• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 
22 #include <linux/spi/spi.h>
23 
24 #define SUN6I_FIFO_DEPTH		128
25 #define SUN8I_FIFO_DEPTH		64
26 
27 #define SUN6I_GBL_CTL_REG		0x04
28 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
29 #define SUN6I_GBL_CTL_MASTER			BIT(1)
30 #define SUN6I_GBL_CTL_TP			BIT(7)
31 #define SUN6I_GBL_CTL_RST			BIT(31)
32 
33 #define SUN6I_TFR_CTL_REG		0x08
34 #define SUN6I_TFR_CTL_CPHA			BIT(0)
35 #define SUN6I_TFR_CTL_CPOL			BIT(1)
36 #define SUN6I_TFR_CTL_SPOL			BIT(2)
37 #define SUN6I_TFR_CTL_CS_MASK			0x30
38 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
39 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
40 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
41 #define SUN6I_TFR_CTL_DHB			BIT(8)
42 #define SUN6I_TFR_CTL_FBS			BIT(12)
43 #define SUN6I_TFR_CTL_XCH			BIT(31)
44 
45 #define SUN6I_INT_CTL_REG		0x10
46 #define SUN6I_INT_CTL_RF_RDY			BIT(0)
47 #define SUN6I_INT_CTL_TF_ERQ			BIT(4)
48 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
49 #define SUN6I_INT_CTL_TC			BIT(12)
50 
51 #define SUN6I_INT_STA_REG		0x14
52 
53 #define SUN6I_FIFO_CTL_REG		0x18
54 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
55 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
56 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
57 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
58 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
59 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
60 
61 #define SUN6I_FIFO_STA_REG		0x1c
62 #define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
63 #define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
64 
65 #define SUN6I_CLK_CTL_REG		0x24
66 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
67 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
68 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
69 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
70 #define SUN6I_CLK_CTL_DRS			BIT(12)
71 
72 #define SUN6I_MAX_XFER_SIZE		0xffffff
73 
74 #define SUN6I_BURST_CNT_REG		0x30
75 
76 #define SUN6I_XMIT_CNT_REG		0x34
77 
78 #define SUN6I_BURST_CTL_CNT_REG		0x38
79 
80 #define SUN6I_TXDATA_REG		0x200
81 #define SUN6I_RXDATA_REG		0x300
82 
83 struct sun6i_spi {
84 	struct spi_master	*master;
85 	void __iomem		*base_addr;
86 	struct clk		*hclk;
87 	struct clk		*mclk;
88 	struct reset_control	*rstc;
89 
90 	struct completion	done;
91 
92 	const u8		*tx_buf;
93 	u8			*rx_buf;
94 	int			len;
95 	unsigned long		fifo_depth;
96 };
97 
sun6i_spi_read(struct sun6i_spi * sspi,u32 reg)98 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
99 {
100 	return readl(sspi->base_addr + reg);
101 }
102 
sun6i_spi_write(struct sun6i_spi * sspi,u32 reg,u32 value)103 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
104 {
105 	writel(value, sspi->base_addr + reg);
106 }
107 
sun6i_spi_get_rx_fifo_count(struct sun6i_spi * sspi)108 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
109 {
110 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
111 
112 	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
113 }
114 
sun6i_spi_get_tx_fifo_count(struct sun6i_spi * sspi)115 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
116 {
117 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
118 
119 	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
120 }
121 
sun6i_spi_disable_interrupt(struct sun6i_spi * sspi,u32 mask)122 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
123 {
124 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
125 
126 	reg &= ~mask;
127 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
128 }
129 
sun6i_spi_drain_fifo(struct sun6i_spi * sspi)130 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
131 {
132 	u32 len;
133 	u8 byte;
134 
135 	/* See how much data is available */
136 	len = sun6i_spi_get_rx_fifo_count(sspi);
137 
138 	while (len--) {
139 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
140 		if (sspi->rx_buf)
141 			*sspi->rx_buf++ = byte;
142 	}
143 }
144 
sun6i_spi_fill_fifo(struct sun6i_spi * sspi)145 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
146 {
147 	u32 cnt;
148 	int len;
149 	u8 byte;
150 
151 	/* See how much data we can fit */
152 	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
153 
154 	len = min((int)cnt, sspi->len);
155 
156 	while (len--) {
157 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
158 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
159 		sspi->len--;
160 	}
161 }
162 
sun6i_spi_set_cs(struct spi_device * spi,bool enable)163 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
164 {
165 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
166 	u32 reg;
167 
168 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
169 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
170 	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
171 
172 	if (enable)
173 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
174 	else
175 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
176 
177 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
178 }
179 
sun6i_spi_max_transfer_size(struct spi_device * spi)180 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
181 {
182 	return SUN6I_MAX_XFER_SIZE - 1;
183 }
184 
sun6i_spi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * tfr)185 static int sun6i_spi_transfer_one(struct spi_master *master,
186 				  struct spi_device *spi,
187 				  struct spi_transfer *tfr)
188 {
189 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
190 	unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
191 	unsigned int start, end, tx_time;
192 	unsigned int trig_level;
193 	unsigned int tx_len = 0, rx_len = 0;
194 	int ret = 0;
195 	u32 reg;
196 
197 	if (tfr->len > SUN6I_MAX_XFER_SIZE)
198 		return -EINVAL;
199 
200 	reinit_completion(&sspi->done);
201 	sspi->tx_buf = tfr->tx_buf;
202 	sspi->rx_buf = tfr->rx_buf;
203 	sspi->len = tfr->len;
204 
205 	/* Clear pending interrupts */
206 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
207 
208 	/* Reset FIFO */
209 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
210 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
211 
212 	/*
213 	 * Setup FIFO interrupt trigger level
214 	 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
215 	 * value used in old generation of Allwinner SPI controller.
216 	 * (See spi-sun4i.c)
217 	 */
218 	trig_level = sspi->fifo_depth / 4 * 3;
219 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
220 			(trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
221 			(trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
222 
223 	/*
224 	 * Setup the transfer control register: Chip Select,
225 	 * polarities, etc.
226 	 */
227 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
228 
229 	if (spi->mode & SPI_CPOL)
230 		reg |= SUN6I_TFR_CTL_CPOL;
231 	else
232 		reg &= ~SUN6I_TFR_CTL_CPOL;
233 
234 	if (spi->mode & SPI_CPHA)
235 		reg |= SUN6I_TFR_CTL_CPHA;
236 	else
237 		reg &= ~SUN6I_TFR_CTL_CPHA;
238 
239 	if (spi->mode & SPI_LSB_FIRST)
240 		reg |= SUN6I_TFR_CTL_FBS;
241 	else
242 		reg &= ~SUN6I_TFR_CTL_FBS;
243 
244 	/*
245 	 * If it's a TX only transfer, we don't want to fill the RX
246 	 * FIFO with bogus data
247 	 */
248 	if (sspi->rx_buf) {
249 		reg &= ~SUN6I_TFR_CTL_DHB;
250 		rx_len = tfr->len;
251 	} else {
252 		reg |= SUN6I_TFR_CTL_DHB;
253 	}
254 
255 	/* We want to control the chip select manually */
256 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
257 
258 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
259 
260 	/* Ensure that we have a parent clock fast enough */
261 	mclk_rate = clk_get_rate(sspi->mclk);
262 	if (mclk_rate < (2 * tfr->speed_hz)) {
263 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
264 		mclk_rate = clk_get_rate(sspi->mclk);
265 	}
266 
267 	/*
268 	 * Setup clock divider.
269 	 *
270 	 * We have two choices there. Either we can use the clock
271 	 * divide rate 1, which is calculated thanks to this formula:
272 	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
273 	 * Or we can use CDR2, which is calculated with the formula:
274 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
275 	 * Wether we use the former or the latter is set through the
276 	 * DRS bit.
277 	 *
278 	 * First try CDR2, and if we can't reach the expected
279 	 * frequency, fall back to CDR1.
280 	 */
281 	div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
282 	div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
283 	if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
284 		reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
285 		tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
286 	} else {
287 		div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
288 		reg = SUN6I_CLK_CTL_CDR1(div);
289 		tfr->effective_speed_hz = mclk_rate / (1 << div);
290 	}
291 
292 	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
293 	/* Finally enable the bus - doing so before might raise SCK to HIGH */
294 	reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
295 	reg |= SUN6I_GBL_CTL_BUS_ENABLE;
296 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
297 
298 	/* Setup the transfer now... */
299 	if (sspi->tx_buf)
300 		tx_len = tfr->len;
301 
302 	/* Setup the counters */
303 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
304 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
305 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
306 
307 	/* Fill the TX FIFO */
308 	sun6i_spi_fill_fifo(sspi);
309 
310 	/* Enable the interrupts */
311 	reg = SUN6I_INT_CTL_TC;
312 
313 	if (rx_len > sspi->fifo_depth)
314 		reg |= SUN6I_INT_CTL_RF_RDY;
315 	if (tx_len > sspi->fifo_depth)
316 		reg |= SUN6I_INT_CTL_TF_ERQ;
317 
318 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
319 
320 	/* Start the transfer */
321 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
322 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
323 
324 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
325 	start = jiffies;
326 	timeout = wait_for_completion_timeout(&sspi->done,
327 					      msecs_to_jiffies(tx_time));
328 	end = jiffies;
329 	if (!timeout) {
330 		dev_warn(&master->dev,
331 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
332 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
333 			 jiffies_to_msecs(end - start), tx_time);
334 		ret = -ETIMEDOUT;
335 	}
336 
337 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
338 
339 	return ret;
340 }
341 
sun6i_spi_handler(int irq,void * dev_id)342 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
343 {
344 	struct sun6i_spi *sspi = dev_id;
345 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
346 
347 	/* Transfer complete */
348 	if (status & SUN6I_INT_CTL_TC) {
349 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
350 		sun6i_spi_drain_fifo(sspi);
351 		complete(&sspi->done);
352 		return IRQ_HANDLED;
353 	}
354 
355 	/* Receive FIFO 3/4 full */
356 	if (status & SUN6I_INT_CTL_RF_RDY) {
357 		sun6i_spi_drain_fifo(sspi);
358 		/* Only clear the interrupt _after_ draining the FIFO */
359 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
360 		return IRQ_HANDLED;
361 	}
362 
363 	/* Transmit FIFO 3/4 empty */
364 	if (status & SUN6I_INT_CTL_TF_ERQ) {
365 		sun6i_spi_fill_fifo(sspi);
366 
367 		if (!sspi->len)
368 			/* nothing left to transmit */
369 			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
370 
371 		/* Only clear the interrupt _after_ re-seeding the FIFO */
372 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
373 
374 		return IRQ_HANDLED;
375 	}
376 
377 	return IRQ_NONE;
378 }
379 
sun6i_spi_runtime_resume(struct device * dev)380 static int sun6i_spi_runtime_resume(struct device *dev)
381 {
382 	struct spi_master *master = dev_get_drvdata(dev);
383 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
384 	int ret;
385 
386 	ret = clk_prepare_enable(sspi->hclk);
387 	if (ret) {
388 		dev_err(dev, "Couldn't enable AHB clock\n");
389 		goto out;
390 	}
391 
392 	ret = clk_prepare_enable(sspi->mclk);
393 	if (ret) {
394 		dev_err(dev, "Couldn't enable module clock\n");
395 		goto err;
396 	}
397 
398 	ret = reset_control_deassert(sspi->rstc);
399 	if (ret) {
400 		dev_err(dev, "Couldn't deassert the device from reset\n");
401 		goto err2;
402 	}
403 
404 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
405 			SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
406 
407 	return 0;
408 
409 err2:
410 	clk_disable_unprepare(sspi->mclk);
411 err:
412 	clk_disable_unprepare(sspi->hclk);
413 out:
414 	return ret;
415 }
416 
sun6i_spi_runtime_suspend(struct device * dev)417 static int sun6i_spi_runtime_suspend(struct device *dev)
418 {
419 	struct spi_master *master = dev_get_drvdata(dev);
420 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
421 
422 	reset_control_assert(sspi->rstc);
423 	clk_disable_unprepare(sspi->mclk);
424 	clk_disable_unprepare(sspi->hclk);
425 
426 	return 0;
427 }
428 
sun6i_spi_probe(struct platform_device * pdev)429 static int sun6i_spi_probe(struct platform_device *pdev)
430 {
431 	struct spi_master *master;
432 	struct sun6i_spi *sspi;
433 	int ret = 0, irq;
434 
435 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
436 	if (!master) {
437 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
438 		return -ENOMEM;
439 	}
440 
441 	platform_set_drvdata(pdev, master);
442 	sspi = spi_master_get_devdata(master);
443 
444 	sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
445 	if (IS_ERR(sspi->base_addr)) {
446 		ret = PTR_ERR(sspi->base_addr);
447 		goto err_free_master;
448 	}
449 
450 	irq = platform_get_irq(pdev, 0);
451 	if (irq < 0) {
452 		ret = -ENXIO;
453 		goto err_free_master;
454 	}
455 
456 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
457 			       0, "sun6i-spi", sspi);
458 	if (ret) {
459 		dev_err(&pdev->dev, "Cannot request IRQ\n");
460 		goto err_free_master;
461 	}
462 
463 	sspi->master = master;
464 	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
465 
466 	master->max_speed_hz = 100 * 1000 * 1000;
467 	master->min_speed_hz = 3 * 1000;
468 	master->use_gpio_descriptors = true;
469 	master->set_cs = sun6i_spi_set_cs;
470 	master->transfer_one = sun6i_spi_transfer_one;
471 	master->num_chipselect = 4;
472 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
473 	master->bits_per_word_mask = SPI_BPW_MASK(8);
474 	master->dev.of_node = pdev->dev.of_node;
475 	master->auto_runtime_pm = true;
476 	master->max_transfer_size = sun6i_spi_max_transfer_size;
477 
478 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
479 	if (IS_ERR(sspi->hclk)) {
480 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
481 		ret = PTR_ERR(sspi->hclk);
482 		goto err_free_master;
483 	}
484 
485 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
486 	if (IS_ERR(sspi->mclk)) {
487 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
488 		ret = PTR_ERR(sspi->mclk);
489 		goto err_free_master;
490 	}
491 
492 	init_completion(&sspi->done);
493 
494 	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
495 	if (IS_ERR(sspi->rstc)) {
496 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
497 		ret = PTR_ERR(sspi->rstc);
498 		goto err_free_master;
499 	}
500 
501 	/*
502 	 * This wake-up/shutdown pattern is to be able to have the
503 	 * device woken up, even if runtime_pm is disabled
504 	 */
505 	ret = sun6i_spi_runtime_resume(&pdev->dev);
506 	if (ret) {
507 		dev_err(&pdev->dev, "Couldn't resume the device\n");
508 		goto err_free_master;
509 	}
510 
511 	pm_runtime_set_active(&pdev->dev);
512 	pm_runtime_enable(&pdev->dev);
513 	pm_runtime_idle(&pdev->dev);
514 
515 	ret = devm_spi_register_master(&pdev->dev, master);
516 	if (ret) {
517 		dev_err(&pdev->dev, "cannot register SPI master\n");
518 		goto err_pm_disable;
519 	}
520 
521 	return 0;
522 
523 err_pm_disable:
524 	pm_runtime_disable(&pdev->dev);
525 	sun6i_spi_runtime_suspend(&pdev->dev);
526 err_free_master:
527 	spi_master_put(master);
528 	return ret;
529 }
530 
sun6i_spi_remove(struct platform_device * pdev)531 static int sun6i_spi_remove(struct platform_device *pdev)
532 {
533 	pm_runtime_force_suspend(&pdev->dev);
534 
535 	return 0;
536 }
537 
538 static const struct of_device_id sun6i_spi_match[] = {
539 	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
540 	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
541 	{}
542 };
543 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
544 
545 static const struct dev_pm_ops sun6i_spi_pm_ops = {
546 	.runtime_resume		= sun6i_spi_runtime_resume,
547 	.runtime_suspend	= sun6i_spi_runtime_suspend,
548 };
549 
550 static struct platform_driver sun6i_spi_driver = {
551 	.probe	= sun6i_spi_probe,
552 	.remove	= sun6i_spi_remove,
553 	.driver	= {
554 		.name		= "sun6i-spi",
555 		.of_match_table	= sun6i_spi_match,
556 		.pm		= &sun6i_spi_pm_ops,
557 	},
558 };
559 module_platform_driver(sun6i_spi_driver);
560 
561 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
562 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
563 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
564 MODULE_LICENSE("GPL");
565