 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1817 return 0x08;
1818 default:
1819 return 0;
1820 }
1821 };
1822
sd_pr_command(struct block_device * bdev,u8 sa,u64 key,u64 sa_key,u8 type,u8 flags)1823 static int sd_pr_command(struct block_device *bdev, u8 sa,
1824 u64 key, u64 sa_key, u8 type, u8 flags)
1825 {
1826 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1827 struct scsi_device *sdev = sdkp->device;
1828 struct scsi_sense_hdr sshdr;
1829 int result;
1830 u8 cmd[16] = { 0, };
1831 u8 data[24] = { 0, };
1832
1833 cmd[0] = PERSISTENT_RESERVE_OUT;
1834 cmd[1] = sa;
1835 cmd[2] = type;
1836 put_unaligned_be32(sizeof(data), &cmd[5]);
1837
1838 put_unaligned_be64(key, &data[0]);
1839 put_unaligned_be64(sa_key, &data[8]);
1840 data[20] = flags;
1841
1842 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1843 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1844
1845 if (driver_byte(result) == DRIVER_SENSE &&
1846 scsi_sense_valid(&sshdr)) {
1847 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1848 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1849 }
1850
1851 return result;
1852 }
1853
sd_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)1854 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1855 u32 flags)
1856 {
1857 if (flags & ~PR_FL_IGNORE_KEY)
1858 return -EOPNOTSUPP;
1859 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1860 old_key, new_key, 0,
1861 (1 << 0) /* APTPL */);
1862 }
1863
sd_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)1864 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1865 u32 flags)
1866 {
1867 if (flags)
1868 return -EOPNOTSUPP;
1869 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1870 }
1871
sd_pr_release(struct block_device * bdev,u64 key,enum pr_type type)1872 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1873 {
1874 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1875 }
1876
sd_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)1877 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1878 enum pr_type type, bool abort)
1879 {
1880 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1881 sd_pr_type(type), 0);
1882 }
1883
sd_pr_clear(struct block_device * bdev,u64 key)1884 static int sd_pr_clear(struct block_device *bdev, u64 key)
1885 {
1886 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1887 }
1888
1889 static const struct pr_ops sd_pr_ops = {
1890 .pr_register = sd_pr_register,
1891 .pr_reserve = sd_pr_reserve,
1892 .pr_release = sd_pr_release,
1893 .pr_preempt = sd_pr_preempt,
1894 .pr_clear = sd_pr_clear,
1895 };
1896
1897 static const struct block_device_operations sd_fops = {
1898 .owner = THIS_MODULE,
1899 .open = sd_open,
1900 .release = sd_release,
1901 .ioctl = sd_ioctl,
1902 .getgeo = sd_getgeo,
1903 #ifdef CONFIG_COMPAT
1904 .compat_ioctl = sd_compat_ioctl,
1905 #endif
1906 .check_events = sd_check_events,
1907 .unlock_native_capacity = sd_unlock_native_capacity,
1908 .report_zones = sd_zbc_report_zones,
1909 .pr_ops = &sd_pr_ops,
1910 };
1911
1912 /**
1913 * sd_eh_reset - reset error handling callback
1914 * @scmd: sd-issued command that has failed
1915 *
1916 * This function is called by the SCSI midlayer before starting
1917 * SCSI EH. When counting medium access failures we have to be
1918 * careful to register it only only once per device and SCSI EH run;
1919 * there might be several timed out commands which will cause the
1920 * 'max_medium_access_timeouts' counter to trigger after the first
1921 * SCSI EH run already and set the device to offline.
1922 * So this function resets the internal counter before starting SCSI EH.
1923 **/
sd_eh_reset(struct scsi_cmnd * scmd)1924 static void sd_eh_reset(struct scsi_cmnd *scmd)
1925 {
1926 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1927
1928 /* New SCSI EH run, reset gate variable */
1929 sdkp->ignore_medium_access_errors = false;
1930 }
1931
1932 /**
1933 * sd_eh_action - error handling callback
1934 * @scmd: sd-issued command that has failed
1935 * @eh_disp: The recovery disposition suggested by the midlayer
1936 *
1937 * This function is called by the SCSI midlayer upon completion of an
1938 * error test command (currently TEST UNIT READY). The result of sending
1939 * the eh command is passed in eh_disp. We're looking for devices that
1940 * fail medium access commands but are OK with non access commands like
1941 * test unit ready (so wrongly see the device as having a successful
1942 * recovery)
1943 **/
sd_eh_action(struct scsi_cmnd * scmd,int eh_disp)1944 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1945 {
1946 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1947 struct scsi_device *sdev = scmd->device;
1948
1949 if (!scsi_device_online(sdev) ||
1950 !scsi_medium_access_command(scmd) ||
1951 host_byte(scmd->result) != DID_TIME_OUT ||
1952 eh_disp != SUCCESS)
1953 return eh_disp;
1954
1955 /*
1956 * The device has timed out executing a medium access command.
1957 * However, the TEST UNIT READY command sent during error
1958 * handling completed successfully. Either the device is in the
1959 * process of recovering or has it suffered an internal failure
1960 * that prevents access to the storage medium.
1961 */
1962 if (!sdkp->ignore_medium_access_errors) {
1963 sdkp->medium_access_timed_out++;
1964 sdkp->ignore_medium_access_errors = true;
1965 }
1966
1967 /*
1968 * If the device keeps failing read/write commands but TEST UNIT
1969 * READY always completes successfully we assume that medium
1970 * access is no longer possible and take the device offline.
1971 */
1972 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1973 scmd_printk(KERN_ERR, scmd,
1974 "Medium access timeout failure. Offlining disk!\n");
1975 mutex_lock(&sdev->state_mutex);
1976 scsi_device_set_state(sdev, SDEV_OFFLINE);
1977 mutex_unlock(&sdev->state_mutex);
1978
1979 return SUCCESS;
1980 }
1981
1982 return eh_disp;
1983 }
1984
sd_completed_bytes(struct scsi_cmnd * scmd)1985 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1986 {
1987 struct request *req = scmd->request;
1988 struct scsi_device *sdev = scmd->device;
1989 unsigned int transferred, good_bytes;
1990 u64 start_lba, end_lba, bad_lba;
1991
1992 /*
1993 * Some commands have a payload smaller than the device logical
1994 * block size (e.g. INQUIRY on a 4K disk).
1995 */
1996 if (scsi_bufflen(scmd) <= sdev->sector_size)
1997 return 0;
1998
1999 /* Check if we have a 'bad_lba' information */
2000 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2001 SCSI_SENSE_BUFFERSIZE,
2002 &bad_lba))
2003 return 0;
2004
2005 /*
2006 * If the bad lba was reported incorrectly, we have no idea where
2007 * the error is.
2008 */
2009 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2010 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2011 if (bad_lba < start_lba || bad_lba >= end_lba)
2012 return 0;
2013
2014 /*
2015 * resid is optional but mostly filled in. When it's unused,
2016 * its value is zero, so we assume the whole buffer transferred
2017 */
2018 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2019
2020 /* This computation should always be done in terms of the
2021 * resolution of the device's medium.
2022 */
2023 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2024
2025 return min(good_bytes, transferred);
2026 }
2027
2028 /**
2029 * sd_done - bottom half handler: called when the lower level
2030 * driver has completed (successfully or otherwise) a scsi command.
2031 * @SCpnt: mid-level's per command structure.
2032 *
2033 * Note: potentially run from within an ISR. Must not block.
2034 **/
sd_done(struct scsi_cmnd * SCpnt)2035 static int sd_done(struct scsi_cmnd *SCpnt)
2036 {
2037 int result = SCpnt->result;
2038 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2039 unsigned int sector_size = SCpnt->device->sector_size;
2040 unsigned int resid;
2041 struct scsi_sense_hdr sshdr;
2042 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
2043 struct request *req = SCpnt->request;
2044 int sense_valid = 0;
2045 int sense_deferred = 0;
2046
2047 switch (req_op(req)) {
2048 case REQ_OP_DISCARD:
2049 case REQ_OP_WRITE_ZEROES:
2050 case REQ_OP_WRITE_SAME:
2051 case REQ_OP_ZONE_RESET:
2052 case REQ_OP_ZONE_RESET_ALL:
2053 case REQ_OP_ZONE_OPEN:
2054 case REQ_OP_ZONE_CLOSE:
2055 case REQ_OP_ZONE_FINISH:
2056 if (!result) {
2057 good_bytes = blk_rq_bytes(req);
2058 scsi_set_resid(SCpnt, 0);
2059 } else {
2060 good_bytes = 0;
2061 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2062 }
2063 break;
2064 default:
2065 /*
2066 * In case of bogus fw or device, we could end up having
2067 * an unaligned partial completion. Check this here and force
2068 * alignment.
2069 */
2070 resid = scsi_get_resid(SCpnt);
2071 if (resid & (sector_size - 1)) {
2072 sd_printk(KERN_INFO, sdkp,
2073 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2074 resid, sector_size);
2075 scsi_print_command(SCpnt);
2076 resid = min(scsi_bufflen(SCpnt),
2077 round_up(resid, sector_size));
2078 scsi_set_resid(SCpnt, resid);
2079 }
2080 }
2081
2082 if (result) {
2083 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2084 if (sense_valid)
2085 sense_deferred = scsi_sense_is_deferred(&sshdr);
2086 }
2087 sdkp->medium_access_timed_out = 0;
2088
2089 if (driver_byte(result) != DRIVER_SENSE &&
2090 (!sense_valid || sense_deferred))
2091 goto out;
2092
2093 switch (sshdr.sense_key) {
2094 case HARDWARE_ERROR:
2095 case MEDIUM_ERROR:
2096 good_bytes = sd_completed_bytes(SCpnt);
2097 break;
2098 case RECOVERED_ERROR:
2099 good_bytes = scsi_bufflen(SCpnt);
2100 break;
2101 case NO_SENSE:
2102 /* This indicates a false check condition, so ignore it. An
2103 * unknown amount of data was transferred so treat it as an
2104 * error.
2105 */
2106 SCpnt->result = 0;
2107 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2108 break;
2109 case ABORTED_COMMAND:
2110 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2111 good_bytes = sd_completed_bytes(SCpnt);
2112 break;
2113 case ILLEGAL_REQUEST:
2114 switch (sshdr.asc) {
2115 case 0x10: /* DIX: Host detected corruption */
2116 good_bytes = sd_completed_bytes(SCpnt);
2117 break;
2118 case 0x20: /* INVALID COMMAND OPCODE */
2119 case 0x24: /* INVALID FIELD IN CDB */
2120 switch (SCpnt->cmnd[0]) {
2121 case UNMAP:
2122 sd_config_discard(sdkp, SD_LBP_DISABLE);
2123 break;
2124 case WRITE_SAME_16:
2125 case WRITE_SAME:
2126 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2127 sd_config_discard(sdkp, SD_LBP_DISABLE);
2128 } else {
2129 sdkp->device->no_write_same = 1;
2130 sd_config_write_same(sdkp);
2131 req->rq_flags |= RQF_QUIET;
2132 }
2133 break;
2134 }
2135 }
2136 break;
2137 default:
2138 break;
2139 }
2140
2141 out:
2142 if (sd_is_zoned(sdkp))
2143 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2144
2145 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2146 "sd_done: completed %d of %d bytes\n",
2147 good_bytes, scsi_bufflen(SCpnt)));
2148
2149 return good_bytes;
2150 }
2151
2152 /*
2153 * spinup disk - called only in sd_revalidate_disk()
2154 */
2155 static void
sd_spinup_disk(struct scsi_disk * sdkp)2156 sd_spinup_disk(struct scsi_disk *sdkp)
2157 {
2158 unsigned char cmd[10];
2159 unsigned long spintime_expire = 0;
2160 int retries, spintime;
2161 unsigned int the_result;
2162 struct scsi_sense_hdr sshdr;
2163 int sense_valid = 0;
2164
2165 spintime = 0;
2166
2167 /* Spin up drives, as required. Only do this at boot time */
2168 /* Spinup needs to be done for module loads too. */
2169 do {
2170 retries = 0;
2171
2172 do {
2173 cmd[0] = TEST_UNIT_READY;
2174 memset((void *) &cmd[1], 0, 9);
2175
2176 the_result = scsi_execute_req(sdkp->device, cmd,
2177 DMA_NONE, NULL, 0,
2178 &sshdr, SD_TIMEOUT,
2179 sdkp->max_retries, NULL);
2180
2181 /*
2182 * If the drive has indicated to us that it
2183 * doesn't have any media in it, don't bother
2184 * with any more polling.
2185 */
2186 if (media_not_present(sdkp, &sshdr))
2187 return;
2188
2189 if (the_result)
2190 sense_valid = scsi_sense_valid(&sshdr);
2191 retries++;
2192 } while (retries < 3 &&
2193 (!scsi_status_is_good(the_result) ||
2194 ((driver_byte(the_result) == DRIVER_SENSE) &&
2195 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2196
2197 if (driver_byte(the_result) != DRIVER_SENSE) {
2198 /* no sense, TUR either succeeded or failed
2199 * with a status error */
2200 if(!spintime && !scsi_status_is_good(the_result)) {
2201 sd_print_result(sdkp, "Test Unit Ready failed",
2202 the_result);
2203 }
2204 break;
2205 }
2206
2207 /*
2208 * The device does not want the automatic start to be issued.
2209 */
2210 if (sdkp->device->no_start_on_add)
2211 break;
2212
2213 if (sense_valid && sshdr.sense_key == NOT_READY) {
2214 if (sshdr.asc == 4 && sshdr.ascq == 3)
2215 break; /* manual intervention required */
2216 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2217 break; /* standby */
2218 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2219 break; /* unavailable */
2220 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2221 break; /* sanitize in progress */
2222 /*
2223 * Issue command to spin up drive when not ready
2224 */
2225 if (!spintime) {
2226 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2227 cmd[0] = START_STOP;
2228 cmd[1] = 1; /* Return immediately */
2229 memset((void *) &cmd[2], 0, 8);
2230 cmd[4] = 1; /* Start spin cycle */
2231 if (sdkp->device->start_stop_pwr_cond)
2232 cmd[4] |= 1 << 4;
2233 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2234 NULL, 0, &sshdr,
2235 SD_TIMEOUT, sdkp->max_retries,
2236 NULL);
2237 spintime_expire = jiffies + 100 * HZ;
2238 spintime = 1;
2239 }
2240 /* Wait 1 second for next try */
2241 msleep(1000);
2242 printk(KERN_CONT ".");
2243
2244 /*
2245 * Wait for USB flash devices with slow firmware.
2246 * Yes, this sense key/ASC combination shouldn't
2247 * occur here. It's characteristic of these devices.
2248 */
2249 } else if (sense_valid &&
2250 sshdr.sense_key == UNIT_ATTENTION &&
2251 sshdr.asc == 0x28) {
2252 if (!spintime) {
2253 spintime_expire = jiffies + 5 * HZ;
2254 spintime = 1;
2255 }
2256 /* Wait 1 second for next try */
2257 msleep(1000);
2258 } else {
2259 /* we don't understand the sense code, so it's
2260 * probably pointless to loop */
2261 if(!spintime) {
2262 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2263 sd_print_sense_hdr(sdkp, &sshdr);
2264 }
2265 break;
2266 }
2267
2268 } while (spintime && time_before_eq(jiffies, spintime_expire));
2269
2270 if (spintime) {
2271 if (scsi_status_is_good(the_result))
2272 printk(KERN_CONT "ready\n");
2273 else
2274 printk(KERN_CONT "not responding...\n");
2275 }
2276 }
2277
2278 /*
2279 * Determine whether disk supports Data Integrity Field.
2280 */
sd_read_protection_type(struct scsi_disk * sdkp,unsigned char * buffer)2281 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2282 {
2283 struct scsi_device *sdp = sdkp->device;
2284 u8 type;
2285 int ret = 0;
2286
2287 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2288 sdkp->protection_type = 0;
2289 return ret;
2290 }
2291
2292 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2293
2294 if (type > T10_PI_TYPE3_PROTECTION)
2295 ret = -ENODEV;
2296 else if (scsi_host_dif_capable(sdp->host, type))
2297 ret = 1;
2298
2299 if (sdkp->first_scan || type != sdkp->protection_type)
2300 switch (ret) {
2301 case -ENODEV:
2302 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2303 " protection type %u. Disabling disk!\n",
2304 type);
2305 break;
2306 case 1:
2307 sd_printk(KERN_NOTICE, sdkp,
2308 "Enabling DIF Type %u protection\n", type);
2309 break;
2310 case 0:
2311 sd_printk(KERN_NOTICE, sdkp,
2312 "Disabling DIF Type %u protection\n", type);
2313 break;
2314 }
2315
2316 sdkp->protection_type = type;
2317
2318 return ret;
2319 }
2320
read_capacity_error(struct scsi_disk * sdkp,struct scsi_device * sdp,struct scsi_sense_hdr * sshdr,int sense_valid,int the_result)2321 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2322 struct scsi_sense_hdr *sshdr, int sense_valid,
2323 int the_result)
2324 {
2325 if (driver_byte(the_result) == DRIVER_SENSE)
2326 sd_print_sense_hdr(sdkp, sshdr);
2327 else
2328 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2329
2330 /*
2331 * Set dirty bit for removable devices if not ready -
2332 * sometimes drives will not report this properly.
2333 */
2334 if (sdp->removable &&
2335 sense_valid && sshdr->sense_key == NOT_READY)
2336 set_media_not_present(sdkp);
2337
2338 /*
2339 * We used to set media_present to 0 here to indicate no media
2340 * in the drive, but some drives fail read capacity even with
2341 * media present, so we can't do that.
2342 */
2343 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2344 }
2345
2346 #define RC16_LEN 32
2347 #if RC16_LEN > SD_BUF_SIZE
2348 #error RC16_LEN must not be more than SD_BUF_SIZE
2349 #endif
2350
2351 #define READ_CAPACITY_RETRIES_ON_RESET 10
2352
read_capacity_16(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2353 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2354 unsigned char *buffer)
2355 {
2356 unsigned char cmd[16];
2357 struct scsi_sense_hdr sshdr;
2358 int sense_valid = 0;
2359 int the_result;
2360 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2361 unsigned int alignment;
2362 unsigned long long lba;
2363 unsigned sector_size;
2364
2365 if (sdp->no_read_capacity_16)
2366 return -EINVAL;
2367
2368 do {
2369 memset(cmd, 0, 16);
2370 cmd[0] = SERVICE_ACTION_IN_16;
2371 cmd[1] = SAI_READ_CAPACITY_16;
2372 cmd[13] = RC16_LEN;
2373 memset(buffer, 0, RC16_LEN);
2374
2375 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2376 buffer, RC16_LEN, &sshdr,
2377 SD_TIMEOUT, sdkp->max_retries, NULL);
2378
2379 if (media_not_present(sdkp, &sshdr))
2380 return -ENODEV;
2381
2382 if (the_result) {
2383 sense_valid = scsi_sense_valid(&sshdr);
2384 if (sense_valid &&
2385 sshdr.sense_key == ILLEGAL_REQUEST &&
2386 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2387 sshdr.ascq == 0x00)
2388 /* Invalid Command Operation Code or
2389 * Invalid Field in CDB, just retry
2390 * silently with RC10 */
2391 return -EINVAL;
2392 if (sense_valid &&
2393 sshdr.sense_key == UNIT_ATTENTION &&
2394 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2395 /* Device reset might occur several times,
2396 * give it one more chance */
2397 if (--reset_retries > 0)
2398 continue;
2399 }
2400 retries--;
2401
2402 } while (the_result && retries);
2403
2404 if (the_result) {
2405 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2406 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2407 return -EINVAL;
2408 }
2409
2410 sector_size = get_unaligned_be32(&buffer[8]);
2411 lba = get_unaligned_be64(&buffer[0]);
2412
2413 if (sd_read_protection_type(sdkp, buffer) < 0) {
2414 sdkp->capacity = 0;
2415 return -ENODEV;
2416 }
2417
2418 /* Logical blocks per physical block exponent */
2419 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2420
2421 /* RC basis */
2422 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2423
2424 /* Lowest aligned logical block */
2425 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2426 blk_queue_alignment_offset(sdp->request_queue, alignment);
2427 if (alignment && sdkp->first_scan)
2428 sd_printk(KERN_NOTICE, sdkp,
2429 "physical block alignment offset: %u\n", alignment);
2430
2431 if (buffer[14] & 0x80) { /* LBPME */
2432 sdkp->lbpme = 1;
2433
2434 if (buffer[14] & 0x40) /* LBPRZ */
2435 sdkp->lbprz = 1;
2436
2437 sd_config_discard(sdkp, SD_LBP_WS16);
2438 }
2439
2440 sdkp->capacity = lba + 1;
2441 return sector_size;
2442 }
2443
read_capacity_10(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2444 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2445 unsigned char *buffer)
2446 {
2447 unsigned char cmd[16];
2448 struct scsi_sense_hdr sshdr;
2449 int sense_valid = 0;
2450 int the_result;
2451 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2452 sector_t lba;
2453 unsigned sector_size;
2454
2455 do {
2456 cmd[0] = READ_CAPACITY;
2457 memset(&cmd[1], 0, 9);
2458 memset(buffer, 0, 8);
2459
2460 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2461 buffer, 8, &sshdr,
2462 SD_TIMEOUT, sdkp->max_retries, NULL);
2463
2464 if (media_not_present(sdkp, &sshdr))
2465 return -ENODEV;
2466
2467 if (the_result) {
2468 sense_valid = scsi_sense_valid(&sshdr);
2469 if (sense_valid &&
2470 sshdr.sense_key == UNIT_ATTENTION &&
2471 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2472 /* Device reset might occur several times,
2473 * give it one more chance */
2474 if (--reset_retries > 0)
2475 continue;
2476 }
2477 retries--;
2478
2479 } while (the_result && retries);
2480
2481 if (the_result) {
2482 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2483 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2484 return -EINVAL;
2485 }
2486
2487 sector_size = get_unaligned_be32(&buffer[4]);
2488 lba = get_unaligned_be32(&buffer[0]);
2489
2490 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2491 /* Some buggy (usb cardreader) devices return an lba of
2492 0xffffffff when the want to report a size of 0 (with
2493 which they really mean no media is present) */
2494 sdkp->capacity = 0;
2495 sdkp->physical_block_size = sector_size;
2496 return sector_size;
2497 }
2498
2499 sdkp->capacity = lba + 1;
2500 sdkp->physical_block_size = sector_size;
2501 return sector_size;
2502 }
2503
sd_try_rc16_first(struct scsi_device * sdp)2504 static int sd_try_rc16_first(struct scsi_device *sdp)
2505 {
2506 if (sdp->host->max_cmd_len < 16)
2507 return 0;
2508 if (sdp->try_rc_10_first)
2509 return 0;
2510 if (sdp->scsi_level > SCSI_SPC_2)
2511 return 1;
2512 if (scsi_device_protection(sdp))
2513 return 1;
2514 return 0;
2515 }
2516
2517 /*
2518 * read disk capacity
2519 */
2520 static void
sd_read_capacity(struct scsi_disk * sdkp,unsigned char * buffer)2521 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2522 {
2523 int sector_size;
2524 struct scsi_device *sdp = sdkp->device;
2525
2526 if (sd_try_rc16_first(sdp)) {
2527 sector_size = read_capacity_16(sdkp, sdp, buffer);
2528 if (sector_size == -EOVERFLOW)
2529 goto got_data;
2530 if (sector_size == -ENODEV)
2531 return;
2532 if (sector_size < 0)
2533 sector_size = read_capacity_10(sdkp, sdp, buffer);
2534 if (sector_size < 0)
2535 return;
2536 } else {
2537 sector_size = read_capacity_10(sdkp, sdp, buffer);
2538 if (sector_size == -EOVERFLOW)
2539 goto got_data;
2540 if (sector_size < 0)
2541 return;
2542 if ((sizeof(sdkp->capacity) > 4) &&
2543 (sdkp->capacity > 0xffffffffULL)) {
2544 int old_sector_size = sector_size;
2545 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2546 "Trying to use READ CAPACITY(16).\n");
2547 sector_size = read_capacity_16(sdkp, sdp, buffer);
2548 if (sector_size < 0) {
2549 sd_printk(KERN_NOTICE, sdkp,
2550 "Using 0xffffffff as device size\n");
2551 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2552 sector_size = old_sector_size;
2553 goto got_data;
2554 }
2555 /* Remember that READ CAPACITY(16) succeeded */
2556 sdp->try_rc_10_first = 0;
2557 }
2558 }
2559
2560 /* Some devices are known to return the total number of blocks,
2561 * not the highest block number. Some devices have versions
2562 * which do this and others which do not. Some devices we might
2563 * suspect of doing this but we don't know for certain.
2564 *
2565 * If we know the reported capacity is wrong, decrement it. If
2566 * we can only guess, then assume the number of blocks is even
2567 * (usually true but not always) and err on the side of lowering
2568 * the capacity.
2569 */
2570 if (sdp->fix_capacity ||
2571 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2572 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2573 "from its reported value: %llu\n",
2574 (unsigned long long) sdkp->capacity);
2575 --sdkp->capacity;
2576 }
2577
2578 got_data:
2579 if (sector_size == 0) {
2580 sector_size = 512;
2581 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2582 "assuming 512.\n");
2583 }
2584
2585 if (sector_size != 512 &&
2586 sector_size != 1024 &&
2587 sector_size != 2048 &&
2588 sector_size != 4096) {
2589 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2590 sector_size);
2591 /*
2592 * The user might want to re-format the drive with
2593 * a supported sectorsize. Once this happens, it
2594 * would be relatively trivial to set the thing up.
2595 * For this reason, we leave the thing in the table.
2596 */
2597 sdkp->capacity = 0;
2598 /*
2599 * set a bogus sector size so the normal read/write
2600 * logic in the block layer will eventually refuse any
2601 * request on this device without tripping over power
2602 * of two sector size assumptions
2603 */
2604 sector_size = 512;
2605 }
2606 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2607 blk_queue_physical_block_size(sdp->request_queue,
2608 sdkp->physical_block_size);
2609 sdkp->device->sector_size = sector_size;
2610
2611 if (sdkp->capacity > 0xffffffff)
2612 sdp->use_16_for_rw = 1;
2613
2614 }
2615
2616 /*
2617 * Print disk capacity
2618 */
2619 static void
sd_print_capacity(struct scsi_disk * sdkp,sector_t old_capacity)2620 sd_print_capacity(struct scsi_disk *sdkp,
2621 sector_t old_capacity)
2622 {
2623 int sector_size = sdkp->device->sector_size;
2624 char cap_str_2[10], cap_str_10[10];
2625
2626 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2627 return;
2628
2629 string_get_size(sdkp->capacity, sector_size,
2630 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2631 string_get_size(sdkp->capacity, sector_size,
2632 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2633
2634 sd_printk(KERN_NOTICE, sdkp,
2635 "%llu %d-byte logical blocks: (%s/%s)\n",
2636 (unsigned long long)sdkp->capacity,
2637 sector_size, cap_str_10, cap_str_2);
2638
2639 if (sdkp->physical_block_size != sector_size)
2640 sd_printk(KERN_NOTICE, sdkp,
2641 "%u-byte physical blocks\n",
2642 sdkp->physical_block_size);
2643 }
2644
2645 /* called with buffer of length 512 */
2646 static inline int
sd_do_mode_sense(struct scsi_disk * sdkp,int dbd,int modepage,unsigned char * buffer,int len,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2647 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2648 unsigned char *buffer, int len, struct scsi_mode_data *data,
2649 struct scsi_sense_hdr *sshdr)
2650 {
2651 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2652 SD_TIMEOUT, sdkp->max_retries, data,
2653 sshdr);
2654 }
2655
2656 /*
2657 * read write protect setting, if possible - called only in sd_revalidate_disk()
2658 * called with buffer of length SD_BUF_SIZE
2659 */
2660 static void
sd_read_write_protect_flag(struct scsi_disk * sdkp,unsigned char * buffer)2661 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2662 {
2663 int res;
2664 struct scsi_device *sdp = sdkp->device;
2665 struct scsi_mode_data data;
2666 int old_wp = sdkp->write_prot;
2667
2668 set_disk_ro(sdkp->disk, 0);
2669 if (sdp->skip_ms_page_3f) {
2670 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2671 return;
2672 }
2673
2674 if (sdp->use_192_bytes_for_3f) {
2675 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2676 } else {
2677 /*
2678 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2679 * We have to start carefully: some devices hang if we ask
2680 * for more than is available.
2681 */
2682 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2683
2684 /*
2685 * Second attempt: ask for page 0 When only page 0 is
2686 * implemented, a request for page 3F may return Sense Key
2687 * 5: Illegal Request, Sense Code 24: Invalid field in
2688 * CDB.
2689 */
2690 if (res < 0)
2691 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2692
2693 /*
2694 * Third attempt: ask 255 bytes, as we did earlier.
2695 */
2696 if (res < 0)
2697 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2698 &data, NULL);
2699 }
2700
2701 if (res < 0) {
2702 sd_first_printk(KERN_WARNING, sdkp,
2703 "Test WP failed, assume Write Enabled\n");
2704 } else {
2705 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2706 set_disk_ro(sdkp->disk, sdkp->write_prot);
2707 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2708 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2709 sdkp->write_prot ? "on" : "off");
2710 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2711 }
2712 }
2713 }
2714
2715 /*
2716 * sd_read_cache_type - called only from sd_revalidate_disk()
2717 * called with buffer of length SD_BUF_SIZE
2718 */
2719 static void
sd_read_cache_type(struct scsi_disk * sdkp,unsigned char * buffer)2720 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2721 {
2722 int len = 0, res;
2723 struct scsi_device *sdp = sdkp->device;
2724
2725 int dbd;
2726 int modepage;
2727 int first_len;
2728 struct scsi_mode_data data;
2729 struct scsi_sense_hdr sshdr;
2730 int old_wce = sdkp->WCE;
2731 int old_rcd = sdkp->RCD;
2732 int old_dpofua = sdkp->DPOFUA;
2733
2734
2735 if (sdkp->cache_override)
2736 return;
2737
2738 first_len = 4;
2739 if (sdp->skip_ms_page_8) {
2740 if (sdp->type == TYPE_RBC)
2741 goto defaults;
2742 else {
2743 if (sdp->skip_ms_page_3f)
2744 goto defaults;
2745 modepage = 0x3F;
2746 if (sdp->use_192_bytes_for_3f)
2747 first_len = 192;
2748 dbd = 0;
2749 }
2750 } else if (sdp->type == TYPE_RBC) {
2751 modepage = 6;
2752 dbd = 8;
2753 } else {
2754 modepage = 8;
2755 dbd = 0;
2756 }
2757
2758 /* cautiously ask */
2759 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2760 &data, &sshdr);
2761
2762 if (res < 0)
2763 goto bad_sense;
2764
2765 if (!data.header_length) {
2766 modepage = 6;
2767 first_len = 0;
2768 sd_first_printk(KERN_ERR, sdkp,
2769 "Missing header in MODE_SENSE response\n");
2770 }
2771
2772 /* that went OK, now ask for the proper length */
2773 len = data.length;
2774
2775 /*
2776 * We're only interested in the first three bytes, actually.
2777 * But the data cache page is defined for the first 20.
2778 */
2779 if (len < 3)
2780 goto bad_sense;
2781 else if (len > SD_BUF_SIZE) {
2782 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2783 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2784 len = SD_BUF_SIZE;
2785 }
2786 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2787 len = 192;
2788
2789 /* Get the data */
2790 if (len > first_len)
2791 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2792 &data, &sshdr);
2793
2794 if (!res) {
2795 int offset = data.header_length + data.block_descriptor_length;
2796
2797 while (offset < len) {
2798 u8 page_code = buffer[offset] & 0x3F;
2799 u8 spf = buffer[offset] & 0x40;
2800
2801 if (page_code == 8 || page_code == 6) {
2802 /* We're interested only in the first 3 bytes.
2803 */
2804 if (len - offset <= 2) {
2805 sd_first_printk(KERN_ERR, sdkp,
2806 "Incomplete mode parameter "
2807 "data\n");
2808 goto defaults;
2809 } else {
2810 modepage = page_code;
2811 goto Page_found;
2812 }
2813 } else {
2814 /* Go to the next page */
2815 if (spf && len - offset > 3)
2816 offset += 4 + (buffer[offset+2] << 8) +
2817 buffer[offset+3];
2818 else if (!spf && len - offset > 1)
2819 offset += 2 + buffer[offset+1];
2820 else {
2821 sd_first_printk(KERN_ERR, sdkp,
2822 "Incomplete mode "
2823 "parameter data\n");
2824 goto defaults;
2825 }
2826 }
2827 }
2828
2829 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2830 goto defaults;
2831
2832 Page_found:
2833 if (modepage == 8) {
2834 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2835 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2836 } else {
2837 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2838 sdkp->RCD = 0;
2839 }
2840
2841 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2842 if (sdp->broken_fua) {
2843 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2844 sdkp->DPOFUA = 0;
2845 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2846 !sdkp->device->use_16_for_rw) {
2847 sd_first_printk(KERN_NOTICE, sdkp,
2848 "Uses READ/WRITE(6), disabling FUA\n");
2849 sdkp->DPOFUA = 0;
2850 }
2851
2852 /* No cache flush allowed for write protected devices */
2853 if (sdkp->WCE && sdkp->write_prot)
2854 sdkp->WCE = 0;
2855
2856 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2857 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2858 sd_printk(KERN_NOTICE, sdkp,
2859 "Write cache: %s, read cache: %s, %s\n",
2860 sdkp->WCE ? "enabled" : "disabled",
2861 sdkp->RCD ? "disabled" : "enabled",
2862 sdkp->DPOFUA ? "supports DPO and FUA"
2863 : "doesn't support DPO or FUA");
2864
2865 return;
2866 }
2867
2868 bad_sense:
2869 if (scsi_sense_valid(&sshdr) &&
2870 sshdr.sense_key == ILLEGAL_REQUEST &&
2871 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2872 /* Invalid field in CDB */
2873 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2874 else
2875 sd_first_printk(KERN_ERR, sdkp,
2876 "Asking for cache data failed\n");
2877
2878 defaults:
2879 if (sdp->wce_default_on) {
2880 sd_first_printk(KERN_NOTICE, sdkp,
2881 "Assuming drive cache: write back\n");
2882 sdkp->WCE = 1;
2883 } else {
2884 sd_first_printk(KERN_ERR, sdkp,
2885 "Assuming drive cache: write through\n");
2886 sdkp->WCE = 0;
2887 }
2888 sdkp->RCD = 0;
2889 sdkp->DPOFUA = 0;
2890 }
2891
2892 /*
2893 * The ATO bit indicates whether the DIF application tag is available
2894 * for use by the operating system.
2895 */
sd_read_app_tag_own(struct scsi_disk * sdkp,unsigned char * buffer)2896 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2897 {
2898 int res, offset;
2899 struct scsi_device *sdp = sdkp->device;
2900 struct scsi_mode_data data;
2901 struct scsi_sense_hdr sshdr;
2902
2903 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2904 return;
2905
2906 if (sdkp->protection_type == 0)
2907 return;
2908
2909 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2910 sdkp->max_retries, &data, &sshdr);
2911
2912 if (res < 0 || !data.header_length ||
2913 data.length < 6) {
2914 sd_first_printk(KERN_WARNING, sdkp,
2915 "getting Control mode page failed, assume no ATO\n");
2916
2917 if (scsi_sense_valid(&sshdr))
2918 sd_print_sense_hdr(sdkp, &sshdr);
2919
2920 return;
2921 }
2922
2923 offset = data.header_length + data.block_descriptor_length;
2924
2925 if ((buffer[offset] & 0x3f) != 0x0a) {
2926 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2927 return;
2928 }
2929
2930 if ((buffer[offset + 5] & 0x80) == 0)
2931 return;
2932
2933 sdkp->ATO = 1;
2934
2935 return;
2936 }
2937
2938 /**
2939 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2940 * @sdkp: disk to query
2941 */
sd_read_block_limits(struct scsi_disk * sdkp)2942 static void sd_read_block_limits(struct scsi_disk *sdkp)
2943 {
2944 unsigned int sector_sz = sdkp->device->sector_size;
2945 const int vpd_len = 64;
2946 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2947
2948 if (!buffer ||
2949 /* Block Limits VPD */
2950 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2951 goto out;
2952
2953 blk_queue_io_min(sdkp->disk->queue,
2954 get_unaligned_be16(&buffer[6]) * sector_sz);
2955
2956 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2957 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2958
2959 if (buffer[3] == 0x3c) {
2960 unsigned int lba_count, desc_count;
2961
2962 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2963
2964 if (!sdkp->lbpme)
2965 goto out;
2966
2967 lba_count = get_unaligned_be32(&buffer[20]);
2968 desc_count = get_unaligned_be32(&buffer[24]);
2969
2970 if (lba_count && desc_count)
2971 sdkp->max_unmap_blocks = lba_count;
2972
2973 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2974
2975 if (buffer[32] & 0x80)
2976 sdkp->unmap_alignment =
2977 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2978
2979 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2980
2981 if (sdkp->max_unmap_blocks)
2982 sd_config_discard(sdkp, SD_LBP_UNMAP);
2983 else
2984 sd_config_discard(sdkp, SD_LBP_WS16);
2985
2986 } else { /* LBP VPD page tells us what to use */
2987 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2988 sd_config_discard(sdkp, SD_LBP_UNMAP);
2989 else if (sdkp->lbpws)
2990 sd_config_discard(sdkp, SD_LBP_WS16);
2991 else if (sdkp->lbpws10)
2992 sd_config_discard(sdkp, SD_LBP_WS10);
2993 else
2994 sd_config_discard(sdkp, SD_LBP_DISABLE);
2995 }
2996 }
2997
2998 out:
2999 kfree(buffer);
3000 }
3001
3002 /**
3003 * sd_read_block_characteristics - Query block dev. characteristics
3004 * @sdkp: disk to query
3005 */
sd_read_block_characteristics(struct scsi_disk * sdkp)3006 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3007 {
3008 struct request_queue *q = sdkp->disk->queue;
3009 unsigned char *buffer;
3010 u16 rot;
3011 const int vpd_len = 64;
3012
3013 buffer = kmalloc(vpd_len, GFP_KERNEL);
3014
3015 if (!buffer ||
3016 /* Block Device Characteristics VPD */
3017 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
3018 goto out;
3019
3020 rot = get_unaligned_be16(&buffer[4]);
3021
3022 if (rot == 1) {
3023 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3024 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3025 }
3026
3027 if (sdkp->device->type == TYPE_ZBC) {
3028 /* Host-managed */
3029 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
3030 } else {
3031 sdkp->zoned = (buffer[8] >> 4) & 3;
3032 if (sdkp->zoned == 1) {
3033 /* Host-aware */
3034 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
3035 } else {
3036 /* Regular disk or drive managed disk */
3037 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3038 }
3039 }
3040
3041 if (!sdkp->first_scan)
3042 goto out;
3043
3044 if (blk_queue_is_zoned(q)) {
3045 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3046 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3047 } else {
3048 if (sdkp->zoned == 1)
3049 sd_printk(KERN_NOTICE, sdkp,
3050 "Host-aware SMR disk used as regular disk\n");
3051 else if (sdkp->zoned == 2)
3052 sd_printk(KERN_NOTICE, sdkp,
3053 "Drive-managed SMR disk\n");
3054 }
3055
3056 out:
3057 kfree(buffer);
3058 }
3059
3060 /**
3061 * sd_read_block_provisioning - Query provisioning VPD page
3062 * @sdkp: disk to query
3063 */
sd_read_block_provisioning(struct scsi_disk * sdkp)3064 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3065 {
3066 unsigned char *buffer;
3067 const int vpd_len = 8;
3068
3069 if (sdkp->lbpme == 0)
3070 return;
3071
3072 buffer = kmalloc(vpd_len, GFP_KERNEL);
3073
3074 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3075 goto out;
3076
3077 sdkp->lbpvpd = 1;
3078 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3079 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3080 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3081
3082 out:
3083 kfree(buffer);
3084 }
3085
sd_read_write_same(struct scsi_disk * sdkp,unsigned char * buffer)3086 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3087 {
3088 struct scsi_device *sdev = sdkp->device;
3089
3090 if (sdev->host->no_write_same) {
3091 sdev->no_write_same = 1;
3092
3093 return;
3094 }
3095
3096 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3097 /* too large values might cause issues with arcmsr */
3098 int vpd_buf_len = 64;
3099
3100 sdev->no_report_opcodes = 1;
3101
3102 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3103 * CODES is unsupported and the device has an ATA
3104 * Information VPD page (SAT).
3105 */
3106 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3107 sdev->no_write_same = 1;
3108 }
3109
3110 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3111 sdkp->ws16 = 1;
3112
3113 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3114 sdkp->ws10 = 1;
3115 }
3116
sd_read_security(struct scsi_disk * sdkp,unsigned char * buffer)3117 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3118 {
3119 struct scsi_device *sdev = sdkp->device;
3120
3121 if (!sdev->security_supported)
3122 return;
3123
3124 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3125 SECURITY_PROTOCOL_IN) == 1 &&
3126 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3127 SECURITY_PROTOCOL_OUT) == 1)
3128 sdkp->security = 1;
3129 }
3130
3131 /*
3132 * Determine the device's preferred I/O size for reads and writes
3133 * unless the reported value is unreasonably small, large, not a
3134 * multiple of the physical block size, or simply garbage.
3135 */
sd_validate_opt_xfer_size(struct scsi_disk * sdkp,unsigned int dev_max)3136 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3137 unsigned int dev_max)
3138 {
3139 struct scsi_device *sdp = sdkp->device;
3140 unsigned int opt_xfer_bytes =
3141 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3142
3143 if (sdkp->opt_xfer_blocks == 0)
3144 return false;
3145
3146 if (sdkp->opt_xfer_blocks > dev_max) {
3147 sd_first_printk(KERN_WARNING, sdkp,
3148 "Optimal transfer size %u logical blocks " \
3149 "> dev_max (%u logical blocks)\n",
3150 sdkp->opt_xfer_blocks, dev_max);
3151 return false;
3152 }
3153
3154 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3155 sd_first_printk(KERN_WARNING, sdkp,
3156 "Optimal transfer size %u logical blocks " \
3157 "> sd driver limit (%u logical blocks)\n",
3158 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3159 return false;
3160 }
3161
3162 if (opt_xfer_bytes < PAGE_SIZE) {
3163 sd_first_printk(KERN_WARNING, sdkp,
3164 "Optimal transfer size %u bytes < " \
3165 "PAGE_SIZE (%u bytes)\n",
3166 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3167 return false;
3168 }
3169
3170 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3171 sd_first_printk(KERN_WARNING, sdkp,
3172 "Optimal transfer size %u bytes not a " \
3173 "multiple of physical block size (%u bytes)\n",
3174 opt_xfer_bytes, sdkp->physical_block_size);
3175 return false;
3176 }
3177
3178 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3179 opt_xfer_bytes);
3180 return true;
3181 }
3182
3183 /**
3184 * sd_revalidate_disk - called the first time a new disk is seen,
3185 * performs disk spin up, read_capacity, etc.
3186 * @disk: struct gendisk we care about
3187 **/
sd_revalidate_disk(struct gendisk * disk)3188 static int sd_revalidate_disk(struct gendisk *disk)
3189 {
3190 struct scsi_disk *sdkp = scsi_disk(disk);
3191 struct scsi_device *sdp = sdkp->device;
3192 struct request_queue *q = sdkp->disk->queue;
3193 sector_t old_capacity = sdkp->capacity;
3194 unsigned char *buffer;
3195 unsigned int dev_max, rw_max;
3196
3197 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3198 "sd_revalidate_disk\n"));
3199
3200 /*
3201 * If the device is offline, don't try and read capacity or any
3202 * of the other niceties.
3203 */
3204 if (!scsi_device_online(sdp))
3205 goto out;
3206
3207 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3208 if (!buffer) {
3209 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3210 "allocation failure.\n");
3211 goto out;
3212 }
3213
3214 sd_spinup_disk(sdkp);
3215
3216 /*
3217 * Without media there is no reason to ask; moreover, some devices
3218 * react badly if we do.
3219 */
3220 if (sdkp->media_present) {
3221 sd_read_capacity(sdkp, buffer);
3222
3223 /*
3224 * set the default to rotational. All non-rotational devices
3225 * support the block characteristics VPD page, which will
3226 * cause this to be updated correctly and any device which
3227 * doesn't support it should be treated as rotational.
3228 */
3229 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3230 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3231
3232 if (scsi_device_supports_vpd(sdp)) {
3233 sd_read_block_provisioning(sdkp);
3234 sd_read_block_limits(sdkp);
3235 sd_read_block_characteristics(sdkp);
3236 sd_zbc_read_zones(sdkp, buffer);
3237 }
3238
3239 sd_print_capacity(sdkp, old_capacity);
3240
3241 sd_read_write_protect_flag(sdkp, buffer);
3242 sd_read_cache_type(sdkp, buffer);
3243 sd_read_app_tag_own(sdkp, buffer);
3244 sd_read_write_same(sdkp, buffer);
3245 sd_read_security(sdkp, buffer);
3246 }
3247
3248 /*
3249 * We now have all cache related info, determine how we deal
3250 * with flush requests.
3251 */
3252 sd_set_flush_flag(sdkp);
3253
3254 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3255 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3256
3257 /* Some devices report a maximum block count for READ/WRITE requests. */
3258 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3259 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3260
3261 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3262 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3263 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3264 } else {
3265 q->limits.io_opt = 0;
3266 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3267 (sector_t)BLK_DEF_MAX_SECTORS);
3268 }
3269
3270 /* Do not exceed controller limit */
3271 rw_max = min(rw_max, queue_max_hw_sectors(q));
3272
3273 /*
3274 * Only update max_sectors if previously unset or if the current value
3275 * exceeds the capabilities of the hardware.
3276 */
3277 if (sdkp->first_scan ||
3278 q->limits.max_sectors > q->limits.max_dev_sectors ||
3279 q->limits.max_sectors > q->limits.max_hw_sectors)
3280 q->limits.max_sectors = rw_max;
3281
3282 sdkp->first_scan = 0;
3283
3284 set_capacity_revalidate_and_notify(disk,
3285 logical_to_sectors(sdp, sdkp->capacity), false);
3286 sd_config_write_same(sdkp);
3287 kfree(buffer);
3288
3289 /*
3290 * For a zoned drive, revalidating the zones can be done only once
3291 * the gendisk capacity is set. So if this fails, set back the gendisk
3292 * capacity to 0.
3293 */
3294 if (sd_zbc_revalidate_zones(sdkp))
3295 set_capacity_revalidate_and_notify(disk, 0, false);
3296
3297 out:
3298 return 0;
3299 }
3300
3301 /**
3302 * sd_unlock_native_capacity - unlock native capacity
3303 * @disk: struct gendisk to set capacity for
3304 *
3305 * Block layer calls this function if it detects that partitions
3306 * on @disk reach beyond the end of the device. If the SCSI host
3307 * implements ->unlock_native_capacity() method, it's invoked to
3308 * give it a chance to adjust the device capacity.
3309 *
3310 * CONTEXT:
3311 * Defined by block layer. Might sleep.
3312 */
sd_unlock_native_capacity(struct gendisk * disk)3313 static void sd_unlock_native_capacity(struct gendisk *disk)
3314 {
3315 struct scsi_device *sdev = scsi_disk(disk)->device;
3316
3317 if (sdev->host->hostt->unlock_native_capacity)
3318 sdev->host->hostt->unlock_native_capacity(sdev);
3319 }
3320
3321 /**
3322 * sd_format_disk_name - format disk name
3323 * @prefix: name prefix - ie. "sd" for SCSI disks
3324 * @index: index of the disk to format name for
3325 * @buf: output buffer
3326 * @buflen: length of the output buffer
3327 *
3328 * SCSI disk names starts at sda. The 26th device is sdz and the
3329 * 27th is sdaa. The last one for two lettered suffix is sdzz
3330 * which is followed by sdaaa.
3331 *
3332 * This is basically 26 base counting with one extra 'nil' entry
3333 * at the beginning from the second digit on and can be
3334 * determined using similar method as 26 base conversion with the
3335 * index shifted -1 after each digit is computed.
3336 *
3337 * CONTEXT:
3338 * Don't care.
3339 *
3340 * RETURNS:
3341 * 0 on success, -errno on failure.
3342 */
sd_format_disk_name(char * prefix,int index,char * buf,int buflen)3343 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3344 {
3345 const int base = 'z' - 'a' + 1;
3346 char *begin = buf + strlen(prefix);
3347 char *end = buf + buflen;
3348 char *p;
3349 int unit;
3350
3351 p = end - 1;
3352 *p = '\0';
3353 unit = base;
3354 do {
3355 if (p == begin)
3356 return -EINVAL;
3357 *--p = 'a' + (index % unit);
3358 index = (index / unit) - 1;
3359 } while (index >= 0);
3360
3361 memmove(begin, p, end - p);
3362 memcpy(buf, prefix, strlen(prefix));
3363
3364 return 0;
3365 }
3366
3367 /**
3368 * sd_probe - called during driver initialization and whenever a
3369 * new scsi device is attached to the system. It is called once
3370 * for each scsi device (not just disks) present.
3371 * @dev: pointer to device object
3372 *
3373 * Returns 0 if successful (or not interested in this scsi device
3374 * (e.g. scanner)); 1 when there is an error.
3375 *
3376 * Note: this function is invoked from the scsi mid-level.
3377 * This function sets up the mapping between a given
3378 * <host,channel,id,lun> (found in sdp) and new device name
3379 * (e.g. /dev/sda). More precisely it is the block device major
3380 * and minor number that is chosen here.
3381 *
3382 * Assume sd_probe is not re-entrant (for time being)
3383 * Also think about sd_probe() and sd_remove() running coincidentally.
3384 **/
sd_probe(struct device * dev)3385 static int sd_probe(struct device *dev)
3386 {
3387 struct scsi_device *sdp = to_scsi_device(dev);
3388 struct scsi_disk *sdkp;
3389 struct gendisk *gd;
3390 int index;
3391 int error;
3392
3393 scsi_autopm_get_device(sdp);
3394 error = -ENODEV;
3395 if (sdp->type != TYPE_DISK &&
3396 sdp->type != TYPE_ZBC &&
3397 sdp->type != TYPE_MOD &&
3398 sdp->type != TYPE_RBC)
3399 goto out;
3400
3401 #ifndef CONFIG_BLK_DEV_ZONED
3402 if (sdp->type == TYPE_ZBC)
3403 goto out;
3404 #endif
3405 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3406 "sd_probe\n"));
3407
3408 error = -ENOMEM;
3409 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3410 if (!sdkp)
3411 goto out;
3412
3413 gd = alloc_disk(SD_MINORS);
3414 if (!gd)
3415 goto out_free;
3416
3417 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3418 if (index < 0) {
3419 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3420 goto out_put;
3421 }
3422
3423 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3424 if (error) {
3425 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3426 goto out_free_index;
3427 }
3428
3429 sdkp->device = sdp;
3430 sdkp->driver = &sd_template;
3431 sdkp->disk = gd;
3432 sdkp->index = index;
3433 sdkp->max_retries = SD_MAX_RETRIES;
3434 atomic_set(&sdkp->openers, 0);
3435 atomic_set(&sdkp->device->ioerr_cnt, 0);
3436
3437 if (!sdp->request_queue->rq_timeout) {
3438 if (sdp->type != TYPE_MOD)
3439 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3440 else
3441 blk_queue_rq_timeout(sdp->request_queue,
3442 SD_MOD_TIMEOUT);
3443 }
3444
3445 device_initialize(&sdkp->dev);
3446 sdkp->dev.parent = get_device(dev);
3447 sdkp->dev.class = &sd_disk_class;
3448 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3449
3450 error = device_add(&sdkp->dev);
3451 if (error) {
3452 put_device(&sdkp->dev);
3453 goto out;
3454 }
3455
3456 dev_set_drvdata(dev, sdkp);
3457
3458 gd->major = sd_major((index & 0xf0) >> 4);
3459 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3460
3461 gd->fops = &sd_fops;
3462 gd->private_data = &sdkp->driver;
3463 gd->queue = sdkp->device->request_queue;
3464
3465 /* defaults, until the device tells us otherwise */
3466 sdp->sector_size = 512;
3467 sdkp->capacity = 0;
3468 sdkp->media_present = 1;
3469 sdkp->write_prot = 0;
3470 sdkp->cache_override = 0;
3471 sdkp->WCE = 0;
3472 sdkp->RCD = 0;
3473 sdkp->ATO = 0;
3474 sdkp->first_scan = 1;
3475 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3476
3477 sd_revalidate_disk(gd);
3478
3479 gd->flags = GENHD_FL_EXT_DEVT;
3480 if (sdp->removable) {
3481 gd->flags |= GENHD_FL_REMOVABLE;
3482 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3483 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3484 }
3485
3486 blk_pm_runtime_init(sdp->request_queue, dev);
3487 if (sdp->rpm_autosuspend) {
3488 pm_runtime_set_autosuspend_delay(dev,
3489 sdp->host->hostt->rpm_autosuspend_delay);
3490 }
3491 device_add_disk(dev, gd, NULL);
3492 blk_delete_region(disk_devt(sdkp->disk), SD_MINORS, sd_default_probe);
3493 if (sdkp->capacity)
3494 sd_dif_config_host(sdkp);
3495
3496 sd_revalidate_disk(gd);
3497
3498 if (sdkp->security) {
3499 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3500 if (sdkp->opal_dev)
3501 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3502 }
3503
3504 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3505 sdp->removable ? "removable " : "");
3506 scsi_autopm_put_device(sdp);
3507
3508 return 0;
3509
3510 out_free_index:
3511 ida_free(&sd_index_ida, index);
3512 out_put:
3513 put_disk(gd);
3514 out_free:
3515 sd_zbc_release_disk(sdkp);
3516 kfree(sdkp);
3517 out:
3518 scsi_autopm_put_device(sdp);
3519 return error;
3520 }
3521
3522 /**
3523 * sd_remove - called whenever a scsi disk (previously recognized by
3524 * sd_probe) is detached from the system. It is called (potentially
3525 * multiple times) during sd module unload.
3526 * @dev: pointer to device object
3527 *
3528 * Note: this function is invoked from the scsi mid-level.
3529 * This function potentially frees up a device name (e.g. /dev/sdc)
3530 * that could be re-used by a subsequent sd_probe().
3531 * This function is not called when the built-in sd driver is "exit-ed".
3532 **/
sd_remove(struct device * dev)3533 static int sd_remove(struct device *dev)
3534 {
3535 struct scsi_disk *sdkp;
3536 dev_t devt;
3537
3538 sdkp = dev_get_drvdata(dev);
3539 devt = disk_devt(sdkp->disk);
3540 scsi_autopm_get_device(sdkp->device);
3541
3542 async_synchronize_full_domain(&scsi_sd_pm_domain);
3543 device_del(&sdkp->dev);
3544 del_gendisk(sdkp->disk);
3545 sd_shutdown(dev);
3546
3547 free_opal_dev(sdkp->opal_dev);
3548
3549 blk_register_region(devt, SD_MINORS, NULL,
3550 sd_default_probe, NULL, NULL);
3551
3552 mutex_lock(&sd_ref_mutex);
3553 dev_set_drvdata(dev, NULL);
3554 put_device(&sdkp->dev);
3555 mutex_unlock(&sd_ref_mutex);
3556
3557 return 0;
3558 }
3559
3560 /**
3561 * scsi_disk_release - Called to free the scsi_disk structure
3562 * @dev: pointer to embedded class device
3563 *
3564 * sd_ref_mutex must be held entering this routine. Because it is
3565 * called on last put, you should always use the scsi_disk_get()
3566 * scsi_disk_put() helpers which manipulate the semaphore directly
3567 * and never do a direct put_device.
3568 **/
scsi_disk_release(struct device * dev)3569 static void scsi_disk_release(struct device *dev)
3570 {
3571 struct scsi_disk *sdkp = to_scsi_disk(dev);
3572 struct gendisk *disk = sdkp->disk;
3573 struct request_queue *q = disk->queue;
3574
3575 ida_free(&sd_index_ida, sdkp->index);
3576
3577 /*
3578 * Wait until all requests that are in progress have completed.
3579 * This is necessary to avoid that e.g. scsi_end_request() crashes
3580 * due to clearing the disk->private_data pointer. Wait from inside
3581 * scsi_disk_release() instead of from sd_release() to avoid that
3582 * freezing and unfreezing the request queue affects user space I/O
3583 * in case multiple processes open a /dev/sd... node concurrently.
3584 */
3585 blk_mq_freeze_queue(q);
3586 blk_mq_unfreeze_queue(q);
3587
3588 disk->private_data = NULL;
3589 put_disk(disk);
3590 put_device(&sdkp->device->sdev_gendev);
3591
3592 sd_zbc_release_disk(sdkp);
3593
3594 kfree(sdkp);
3595 }
3596
sd_start_stop_device(struct scsi_disk * sdkp,int start)3597 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3598 {
3599 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3600 struct scsi_sense_hdr sshdr;
3601 struct scsi_device *sdp = sdkp->device;
3602 int res;
3603
3604 if (start)
3605 cmd[4] |= 1; /* START */
3606
3607 if (sdp->start_stop_pwr_cond)
3608 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3609
3610 if (!scsi_device_online(sdp))
3611 return -ENODEV;
3612
3613 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3614 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3615 if (res) {
3616 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3617 if (driver_byte(res) == DRIVER_SENSE)
3618 sd_print_sense_hdr(sdkp, &sshdr);
3619 if (scsi_sense_valid(&sshdr) &&
3620 /* 0x3a is medium not present */
3621 sshdr.asc == 0x3a)
3622 res = 0;
3623 }
3624
3625 /* SCSI error codes must not go to the generic layer */
3626 if (res)
3627 return -EIO;
3628
3629 return 0;
3630 }
3631
3632 /*
3633 * Send a SYNCHRONIZE CACHE instruction down to the device through
3634 * the normal SCSI command structure. Wait for the command to
3635 * complete.
3636 */
sd_shutdown(struct device * dev)3637 static void sd_shutdown(struct device *dev)
3638 {
3639 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3640
3641 if (!sdkp)
3642 return; /* this can happen */
3643
3644 if (pm_runtime_suspended(dev))
3645 return;
3646
3647 if (sdkp->WCE && sdkp->media_present) {
3648 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3649 sd_sync_cache(sdkp, NULL);
3650 }
3651
3652 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3653 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3654 sd_start_stop_device(sdkp, 0);
3655 }
3656 }
3657
sd_suspend_common(struct device * dev,bool ignore_stop_errors)3658 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3659 {
3660 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3661 struct scsi_sense_hdr sshdr;
3662 int ret = 0;
3663
3664 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3665 return 0;
3666
3667 if (sdkp->WCE && sdkp->media_present) {
3668 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3669 ret = sd_sync_cache(sdkp, &sshdr);
3670
3671 if (ret) {
3672 /* ignore OFFLINE device */
3673 if (ret == -ENODEV)
3674 return 0;
3675
3676 if (!scsi_sense_valid(&sshdr) ||
3677 sshdr.sense_key != ILLEGAL_REQUEST)
3678 return ret;
3679
3680 /*
3681 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3682 * doesn't support sync. There's not much to do and
3683 * suspend shouldn't fail.
3684 */
3685 ret = 0;
3686 }
3687 }
3688
3689 if (sdkp->device->manage_start_stop) {
3690 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3691 /* an error is not worth aborting a system sleep */
3692 ret = sd_start_stop_device(sdkp, 0);
3693 if (ignore_stop_errors)
3694 ret = 0;
3695 }
3696
3697 return ret;
3698 }
3699
sd_suspend_system(struct device * dev)3700 static int sd_suspend_system(struct device *dev)
3701 {
3702 return sd_suspend_common(dev, true);
3703 }
3704
sd_suspend_runtime(struct device * dev)3705 static int sd_suspend_runtime(struct device *dev)
3706 {
3707 return sd_suspend_common(dev, false);
3708 }
3709
sd_resume(struct device * dev)3710 static int sd_resume(struct device *dev)
3711 {
3712 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3713 int ret;
3714
3715 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3716 return 0;
3717
3718 if (!sdkp->device->manage_start_stop)
3719 return 0;
3720
3721 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3722 ret = sd_start_stop_device(sdkp, 1);
3723 if (!ret)
3724 opal_unlock_from_suspend(sdkp->opal_dev);
3725 return ret;
3726 }
3727
3728 /**
3729 * init_sd - entry point for this driver (both when built in or when
3730 * a module).
3731 *
3732 * Note: this function registers this driver with the scsi mid-level.
3733 **/
init_sd(void)3734 static int __init init_sd(void)
3735 {
3736 int majors = 0, i, err;
3737
3738 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3739
3740 for (i = 0; i < SD_MAJORS; i++) {
3741 if (register_blkdev(sd_major(i), "sd") != 0)
3742 continue;
3743 majors++;
3744 blk_register_region(sd_major(i), SD_MINORS, NULL,
3745 sd_default_probe, NULL, NULL);
3746 }
3747
3748 if (!majors)
3749 return -ENODEV;
3750
3751 err = class_register(&sd_disk_class);
3752 if (err)
3753 goto err_out;
3754
3755 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3756 0, 0, NULL);
3757 if (!sd_cdb_cache) {
3758 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3759 err = -ENOMEM;
3760 goto err_out_class;
3761 }
3762
3763 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3764 if (!sd_cdb_pool) {
3765 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3766 err = -ENOMEM;
3767 goto err_out_cache;
3768 }
3769
3770 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3771 if (!sd_page_pool) {
3772 printk(KERN_ERR "sd: can't init discard page pool\n");
3773 err = -ENOMEM;
3774 goto err_out_ppool;
3775 }
3776
3777 err = scsi_register_driver(&sd_template.gendrv);
3778 if (err)
3779 goto err_out_driver;
3780
3781 return 0;
3782
3783 err_out_driver:
3784 mempool_destroy(sd_page_pool);
3785
3786 err_out_ppool:
3787 mempool_destroy(sd_cdb_pool);
3788
3789 err_out_cache:
3790 kmem_cache_destroy(sd_cdb_cache);
3791
3792 err_out_class:
3793 class_unregister(&sd_disk_class);
3794 err_out:
3795 for (i = 0; i < SD_MAJORS; i++)
3796 unregister_blkdev(sd_major(i), "sd");
3797 return err;
3798 }
3799
3800 /**
3801 * exit_sd - exit point for this driver (when it is a module).
3802 *
3803 * Note: this function unregisters this driver from the scsi mid-level.
3804 **/
exit_sd(void)3805 static void __exit exit_sd(void)
3806 {
3807 int i;
3808
3809 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3810
3811 scsi_unregister_driver(&sd_template.gendrv);
3812 mempool_destroy(sd_cdb_pool);
3813 mempool_destroy(sd_page_pool);
3814 kmem_cache_destroy(sd_cdb_cache);
3815
3816 class_unregister(&sd_disk_class);
3817
3818 for (i = 0; i < SD_MAJORS; i++) {
3819 blk_unregister_region(sd_major(i), SD_MINORS);
3820 unregister_blkdev(sd_major(i), "sd");
3821 }
3822 }
3823
3824 module_init(init_sd);
3825 module_exit(exit_sd);
3826
sd_print_sense_hdr(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)3827 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3828 {
3829 scsi_print_sense_hdr(sdkp->device,
3830 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3831 }
3832
sd_print_result(const struct scsi_disk * sdkp,const char * msg,int result)3833 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3834 {
3835 const char *hb_string = scsi_hostbyte_string(result);
3836 const char *db_string = scsi_driverbyte_string(result);
3837
3838 if (hb_string || db_string)
3839 sd_printk(KERN_INFO, sdkp,
3840 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3841 hb_string ? hb_string : "invalid",
3842 db_string ? db_string : "invalid");
3843 else
3844 sd_printk(KERN_INFO, sdkp,
3845 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3846 msg, host_byte(result), driver_byte(result));
3847 }
3848