• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
21 #include "block-group.h"
22 #include "space-info.h"
23 
24 /* magic values for the inode_only field in btrfs_log_inode:
25  *
26  * LOG_INODE_ALL means to log everything
27  * LOG_INODE_EXISTS means to log just enough to recreate the inode
28  * during log replay
29  */
30 enum {
31 	LOG_INODE_ALL,
32 	LOG_INODE_EXISTS,
33 	LOG_OTHER_INODE,
34 	LOG_OTHER_INODE_ALL,
35 };
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 enum {
90 	LOG_WALK_PIN_ONLY,
91 	LOG_WALK_REPLAY_INODES,
92 	LOG_WALK_REPLAY_DIR_INDEX,
93 	LOG_WALK_REPLAY_ALL,
94 };
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct btrfs_inode *inode,
98 			   int inode_only,
99 			   struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 
109 /*
110  * tree logging is a special write ahead log used to make sure that
111  * fsyncs and O_SYNCs can happen without doing full tree commits.
112  *
113  * Full tree commits are expensive because they require commonly
114  * modified blocks to be recowed, creating many dirty pages in the
115  * extent tree an 4x-6x higher write load than ext3.
116  *
117  * Instead of doing a tree commit on every fsync, we use the
118  * key ranges and transaction ids to find items for a given file or directory
119  * that have changed in this transaction.  Those items are copied into
120  * a special tree (one per subvolume root), that tree is written to disk
121  * and then the fsync is considered complete.
122  *
123  * After a crash, items are copied out of the log-tree back into the
124  * subvolume tree.  Any file data extents found are recorded in the extent
125  * allocation tree, and the log-tree freed.
126  *
127  * The log tree is read three times, once to pin down all the extents it is
128  * using in ram and once, once to create all the inodes logged in the tree
129  * and once to do all the other items.
130  */
131 
132 /*
133  * start a sub transaction and setup the log tree
134  * this increments the log tree writer count to make the people
135  * syncing the tree wait for us to finish
136  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 			   struct btrfs_root *root,
139 			   struct btrfs_log_ctx *ctx)
140 {
141 	struct btrfs_fs_info *fs_info = root->fs_info;
142 	int ret = 0;
143 
144 	mutex_lock(&root->log_mutex);
145 
146 	if (root->log_root) {
147 		if (btrfs_need_log_full_commit(trans)) {
148 			ret = -EAGAIN;
149 			goto out;
150 		}
151 
152 		if (!root->log_start_pid) {
153 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 			root->log_start_pid = current->pid;
155 		} else if (root->log_start_pid != current->pid) {
156 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 		}
158 	} else {
159 		mutex_lock(&fs_info->tree_log_mutex);
160 		if (!fs_info->log_root_tree)
161 			ret = btrfs_init_log_root_tree(trans, fs_info);
162 		mutex_unlock(&fs_info->tree_log_mutex);
163 		if (ret)
164 			goto out;
165 
166 		ret = btrfs_add_log_tree(trans, root);
167 		if (ret)
168 			goto out;
169 
170 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
171 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
172 		root->log_start_pid = current->pid;
173 	}
174 
175 	atomic_inc(&root->log_batch);
176 	atomic_inc(&root->log_writers);
177 	if (ctx && !ctx->logging_new_name) {
178 		int index = root->log_transid % 2;
179 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
180 		ctx->log_transid = root->log_transid;
181 	}
182 
183 out:
184 	mutex_unlock(&root->log_mutex);
185 	return ret;
186 }
187 
188 /*
189  * returns 0 if there was a log transaction running and we were able
190  * to join, or returns -ENOENT if there were not transactions
191  * in progress
192  */
join_running_log_trans(struct btrfs_root * root)193 static int join_running_log_trans(struct btrfs_root *root)
194 {
195 	int ret = -ENOENT;
196 
197 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
198 		return ret;
199 
200 	mutex_lock(&root->log_mutex);
201 	if (root->log_root) {
202 		ret = 0;
203 		atomic_inc(&root->log_writers);
204 	}
205 	mutex_unlock(&root->log_mutex);
206 	return ret;
207 }
208 
209 /*
210  * This either makes the current running log transaction wait
211  * until you call btrfs_end_log_trans() or it makes any future
212  * log transactions wait until you call btrfs_end_log_trans()
213  */
btrfs_pin_log_trans(struct btrfs_root * root)214 void btrfs_pin_log_trans(struct btrfs_root *root)
215 {
216 	atomic_inc(&root->log_writers);
217 }
218 
219 /*
220  * indicate we're done making changes to the log tree
221  * and wake up anyone waiting to do a sync
222  */
btrfs_end_log_trans(struct btrfs_root * root)223 void btrfs_end_log_trans(struct btrfs_root *root)
224 {
225 	if (atomic_dec_and_test(&root->log_writers)) {
226 		/* atomic_dec_and_test implies a barrier */
227 		cond_wake_up_nomb(&root->log_writer_wait);
228 	}
229 }
230 
btrfs_write_tree_block(struct extent_buffer * buf)231 static int btrfs_write_tree_block(struct extent_buffer *buf)
232 {
233 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
234 					buf->start + buf->len - 1);
235 }
236 
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)237 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
238 {
239 	filemap_fdatawait_range(buf->pages[0]->mapping,
240 			        buf->start, buf->start + buf->len - 1);
241 }
242 
243 /*
244  * the walk control struct is used to pass state down the chain when
245  * processing the log tree.  The stage field tells us which part
246  * of the log tree processing we are currently doing.  The others
247  * are state fields used for that specific part
248  */
249 struct walk_control {
250 	/* should we free the extent on disk when done?  This is used
251 	 * at transaction commit time while freeing a log tree
252 	 */
253 	int free;
254 
255 	/* should we write out the extent buffer?  This is used
256 	 * while flushing the log tree to disk during a sync
257 	 */
258 	int write;
259 
260 	/* should we wait for the extent buffer io to finish?  Also used
261 	 * while flushing the log tree to disk for a sync
262 	 */
263 	int wait;
264 
265 	/* pin only walk, we record which extents on disk belong to the
266 	 * log trees
267 	 */
268 	int pin;
269 
270 	/* what stage of the replay code we're currently in */
271 	int stage;
272 
273 	/*
274 	 * Ignore any items from the inode currently being processed. Needs
275 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
276 	 * the LOG_WALK_REPLAY_INODES stage.
277 	 */
278 	bool ignore_cur_inode;
279 
280 	/* the root we are currently replaying */
281 	struct btrfs_root *replay_dest;
282 
283 	/* the trans handle for the current replay */
284 	struct btrfs_trans_handle *trans;
285 
286 	/* the function that gets used to process blocks we find in the
287 	 * tree.  Note the extent_buffer might not be up to date when it is
288 	 * passed in, and it must be checked or read if you need the data
289 	 * inside it
290 	 */
291 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
292 			    struct walk_control *wc, u64 gen, int level);
293 };
294 
295 /*
296  * process_func used to pin down extents, write them or wait on them
297  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)298 static int process_one_buffer(struct btrfs_root *log,
299 			      struct extent_buffer *eb,
300 			      struct walk_control *wc, u64 gen, int level)
301 {
302 	struct btrfs_fs_info *fs_info = log->fs_info;
303 	int ret = 0;
304 
305 	/*
306 	 * If this fs is mixed then we need to be able to process the leaves to
307 	 * pin down any logged extents, so we have to read the block.
308 	 */
309 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
310 		ret = btrfs_read_buffer(eb, gen, level, NULL);
311 		if (ret)
312 			return ret;
313 	}
314 
315 	if (wc->pin)
316 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
317 						      eb->len);
318 
319 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
320 		if (wc->pin && btrfs_header_level(eb) == 0)
321 			ret = btrfs_exclude_logged_extents(eb);
322 		if (wc->write)
323 			btrfs_write_tree_block(eb);
324 		if (wc->wait)
325 			btrfs_wait_tree_block_writeback(eb);
326 	}
327 	return ret;
328 }
329 
330 /*
331  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
332  * to the src data we are copying out.
333  *
334  * root is the tree we are copying into, and path is a scratch
335  * path for use in this function (it should be released on entry and
336  * will be released on exit).
337  *
338  * If the key is already in the destination tree the existing item is
339  * overwritten.  If the existing item isn't big enough, it is extended.
340  * If it is too large, it is truncated.
341  *
342  * If the key isn't in the destination yet, a new item is inserted.
343  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)344 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
345 				   struct btrfs_root *root,
346 				   struct btrfs_path *path,
347 				   struct extent_buffer *eb, int slot,
348 				   struct btrfs_key *key)
349 {
350 	int ret;
351 	u32 item_size;
352 	u64 saved_i_size = 0;
353 	int save_old_i_size = 0;
354 	unsigned long src_ptr;
355 	unsigned long dst_ptr;
356 	int overwrite_root = 0;
357 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
358 
359 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
360 		overwrite_root = 1;
361 
362 	item_size = btrfs_item_size_nr(eb, slot);
363 	src_ptr = btrfs_item_ptr_offset(eb, slot);
364 
365 	/* look for the key in the destination tree */
366 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
367 	if (ret < 0)
368 		return ret;
369 
370 	if (ret == 0) {
371 		char *src_copy;
372 		char *dst_copy;
373 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
374 						  path->slots[0]);
375 		if (dst_size != item_size)
376 			goto insert;
377 
378 		if (item_size == 0) {
379 			btrfs_release_path(path);
380 			return 0;
381 		}
382 		dst_copy = kmalloc(item_size, GFP_NOFS);
383 		src_copy = kmalloc(item_size, GFP_NOFS);
384 		if (!dst_copy || !src_copy) {
385 			btrfs_release_path(path);
386 			kfree(dst_copy);
387 			kfree(src_copy);
388 			return -ENOMEM;
389 		}
390 
391 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
392 
393 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
394 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
395 				   item_size);
396 		ret = memcmp(dst_copy, src_copy, item_size);
397 
398 		kfree(dst_copy);
399 		kfree(src_copy);
400 		/*
401 		 * they have the same contents, just return, this saves
402 		 * us from cowing blocks in the destination tree and doing
403 		 * extra writes that may not have been done by a previous
404 		 * sync
405 		 */
406 		if (ret == 0) {
407 			btrfs_release_path(path);
408 			return 0;
409 		}
410 
411 		/*
412 		 * We need to load the old nbytes into the inode so when we
413 		 * replay the extents we've logged we get the right nbytes.
414 		 */
415 		if (inode_item) {
416 			struct btrfs_inode_item *item;
417 			u64 nbytes;
418 			u32 mode;
419 
420 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
421 					      struct btrfs_inode_item);
422 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
423 			item = btrfs_item_ptr(eb, slot,
424 					      struct btrfs_inode_item);
425 			btrfs_set_inode_nbytes(eb, item, nbytes);
426 
427 			/*
428 			 * If this is a directory we need to reset the i_size to
429 			 * 0 so that we can set it up properly when replaying
430 			 * the rest of the items in this log.
431 			 */
432 			mode = btrfs_inode_mode(eb, item);
433 			if (S_ISDIR(mode))
434 				btrfs_set_inode_size(eb, item, 0);
435 		}
436 	} else if (inode_item) {
437 		struct btrfs_inode_item *item;
438 		u32 mode;
439 
440 		/*
441 		 * New inode, set nbytes to 0 so that the nbytes comes out
442 		 * properly when we replay the extents.
443 		 */
444 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
445 		btrfs_set_inode_nbytes(eb, item, 0);
446 
447 		/*
448 		 * If this is a directory we need to reset the i_size to 0 so
449 		 * that we can set it up properly when replaying the rest of
450 		 * the items in this log.
451 		 */
452 		mode = btrfs_inode_mode(eb, item);
453 		if (S_ISDIR(mode))
454 			btrfs_set_inode_size(eb, item, 0);
455 	}
456 insert:
457 	btrfs_release_path(path);
458 	/* try to insert the key into the destination tree */
459 	path->skip_release_on_error = 1;
460 	ret = btrfs_insert_empty_item(trans, root, path,
461 				      key, item_size);
462 	path->skip_release_on_error = 0;
463 
464 	/* make sure any existing item is the correct size */
465 	if (ret == -EEXIST || ret == -EOVERFLOW) {
466 		u32 found_size;
467 		found_size = btrfs_item_size_nr(path->nodes[0],
468 						path->slots[0]);
469 		if (found_size > item_size)
470 			btrfs_truncate_item(path, item_size, 1);
471 		else if (found_size < item_size)
472 			btrfs_extend_item(path, item_size - found_size);
473 	} else if (ret) {
474 		return ret;
475 	}
476 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
477 					path->slots[0]);
478 
479 	/* don't overwrite an existing inode if the generation number
480 	 * was logged as zero.  This is done when the tree logging code
481 	 * is just logging an inode to make sure it exists after recovery.
482 	 *
483 	 * Also, don't overwrite i_size on directories during replay.
484 	 * log replay inserts and removes directory items based on the
485 	 * state of the tree found in the subvolume, and i_size is modified
486 	 * as it goes
487 	 */
488 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
489 		struct btrfs_inode_item *src_item;
490 		struct btrfs_inode_item *dst_item;
491 
492 		src_item = (struct btrfs_inode_item *)src_ptr;
493 		dst_item = (struct btrfs_inode_item *)dst_ptr;
494 
495 		if (btrfs_inode_generation(eb, src_item) == 0) {
496 			struct extent_buffer *dst_eb = path->nodes[0];
497 			const u64 ino_size = btrfs_inode_size(eb, src_item);
498 
499 			/*
500 			 * For regular files an ino_size == 0 is used only when
501 			 * logging that an inode exists, as part of a directory
502 			 * fsync, and the inode wasn't fsynced before. In this
503 			 * case don't set the size of the inode in the fs/subvol
504 			 * tree, otherwise we would be throwing valid data away.
505 			 */
506 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
507 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
508 			    ino_size != 0)
509 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
510 			goto no_copy;
511 		}
512 
513 		if (overwrite_root &&
514 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
515 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
516 			save_old_i_size = 1;
517 			saved_i_size = btrfs_inode_size(path->nodes[0],
518 							dst_item);
519 		}
520 	}
521 
522 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
523 			   src_ptr, item_size);
524 
525 	if (save_old_i_size) {
526 		struct btrfs_inode_item *dst_item;
527 		dst_item = (struct btrfs_inode_item *)dst_ptr;
528 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
529 	}
530 
531 	/* make sure the generation is filled in */
532 	if (key->type == BTRFS_INODE_ITEM_KEY) {
533 		struct btrfs_inode_item *dst_item;
534 		dst_item = (struct btrfs_inode_item *)dst_ptr;
535 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
536 			btrfs_set_inode_generation(path->nodes[0], dst_item,
537 						   trans->transid);
538 		}
539 	}
540 no_copy:
541 	btrfs_mark_buffer_dirty(path->nodes[0]);
542 	btrfs_release_path(path);
543 	return 0;
544 }
545 
546 /*
547  * simple helper to read an inode off the disk from a given root
548  * This can only be called for subvolume roots and not for the log
549  */
read_one_inode(struct btrfs_root * root,u64 objectid)550 static noinline struct inode *read_one_inode(struct btrfs_root *root,
551 					     u64 objectid)
552 {
553 	struct inode *inode;
554 
555 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
556 	if (IS_ERR(inode))
557 		inode = NULL;
558 	return inode;
559 }
560 
561 /* replays a single extent in 'eb' at 'slot' with 'key' into the
562  * subvolume 'root'.  path is released on entry and should be released
563  * on exit.
564  *
565  * extents in the log tree have not been allocated out of the extent
566  * tree yet.  So, this completes the allocation, taking a reference
567  * as required if the extent already exists or creating a new extent
568  * if it isn't in the extent allocation tree yet.
569  *
570  * The extent is inserted into the file, dropping any existing extents
571  * from the file that overlap the new one.
572  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)573 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
574 				      struct btrfs_root *root,
575 				      struct btrfs_path *path,
576 				      struct extent_buffer *eb, int slot,
577 				      struct btrfs_key *key)
578 {
579 	struct btrfs_fs_info *fs_info = root->fs_info;
580 	int found_type;
581 	u64 extent_end;
582 	u64 start = key->offset;
583 	u64 nbytes = 0;
584 	struct btrfs_file_extent_item *item;
585 	struct inode *inode = NULL;
586 	unsigned long size;
587 	int ret = 0;
588 
589 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
590 	found_type = btrfs_file_extent_type(eb, item);
591 
592 	if (found_type == BTRFS_FILE_EXTENT_REG ||
593 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
594 		nbytes = btrfs_file_extent_num_bytes(eb, item);
595 		extent_end = start + nbytes;
596 
597 		/*
598 		 * We don't add to the inodes nbytes if we are prealloc or a
599 		 * hole.
600 		 */
601 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
602 			nbytes = 0;
603 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
604 		size = btrfs_file_extent_ram_bytes(eb, item);
605 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
606 		extent_end = ALIGN(start + size,
607 				   fs_info->sectorsize);
608 	} else {
609 		ret = 0;
610 		goto out;
611 	}
612 
613 	inode = read_one_inode(root, key->objectid);
614 	if (!inode) {
615 		ret = -EIO;
616 		goto out;
617 	}
618 
619 	/*
620 	 * first check to see if we already have this extent in the
621 	 * file.  This must be done before the btrfs_drop_extents run
622 	 * so we don't try to drop this extent.
623 	 */
624 	ret = btrfs_lookup_file_extent(trans, root, path,
625 			btrfs_ino(BTRFS_I(inode)), start, 0);
626 
627 	if (ret == 0 &&
628 	    (found_type == BTRFS_FILE_EXTENT_REG ||
629 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
630 		struct btrfs_file_extent_item cmp1;
631 		struct btrfs_file_extent_item cmp2;
632 		struct btrfs_file_extent_item *existing;
633 		struct extent_buffer *leaf;
634 
635 		leaf = path->nodes[0];
636 		existing = btrfs_item_ptr(leaf, path->slots[0],
637 					  struct btrfs_file_extent_item);
638 
639 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
640 				   sizeof(cmp1));
641 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
642 				   sizeof(cmp2));
643 
644 		/*
645 		 * we already have a pointer to this exact extent,
646 		 * we don't have to do anything
647 		 */
648 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
649 			btrfs_release_path(path);
650 			goto out;
651 		}
652 	}
653 	btrfs_release_path(path);
654 
655 	/* drop any overlapping extents */
656 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
657 	if (ret)
658 		goto out;
659 
660 	if (found_type == BTRFS_FILE_EXTENT_REG ||
661 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
662 		u64 offset;
663 		unsigned long dest_offset;
664 		struct btrfs_key ins;
665 
666 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
667 		    btrfs_fs_incompat(fs_info, NO_HOLES))
668 			goto update_inode;
669 
670 		ret = btrfs_insert_empty_item(trans, root, path, key,
671 					      sizeof(*item));
672 		if (ret)
673 			goto out;
674 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
675 						    path->slots[0]);
676 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
677 				(unsigned long)item,  sizeof(*item));
678 
679 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
680 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
681 		ins.type = BTRFS_EXTENT_ITEM_KEY;
682 		offset = key->offset - btrfs_file_extent_offset(eb, item);
683 
684 		/*
685 		 * Manually record dirty extent, as here we did a shallow
686 		 * file extent item copy and skip normal backref update,
687 		 * but modifying extent tree all by ourselves.
688 		 * So need to manually record dirty extent for qgroup,
689 		 * as the owner of the file extent changed from log tree
690 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
691 		 */
692 		ret = btrfs_qgroup_trace_extent(trans,
693 				btrfs_file_extent_disk_bytenr(eb, item),
694 				btrfs_file_extent_disk_num_bytes(eb, item),
695 				GFP_NOFS);
696 		if (ret < 0)
697 			goto out;
698 
699 		if (ins.objectid > 0) {
700 			struct btrfs_ref ref = { 0 };
701 			u64 csum_start;
702 			u64 csum_end;
703 			LIST_HEAD(ordered_sums);
704 
705 			/*
706 			 * is this extent already allocated in the extent
707 			 * allocation tree?  If so, just add a reference
708 			 */
709 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
710 						ins.offset);
711 			if (ret < 0) {
712 				goto out;
713 			} else if (ret == 0) {
714 				btrfs_init_generic_ref(&ref,
715 						BTRFS_ADD_DELAYED_REF,
716 						ins.objectid, ins.offset, 0);
717 				btrfs_init_data_ref(&ref,
718 						root->root_key.objectid,
719 						key->objectid, offset);
720 				ret = btrfs_inc_extent_ref(trans, &ref);
721 				if (ret)
722 					goto out;
723 			} else {
724 				/*
725 				 * insert the extent pointer in the extent
726 				 * allocation tree
727 				 */
728 				ret = btrfs_alloc_logged_file_extent(trans,
729 						root->root_key.objectid,
730 						key->objectid, offset, &ins);
731 				if (ret)
732 					goto out;
733 			}
734 			btrfs_release_path(path);
735 
736 			if (btrfs_file_extent_compression(eb, item)) {
737 				csum_start = ins.objectid;
738 				csum_end = csum_start + ins.offset;
739 			} else {
740 				csum_start = ins.objectid +
741 					btrfs_file_extent_offset(eb, item);
742 				csum_end = csum_start +
743 					btrfs_file_extent_num_bytes(eb, item);
744 			}
745 
746 			ret = btrfs_lookup_csums_range(root->log_root,
747 						csum_start, csum_end - 1,
748 						&ordered_sums, 0);
749 			if (ret)
750 				goto out;
751 			/*
752 			 * Now delete all existing cums in the csum root that
753 			 * cover our range. We do this because we can have an
754 			 * extent that is completely referenced by one file
755 			 * extent item and partially referenced by another
756 			 * file extent item (like after using the clone or
757 			 * extent_same ioctls). In this case if we end up doing
758 			 * the replay of the one that partially references the
759 			 * extent first, and we do not do the csum deletion
760 			 * below, we can get 2 csum items in the csum tree that
761 			 * overlap each other. For example, imagine our log has
762 			 * the two following file extent items:
763 			 *
764 			 * key (257 EXTENT_DATA 409600)
765 			 *     extent data disk byte 12845056 nr 102400
766 			 *     extent data offset 20480 nr 20480 ram 102400
767 			 *
768 			 * key (257 EXTENT_DATA 819200)
769 			 *     extent data disk byte 12845056 nr 102400
770 			 *     extent data offset 0 nr 102400 ram 102400
771 			 *
772 			 * Where the second one fully references the 100K extent
773 			 * that starts at disk byte 12845056, and the log tree
774 			 * has a single csum item that covers the entire range
775 			 * of the extent:
776 			 *
777 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
778 			 *
779 			 * After the first file extent item is replayed, the
780 			 * csum tree gets the following csum item:
781 			 *
782 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
783 			 *
784 			 * Which covers the 20K sub-range starting at offset 20K
785 			 * of our extent. Now when we replay the second file
786 			 * extent item, if we do not delete existing csum items
787 			 * that cover any of its blocks, we end up getting two
788 			 * csum items in our csum tree that overlap each other:
789 			 *
790 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
791 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
792 			 *
793 			 * Which is a problem, because after this anyone trying
794 			 * to lookup up for the checksum of any block of our
795 			 * extent starting at an offset of 40K or higher, will
796 			 * end up looking at the second csum item only, which
797 			 * does not contain the checksum for any block starting
798 			 * at offset 40K or higher of our extent.
799 			 */
800 			while (!list_empty(&ordered_sums)) {
801 				struct btrfs_ordered_sum *sums;
802 				sums = list_entry(ordered_sums.next,
803 						struct btrfs_ordered_sum,
804 						list);
805 				if (!ret)
806 					ret = btrfs_del_csums(trans,
807 							      fs_info->csum_root,
808 							      sums->bytenr,
809 							      sums->len);
810 				if (!ret)
811 					ret = btrfs_csum_file_blocks(trans,
812 						fs_info->csum_root, sums);
813 				list_del(&sums->list);
814 				kfree(sums);
815 			}
816 			if (ret)
817 				goto out;
818 		} else {
819 			btrfs_release_path(path);
820 		}
821 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
822 		/* inline extents are easy, we just overwrite them */
823 		ret = overwrite_item(trans, root, path, eb, slot, key);
824 		if (ret)
825 			goto out;
826 	}
827 
828 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
829 						extent_end - start);
830 	if (ret)
831 		goto out;
832 
833 	inode_add_bytes(inode, nbytes);
834 update_inode:
835 	ret = btrfs_update_inode(trans, root, inode);
836 out:
837 	if (inode)
838 		iput(inode);
839 	return ret;
840 }
841 
842 /*
843  * when cleaning up conflicts between the directory names in the
844  * subvolume, directory names in the log and directory names in the
845  * inode back references, we may have to unlink inodes from directories.
846  *
847  * This is a helper function to do the unlink of a specific directory
848  * item
849  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)850 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
851 				      struct btrfs_root *root,
852 				      struct btrfs_path *path,
853 				      struct btrfs_inode *dir,
854 				      struct btrfs_dir_item *di)
855 {
856 	struct inode *inode;
857 	char *name;
858 	int name_len;
859 	struct extent_buffer *leaf;
860 	struct btrfs_key location;
861 	int ret;
862 
863 	leaf = path->nodes[0];
864 
865 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
866 	name_len = btrfs_dir_name_len(leaf, di);
867 	name = kmalloc(name_len, GFP_NOFS);
868 	if (!name)
869 		return -ENOMEM;
870 
871 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
872 	btrfs_release_path(path);
873 
874 	inode = read_one_inode(root, location.objectid);
875 	if (!inode) {
876 		ret = -EIO;
877 		goto out;
878 	}
879 
880 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
881 	if (ret)
882 		goto out;
883 
884 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
885 			name_len);
886 	if (ret)
887 		goto out;
888 	else
889 		ret = btrfs_run_delayed_items(trans);
890 out:
891 	kfree(name);
892 	iput(inode);
893 	return ret;
894 }
895 
896 /*
897  * See if a given name and sequence number found in an inode back reference are
898  * already in a directory and correctly point to this inode.
899  *
900  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
901  * exists.
902  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)903 static noinline int inode_in_dir(struct btrfs_root *root,
904 				 struct btrfs_path *path,
905 				 u64 dirid, u64 objectid, u64 index,
906 				 const char *name, int name_len)
907 {
908 	struct btrfs_dir_item *di;
909 	struct btrfs_key location;
910 	int ret = 0;
911 
912 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
913 					 index, name, name_len, 0);
914 	if (IS_ERR(di)) {
915 		if (PTR_ERR(di) != -ENOENT)
916 			ret = PTR_ERR(di);
917 		goto out;
918 	} else if (di) {
919 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
920 		if (location.objectid != objectid)
921 			goto out;
922 	} else {
923 		goto out;
924 	}
925 
926 	btrfs_release_path(path);
927 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
928 	if (IS_ERR(di)) {
929 		ret = PTR_ERR(di);
930 		goto out;
931 	} else if (di) {
932 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
933 		if (location.objectid == objectid)
934 			ret = 1;
935 	}
936 out:
937 	btrfs_release_path(path);
938 	return ret;
939 }
940 
941 /*
942  * helper function to check a log tree for a named back reference in
943  * an inode.  This is used to decide if a back reference that is
944  * found in the subvolume conflicts with what we find in the log.
945  *
946  * inode backreferences may have multiple refs in a single item,
947  * during replay we process one reference at a time, and we don't
948  * want to delete valid links to a file from the subvolume if that
949  * link is also in the log.
950  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const char * name,int namelen)951 static noinline int backref_in_log(struct btrfs_root *log,
952 				   struct btrfs_key *key,
953 				   u64 ref_objectid,
954 				   const char *name, int namelen)
955 {
956 	struct btrfs_path *path;
957 	int ret;
958 
959 	path = btrfs_alloc_path();
960 	if (!path)
961 		return -ENOMEM;
962 
963 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
964 	if (ret < 0) {
965 		goto out;
966 	} else if (ret == 1) {
967 		ret = 0;
968 		goto out;
969 	}
970 
971 	if (key->type == BTRFS_INODE_EXTREF_KEY)
972 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
973 						       path->slots[0],
974 						       ref_objectid,
975 						       name, namelen);
976 	else
977 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
978 						   path->slots[0],
979 						   name, namelen);
980 out:
981 	btrfs_free_path(path);
982 	return ret;
983 }
984 
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,char * name,int namelen,int * search_done)985 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
986 				  struct btrfs_root *root,
987 				  struct btrfs_path *path,
988 				  struct btrfs_root *log_root,
989 				  struct btrfs_inode *dir,
990 				  struct btrfs_inode *inode,
991 				  u64 inode_objectid, u64 parent_objectid,
992 				  u64 ref_index, char *name, int namelen,
993 				  int *search_done)
994 {
995 	int ret;
996 	char *victim_name;
997 	int victim_name_len;
998 	struct extent_buffer *leaf;
999 	struct btrfs_dir_item *di;
1000 	struct btrfs_key search_key;
1001 	struct btrfs_inode_extref *extref;
1002 
1003 again:
1004 	/* Search old style refs */
1005 	search_key.objectid = inode_objectid;
1006 	search_key.type = BTRFS_INODE_REF_KEY;
1007 	search_key.offset = parent_objectid;
1008 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1009 	if (ret == 0) {
1010 		struct btrfs_inode_ref *victim_ref;
1011 		unsigned long ptr;
1012 		unsigned long ptr_end;
1013 
1014 		leaf = path->nodes[0];
1015 
1016 		/* are we trying to overwrite a back ref for the root directory
1017 		 * if so, just jump out, we're done
1018 		 */
1019 		if (search_key.objectid == search_key.offset)
1020 			return 1;
1021 
1022 		/* check all the names in this back reference to see
1023 		 * if they are in the log.  if so, we allow them to stay
1024 		 * otherwise they must be unlinked as a conflict
1025 		 */
1026 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1027 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1028 		while (ptr < ptr_end) {
1029 			victim_ref = (struct btrfs_inode_ref *)ptr;
1030 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1031 								   victim_ref);
1032 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1033 			if (!victim_name)
1034 				return -ENOMEM;
1035 
1036 			read_extent_buffer(leaf, victim_name,
1037 					   (unsigned long)(victim_ref + 1),
1038 					   victim_name_len);
1039 
1040 			ret = backref_in_log(log_root, &search_key,
1041 					     parent_objectid, victim_name,
1042 					     victim_name_len);
1043 			if (ret < 0) {
1044 				kfree(victim_name);
1045 				return ret;
1046 			} else if (!ret) {
1047 				inc_nlink(&inode->vfs_inode);
1048 				btrfs_release_path(path);
1049 
1050 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1051 						victim_name, victim_name_len);
1052 				kfree(victim_name);
1053 				if (ret)
1054 					return ret;
1055 				ret = btrfs_run_delayed_items(trans);
1056 				if (ret)
1057 					return ret;
1058 				*search_done = 1;
1059 				goto again;
1060 			}
1061 			kfree(victim_name);
1062 
1063 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1064 		}
1065 
1066 		/*
1067 		 * NOTE: we have searched root tree and checked the
1068 		 * corresponding ref, it does not need to check again.
1069 		 */
1070 		*search_done = 1;
1071 	}
1072 	btrfs_release_path(path);
1073 
1074 	/* Same search but for extended refs */
1075 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1076 					   inode_objectid, parent_objectid, 0,
1077 					   0);
1078 	if (!IS_ERR_OR_NULL(extref)) {
1079 		u32 item_size;
1080 		u32 cur_offset = 0;
1081 		unsigned long base;
1082 		struct inode *victim_parent;
1083 
1084 		leaf = path->nodes[0];
1085 
1086 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1087 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1088 
1089 		while (cur_offset < item_size) {
1090 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1091 
1092 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1093 
1094 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1095 				goto next;
1096 
1097 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1098 			if (!victim_name)
1099 				return -ENOMEM;
1100 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1101 					   victim_name_len);
1102 
1103 			search_key.objectid = inode_objectid;
1104 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1105 			search_key.offset = btrfs_extref_hash(parent_objectid,
1106 							      victim_name,
1107 							      victim_name_len);
1108 			ret = backref_in_log(log_root, &search_key,
1109 					     parent_objectid, victim_name,
1110 					     victim_name_len);
1111 			if (ret < 0) {
1112 				kfree(victim_name);
1113 				return ret;
1114 			} else if (!ret) {
1115 				ret = -ENOENT;
1116 				victim_parent = read_one_inode(root,
1117 						parent_objectid);
1118 				if (victim_parent) {
1119 					inc_nlink(&inode->vfs_inode);
1120 					btrfs_release_path(path);
1121 
1122 					ret = btrfs_unlink_inode(trans, root,
1123 							BTRFS_I(victim_parent),
1124 							inode,
1125 							victim_name,
1126 							victim_name_len);
1127 					if (!ret)
1128 						ret = btrfs_run_delayed_items(
1129 								  trans);
1130 				}
1131 				iput(victim_parent);
1132 				kfree(victim_name);
1133 				if (ret)
1134 					return ret;
1135 				*search_done = 1;
1136 				goto again;
1137 			}
1138 			kfree(victim_name);
1139 next:
1140 			cur_offset += victim_name_len + sizeof(*extref);
1141 		}
1142 		*search_done = 1;
1143 	}
1144 	btrfs_release_path(path);
1145 
1146 	/* look for a conflicting sequence number */
1147 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1148 					 ref_index, name, namelen, 0);
1149 	if (IS_ERR(di)) {
1150 		if (PTR_ERR(di) != -ENOENT)
1151 			return PTR_ERR(di);
1152 	} else if (di) {
1153 		ret = drop_one_dir_item(trans, root, path, dir, di);
1154 		if (ret)
1155 			return ret;
1156 	}
1157 	btrfs_release_path(path);
1158 
1159 	/* look for a conflicting name */
1160 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1161 				   name, namelen, 0);
1162 	if (IS_ERR(di)) {
1163 		return PTR_ERR(di);
1164 	} else if (di) {
1165 		ret = drop_one_dir_item(trans, root, path, dir, di);
1166 		if (ret)
1167 			return ret;
1168 	}
1169 	btrfs_release_path(path);
1170 
1171 	return 0;
1172 }
1173 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index,u64 * parent_objectid)1174 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1175 			     u32 *namelen, char **name, u64 *index,
1176 			     u64 *parent_objectid)
1177 {
1178 	struct btrfs_inode_extref *extref;
1179 
1180 	extref = (struct btrfs_inode_extref *)ref_ptr;
1181 
1182 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1183 	*name = kmalloc(*namelen, GFP_NOFS);
1184 	if (*name == NULL)
1185 		return -ENOMEM;
1186 
1187 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1188 			   *namelen);
1189 
1190 	if (index)
1191 		*index = btrfs_inode_extref_index(eb, extref);
1192 	if (parent_objectid)
1193 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1194 
1195 	return 0;
1196 }
1197 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index)1198 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1199 			  u32 *namelen, char **name, u64 *index)
1200 {
1201 	struct btrfs_inode_ref *ref;
1202 
1203 	ref = (struct btrfs_inode_ref *)ref_ptr;
1204 
1205 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1206 	*name = kmalloc(*namelen, GFP_NOFS);
1207 	if (*name == NULL)
1208 		return -ENOMEM;
1209 
1210 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1211 
1212 	if (index)
1213 		*index = btrfs_inode_ref_index(eb, ref);
1214 
1215 	return 0;
1216 }
1217 
1218 /*
1219  * Take an inode reference item from the log tree and iterate all names from the
1220  * inode reference item in the subvolume tree with the same key (if it exists).
1221  * For any name that is not in the inode reference item from the log tree, do a
1222  * proper unlink of that name (that is, remove its entry from the inode
1223  * reference item and both dir index keys).
1224  */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1225 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1226 				 struct btrfs_root *root,
1227 				 struct btrfs_path *path,
1228 				 struct btrfs_inode *inode,
1229 				 struct extent_buffer *log_eb,
1230 				 int log_slot,
1231 				 struct btrfs_key *key)
1232 {
1233 	int ret;
1234 	unsigned long ref_ptr;
1235 	unsigned long ref_end;
1236 	struct extent_buffer *eb;
1237 
1238 again:
1239 	btrfs_release_path(path);
1240 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1241 	if (ret > 0) {
1242 		ret = 0;
1243 		goto out;
1244 	}
1245 	if (ret < 0)
1246 		goto out;
1247 
1248 	eb = path->nodes[0];
1249 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1250 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1251 	while (ref_ptr < ref_end) {
1252 		char *name = NULL;
1253 		int namelen;
1254 		u64 parent_id;
1255 
1256 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1257 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1258 						NULL, &parent_id);
1259 		} else {
1260 			parent_id = key->offset;
1261 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1262 					     NULL);
1263 		}
1264 		if (ret)
1265 			goto out;
1266 
1267 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1268 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1269 							       parent_id, name,
1270 							       namelen);
1271 		else
1272 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1273 							   name, namelen);
1274 
1275 		if (!ret) {
1276 			struct inode *dir;
1277 
1278 			btrfs_release_path(path);
1279 			dir = read_one_inode(root, parent_id);
1280 			if (!dir) {
1281 				ret = -ENOENT;
1282 				kfree(name);
1283 				goto out;
1284 			}
1285 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1286 						 inode, name, namelen);
1287 			kfree(name);
1288 			iput(dir);
1289 			if (ret)
1290 				goto out;
1291 			goto again;
1292 		}
1293 
1294 		kfree(name);
1295 		ref_ptr += namelen;
1296 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1297 			ref_ptr += sizeof(struct btrfs_inode_extref);
1298 		else
1299 			ref_ptr += sizeof(struct btrfs_inode_ref);
1300 	}
1301 	ret = 0;
1302  out:
1303 	btrfs_release_path(path);
1304 	return ret;
1305 }
1306 
btrfs_inode_ref_exists(struct inode * inode,struct inode * dir,const u8 ref_type,const char * name,const int namelen)1307 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1308 				  const u8 ref_type, const char *name,
1309 				  const int namelen)
1310 {
1311 	struct btrfs_key key;
1312 	struct btrfs_path *path;
1313 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1314 	int ret;
1315 
1316 	path = btrfs_alloc_path();
1317 	if (!path)
1318 		return -ENOMEM;
1319 
1320 	key.objectid = btrfs_ino(BTRFS_I(inode));
1321 	key.type = ref_type;
1322 	if (key.type == BTRFS_INODE_REF_KEY)
1323 		key.offset = parent_id;
1324 	else
1325 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1326 
1327 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1328 	if (ret < 0)
1329 		goto out;
1330 	if (ret > 0) {
1331 		ret = 0;
1332 		goto out;
1333 	}
1334 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1335 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1336 				path->slots[0], parent_id, name, namelen);
1337 	else
1338 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1339 						   name, namelen);
1340 
1341 out:
1342 	btrfs_free_path(path);
1343 	return ret;
1344 }
1345 
add_link(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int namelen,u64 ref_index)1346 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1347 		    struct inode *dir, struct inode *inode, const char *name,
1348 		    int namelen, u64 ref_index)
1349 {
1350 	struct btrfs_dir_item *dir_item;
1351 	struct btrfs_key key;
1352 	struct btrfs_path *path;
1353 	struct inode *other_inode = NULL;
1354 	int ret;
1355 
1356 	path = btrfs_alloc_path();
1357 	if (!path)
1358 		return -ENOMEM;
1359 
1360 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1361 					 btrfs_ino(BTRFS_I(dir)),
1362 					 name, namelen, 0);
1363 	if (!dir_item) {
1364 		btrfs_release_path(path);
1365 		goto add_link;
1366 	} else if (IS_ERR(dir_item)) {
1367 		ret = PTR_ERR(dir_item);
1368 		goto out;
1369 	}
1370 
1371 	/*
1372 	 * Our inode's dentry collides with the dentry of another inode which is
1373 	 * in the log but not yet processed since it has a higher inode number.
1374 	 * So delete that other dentry.
1375 	 */
1376 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1377 	btrfs_release_path(path);
1378 	other_inode = read_one_inode(root, key.objectid);
1379 	if (!other_inode) {
1380 		ret = -ENOENT;
1381 		goto out;
1382 	}
1383 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1384 				 name, namelen);
1385 	if (ret)
1386 		goto out;
1387 	/*
1388 	 * If we dropped the link count to 0, bump it so that later the iput()
1389 	 * on the inode will not free it. We will fixup the link count later.
1390 	 */
1391 	if (other_inode->i_nlink == 0)
1392 		inc_nlink(other_inode);
1393 
1394 	ret = btrfs_run_delayed_items(trans);
1395 	if (ret)
1396 		goto out;
1397 add_link:
1398 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1399 			     name, namelen, 0, ref_index);
1400 out:
1401 	iput(other_inode);
1402 	btrfs_free_path(path);
1403 
1404 	return ret;
1405 }
1406 
1407 /*
1408  * replay one inode back reference item found in the log tree.
1409  * eb, slot and key refer to the buffer and key found in the log tree.
1410  * root is the destination we are replaying into, and path is for temp
1411  * use by this function.  (it should be released on return).
1412  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1413 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1414 				  struct btrfs_root *root,
1415 				  struct btrfs_root *log,
1416 				  struct btrfs_path *path,
1417 				  struct extent_buffer *eb, int slot,
1418 				  struct btrfs_key *key)
1419 {
1420 	struct inode *dir = NULL;
1421 	struct inode *inode = NULL;
1422 	unsigned long ref_ptr;
1423 	unsigned long ref_end;
1424 	char *name = NULL;
1425 	int namelen;
1426 	int ret;
1427 	int search_done = 0;
1428 	int log_ref_ver = 0;
1429 	u64 parent_objectid;
1430 	u64 inode_objectid;
1431 	u64 ref_index = 0;
1432 	int ref_struct_size;
1433 
1434 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1435 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1436 
1437 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1438 		struct btrfs_inode_extref *r;
1439 
1440 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1441 		log_ref_ver = 1;
1442 		r = (struct btrfs_inode_extref *)ref_ptr;
1443 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1444 	} else {
1445 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1446 		parent_objectid = key->offset;
1447 	}
1448 	inode_objectid = key->objectid;
1449 
1450 	/*
1451 	 * it is possible that we didn't log all the parent directories
1452 	 * for a given inode.  If we don't find the dir, just don't
1453 	 * copy the back ref in.  The link count fixup code will take
1454 	 * care of the rest
1455 	 */
1456 	dir = read_one_inode(root, parent_objectid);
1457 	if (!dir) {
1458 		ret = -ENOENT;
1459 		goto out;
1460 	}
1461 
1462 	inode = read_one_inode(root, inode_objectid);
1463 	if (!inode) {
1464 		ret = -EIO;
1465 		goto out;
1466 	}
1467 
1468 	while (ref_ptr < ref_end) {
1469 		if (log_ref_ver) {
1470 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1471 						&ref_index, &parent_objectid);
1472 			/*
1473 			 * parent object can change from one array
1474 			 * item to another.
1475 			 */
1476 			if (!dir)
1477 				dir = read_one_inode(root, parent_objectid);
1478 			if (!dir) {
1479 				ret = -ENOENT;
1480 				goto out;
1481 			}
1482 		} else {
1483 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1484 					     &ref_index);
1485 		}
1486 		if (ret)
1487 			goto out;
1488 
1489 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1490 				   btrfs_ino(BTRFS_I(inode)), ref_index,
1491 				   name, namelen);
1492 		if (ret < 0) {
1493 			goto out;
1494 		} else if (ret == 0) {
1495 			/*
1496 			 * look for a conflicting back reference in the
1497 			 * metadata. if we find one we have to unlink that name
1498 			 * of the file before we add our new link.  Later on, we
1499 			 * overwrite any existing back reference, and we don't
1500 			 * want to create dangling pointers in the directory.
1501 			 */
1502 
1503 			if (!search_done) {
1504 				ret = __add_inode_ref(trans, root, path, log,
1505 						      BTRFS_I(dir),
1506 						      BTRFS_I(inode),
1507 						      inode_objectid,
1508 						      parent_objectid,
1509 						      ref_index, name, namelen,
1510 						      &search_done);
1511 				if (ret) {
1512 					if (ret == 1)
1513 						ret = 0;
1514 					goto out;
1515 				}
1516 			}
1517 
1518 			/*
1519 			 * If a reference item already exists for this inode
1520 			 * with the same parent and name, but different index,
1521 			 * drop it and the corresponding directory index entries
1522 			 * from the parent before adding the new reference item
1523 			 * and dir index entries, otherwise we would fail with
1524 			 * -EEXIST returned from btrfs_add_link() below.
1525 			 */
1526 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1527 						     name, namelen);
1528 			if (ret > 0) {
1529 				ret = btrfs_unlink_inode(trans, root,
1530 							 BTRFS_I(dir),
1531 							 BTRFS_I(inode),
1532 							 name, namelen);
1533 				/*
1534 				 * If we dropped the link count to 0, bump it so
1535 				 * that later the iput() on the inode will not
1536 				 * free it. We will fixup the link count later.
1537 				 */
1538 				if (!ret && inode->i_nlink == 0)
1539 					inc_nlink(inode);
1540 			}
1541 			if (ret < 0)
1542 				goto out;
1543 
1544 			/* insert our name */
1545 			ret = add_link(trans, root, dir, inode, name, namelen,
1546 				       ref_index);
1547 			if (ret)
1548 				goto out;
1549 
1550 			btrfs_update_inode(trans, root, inode);
1551 		}
1552 		/* Else, ret == 1, we already have a perfect match, we're done. */
1553 
1554 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1555 		kfree(name);
1556 		name = NULL;
1557 		if (log_ref_ver) {
1558 			iput(dir);
1559 			dir = NULL;
1560 		}
1561 	}
1562 
1563 	/*
1564 	 * Before we overwrite the inode reference item in the subvolume tree
1565 	 * with the item from the log tree, we must unlink all names from the
1566 	 * parent directory that are in the subvolume's tree inode reference
1567 	 * item, otherwise we end up with an inconsistent subvolume tree where
1568 	 * dir index entries exist for a name but there is no inode reference
1569 	 * item with the same name.
1570 	 */
1571 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1572 				    key);
1573 	if (ret)
1574 		goto out;
1575 
1576 	/* finally write the back reference in the inode */
1577 	ret = overwrite_item(trans, root, path, eb, slot, key);
1578 out:
1579 	btrfs_release_path(path);
1580 	kfree(name);
1581 	iput(dir);
1582 	iput(inode);
1583 	return ret;
1584 }
1585 
insert_orphan_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 ino)1586 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1587 			      struct btrfs_root *root, u64 ino)
1588 {
1589 	int ret;
1590 
1591 	ret = btrfs_insert_orphan_item(trans, root, ino);
1592 	if (ret == -EEXIST)
1593 		ret = 0;
1594 
1595 	return ret;
1596 }
1597 
count_inode_extrefs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1598 static int count_inode_extrefs(struct btrfs_root *root,
1599 		struct btrfs_inode *inode, struct btrfs_path *path)
1600 {
1601 	int ret = 0;
1602 	int name_len;
1603 	unsigned int nlink = 0;
1604 	u32 item_size;
1605 	u32 cur_offset = 0;
1606 	u64 inode_objectid = btrfs_ino(inode);
1607 	u64 offset = 0;
1608 	unsigned long ptr;
1609 	struct btrfs_inode_extref *extref;
1610 	struct extent_buffer *leaf;
1611 
1612 	while (1) {
1613 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1614 					    &extref, &offset);
1615 		if (ret)
1616 			break;
1617 
1618 		leaf = path->nodes[0];
1619 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1620 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1621 		cur_offset = 0;
1622 
1623 		while (cur_offset < item_size) {
1624 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1625 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1626 
1627 			nlink++;
1628 
1629 			cur_offset += name_len + sizeof(*extref);
1630 		}
1631 
1632 		offset++;
1633 		btrfs_release_path(path);
1634 	}
1635 	btrfs_release_path(path);
1636 
1637 	if (ret < 0 && ret != -ENOENT)
1638 		return ret;
1639 	return nlink;
1640 }
1641 
count_inode_refs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1642 static int count_inode_refs(struct btrfs_root *root,
1643 			struct btrfs_inode *inode, struct btrfs_path *path)
1644 {
1645 	int ret;
1646 	struct btrfs_key key;
1647 	unsigned int nlink = 0;
1648 	unsigned long ptr;
1649 	unsigned long ptr_end;
1650 	int name_len;
1651 	u64 ino = btrfs_ino(inode);
1652 
1653 	key.objectid = ino;
1654 	key.type = BTRFS_INODE_REF_KEY;
1655 	key.offset = (u64)-1;
1656 
1657 	while (1) {
1658 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1659 		if (ret < 0)
1660 			break;
1661 		if (ret > 0) {
1662 			if (path->slots[0] == 0)
1663 				break;
1664 			path->slots[0]--;
1665 		}
1666 process_slot:
1667 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1668 				      path->slots[0]);
1669 		if (key.objectid != ino ||
1670 		    key.type != BTRFS_INODE_REF_KEY)
1671 			break;
1672 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1673 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1674 						   path->slots[0]);
1675 		while (ptr < ptr_end) {
1676 			struct btrfs_inode_ref *ref;
1677 
1678 			ref = (struct btrfs_inode_ref *)ptr;
1679 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1680 							    ref);
1681 			ptr = (unsigned long)(ref + 1) + name_len;
1682 			nlink++;
1683 		}
1684 
1685 		if (key.offset == 0)
1686 			break;
1687 		if (path->slots[0] > 0) {
1688 			path->slots[0]--;
1689 			goto process_slot;
1690 		}
1691 		key.offset--;
1692 		btrfs_release_path(path);
1693 	}
1694 	btrfs_release_path(path);
1695 
1696 	return nlink;
1697 }
1698 
1699 /*
1700  * There are a few corners where the link count of the file can't
1701  * be properly maintained during replay.  So, instead of adding
1702  * lots of complexity to the log code, we just scan the backrefs
1703  * for any file that has been through replay.
1704  *
1705  * The scan will update the link count on the inode to reflect the
1706  * number of back refs found.  If it goes down to zero, the iput
1707  * will free the inode.
1708  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1709 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1710 					   struct btrfs_root *root,
1711 					   struct inode *inode)
1712 {
1713 	struct btrfs_path *path;
1714 	int ret;
1715 	u64 nlink = 0;
1716 	u64 ino = btrfs_ino(BTRFS_I(inode));
1717 
1718 	path = btrfs_alloc_path();
1719 	if (!path)
1720 		return -ENOMEM;
1721 
1722 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1723 	if (ret < 0)
1724 		goto out;
1725 
1726 	nlink = ret;
1727 
1728 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1729 	if (ret < 0)
1730 		goto out;
1731 
1732 	nlink += ret;
1733 
1734 	ret = 0;
1735 
1736 	if (nlink != inode->i_nlink) {
1737 		set_nlink(inode, nlink);
1738 		btrfs_update_inode(trans, root, inode);
1739 	}
1740 	BTRFS_I(inode)->index_cnt = (u64)-1;
1741 
1742 	if (inode->i_nlink == 0) {
1743 		if (S_ISDIR(inode->i_mode)) {
1744 			ret = replay_dir_deletes(trans, root, NULL, path,
1745 						 ino, 1);
1746 			if (ret)
1747 				goto out;
1748 		}
1749 		ret = insert_orphan_item(trans, root, ino);
1750 	}
1751 
1752 out:
1753 	btrfs_free_path(path);
1754 	return ret;
1755 }
1756 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1757 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1758 					    struct btrfs_root *root,
1759 					    struct btrfs_path *path)
1760 {
1761 	int ret;
1762 	struct btrfs_key key;
1763 	struct inode *inode;
1764 
1765 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1766 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1767 	key.offset = (u64)-1;
1768 	while (1) {
1769 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1770 		if (ret < 0)
1771 			break;
1772 
1773 		if (ret == 1) {
1774 			ret = 0;
1775 			if (path->slots[0] == 0)
1776 				break;
1777 			path->slots[0]--;
1778 		}
1779 
1780 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1781 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1782 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1783 			break;
1784 
1785 		ret = btrfs_del_item(trans, root, path);
1786 		if (ret)
1787 			break;
1788 
1789 		btrfs_release_path(path);
1790 		inode = read_one_inode(root, key.offset);
1791 		if (!inode) {
1792 			ret = -EIO;
1793 			break;
1794 		}
1795 
1796 		ret = fixup_inode_link_count(trans, root, inode);
1797 		iput(inode);
1798 		if (ret)
1799 			break;
1800 
1801 		/*
1802 		 * fixup on a directory may create new entries,
1803 		 * make sure we always look for the highset possible
1804 		 * offset
1805 		 */
1806 		key.offset = (u64)-1;
1807 	}
1808 	btrfs_release_path(path);
1809 	return ret;
1810 }
1811 
1812 
1813 /*
1814  * record a given inode in the fixup dir so we can check its link
1815  * count when replay is done.  The link count is incremented here
1816  * so the inode won't go away until we check it
1817  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1818 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1819 				      struct btrfs_root *root,
1820 				      struct btrfs_path *path,
1821 				      u64 objectid)
1822 {
1823 	struct btrfs_key key;
1824 	int ret = 0;
1825 	struct inode *inode;
1826 
1827 	inode = read_one_inode(root, objectid);
1828 	if (!inode)
1829 		return -EIO;
1830 
1831 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1832 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1833 	key.offset = objectid;
1834 
1835 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1836 
1837 	btrfs_release_path(path);
1838 	if (ret == 0) {
1839 		if (!inode->i_nlink)
1840 			set_nlink(inode, 1);
1841 		else
1842 			inc_nlink(inode);
1843 		ret = btrfs_update_inode(trans, root, inode);
1844 	} else if (ret == -EEXIST) {
1845 		ret = 0;
1846 	}
1847 	iput(inode);
1848 
1849 	return ret;
1850 }
1851 
1852 /*
1853  * when replaying the log for a directory, we only insert names
1854  * for inodes that actually exist.  This means an fsync on a directory
1855  * does not implicitly fsync all the new files in it
1856  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,char * name,int name_len,struct btrfs_key * location)1857 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1858 				    struct btrfs_root *root,
1859 				    u64 dirid, u64 index,
1860 				    char *name, int name_len,
1861 				    struct btrfs_key *location)
1862 {
1863 	struct inode *inode;
1864 	struct inode *dir;
1865 	int ret;
1866 
1867 	inode = read_one_inode(root, location->objectid);
1868 	if (!inode)
1869 		return -ENOENT;
1870 
1871 	dir = read_one_inode(root, dirid);
1872 	if (!dir) {
1873 		iput(inode);
1874 		return -EIO;
1875 	}
1876 
1877 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1878 			name_len, 1, index);
1879 
1880 	/* FIXME, put inode into FIXUP list */
1881 
1882 	iput(inode);
1883 	iput(dir);
1884 	return ret;
1885 }
1886 
1887 /*
1888  * take a single entry in a log directory item and replay it into
1889  * the subvolume.
1890  *
1891  * if a conflicting item exists in the subdirectory already,
1892  * the inode it points to is unlinked and put into the link count
1893  * fix up tree.
1894  *
1895  * If a name from the log points to a file or directory that does
1896  * not exist in the FS, it is skipped.  fsyncs on directories
1897  * do not force down inodes inside that directory, just changes to the
1898  * names or unlinks in a directory.
1899  *
1900  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1901  * non-existing inode) and 1 if the name was replayed.
1902  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1903 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1904 				    struct btrfs_root *root,
1905 				    struct btrfs_path *path,
1906 				    struct extent_buffer *eb,
1907 				    struct btrfs_dir_item *di,
1908 				    struct btrfs_key *key)
1909 {
1910 	char *name;
1911 	int name_len;
1912 	struct btrfs_dir_item *dst_di;
1913 	struct btrfs_key found_key;
1914 	struct btrfs_key log_key;
1915 	struct inode *dir;
1916 	u8 log_type;
1917 	bool exists;
1918 	int ret;
1919 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1920 	bool name_added = false;
1921 
1922 	dir = read_one_inode(root, key->objectid);
1923 	if (!dir)
1924 		return -EIO;
1925 
1926 	name_len = btrfs_dir_name_len(eb, di);
1927 	name = kmalloc(name_len, GFP_NOFS);
1928 	if (!name) {
1929 		ret = -ENOMEM;
1930 		goto out;
1931 	}
1932 
1933 	log_type = btrfs_dir_type(eb, di);
1934 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1935 		   name_len);
1936 
1937 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1938 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1939 	btrfs_release_path(path);
1940 	if (ret < 0)
1941 		goto out;
1942 	exists = (ret == 0);
1943 	ret = 0;
1944 
1945 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1946 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1947 				       name, name_len, 1);
1948 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1949 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1950 						     key->objectid,
1951 						     key->offset, name,
1952 						     name_len, 1);
1953 	} else {
1954 		/* Corruption */
1955 		ret = -EINVAL;
1956 		goto out;
1957 	}
1958 
1959 	if (dst_di == ERR_PTR(-ENOENT))
1960 		dst_di = NULL;
1961 
1962 	if (IS_ERR(dst_di)) {
1963 		ret = PTR_ERR(dst_di);
1964 		goto out;
1965 	} else if (!dst_di) {
1966 		/* we need a sequence number to insert, so we only
1967 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1968 		 */
1969 		if (key->type != BTRFS_DIR_INDEX_KEY)
1970 			goto out;
1971 		goto insert;
1972 	}
1973 
1974 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1975 	/* the existing item matches the logged item */
1976 	if (found_key.objectid == log_key.objectid &&
1977 	    found_key.type == log_key.type &&
1978 	    found_key.offset == log_key.offset &&
1979 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1980 		update_size = false;
1981 		goto out;
1982 	}
1983 
1984 	/*
1985 	 * don't drop the conflicting directory entry if the inode
1986 	 * for the new entry doesn't exist
1987 	 */
1988 	if (!exists)
1989 		goto out;
1990 
1991 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1992 	if (ret)
1993 		goto out;
1994 
1995 	if (key->type == BTRFS_DIR_INDEX_KEY)
1996 		goto insert;
1997 out:
1998 	btrfs_release_path(path);
1999 	if (!ret && update_size) {
2000 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2001 		ret = btrfs_update_inode(trans, root, dir);
2002 	}
2003 	kfree(name);
2004 	iput(dir);
2005 	if (!ret && name_added)
2006 		ret = 1;
2007 	return ret;
2008 
2009 insert:
2010 	/*
2011 	 * Check if the inode reference exists in the log for the given name,
2012 	 * inode and parent inode
2013 	 */
2014 	found_key.objectid = log_key.objectid;
2015 	found_key.type = BTRFS_INODE_REF_KEY;
2016 	found_key.offset = key->objectid;
2017 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2018 	if (ret < 0) {
2019 	        goto out;
2020 	} else if (ret) {
2021 	        /* The dentry will be added later. */
2022 	        ret = 0;
2023 	        update_size = false;
2024 	        goto out;
2025 	}
2026 
2027 	found_key.objectid = log_key.objectid;
2028 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2029 	found_key.offset = key->objectid;
2030 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2031 			     name_len);
2032 	if (ret < 0) {
2033 		goto out;
2034 	} else if (ret) {
2035 		/* The dentry will be added later. */
2036 		ret = 0;
2037 		update_size = false;
2038 		goto out;
2039 	}
2040 	btrfs_release_path(path);
2041 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2042 			      name, name_len, &log_key);
2043 	if (ret && ret != -ENOENT && ret != -EEXIST)
2044 		goto out;
2045 	if (!ret)
2046 		name_added = true;
2047 	update_size = false;
2048 	ret = 0;
2049 	goto out;
2050 }
2051 
2052 /*
2053  * find all the names in a directory item and reconcile them into
2054  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2055  * one name in a directory item, but the same code gets used for
2056  * both directory index types
2057  */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)2058 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2059 					struct btrfs_root *root,
2060 					struct btrfs_path *path,
2061 					struct extent_buffer *eb, int slot,
2062 					struct btrfs_key *key)
2063 {
2064 	int ret = 0;
2065 	u32 item_size = btrfs_item_size_nr(eb, slot);
2066 	struct btrfs_dir_item *di;
2067 	int name_len;
2068 	unsigned long ptr;
2069 	unsigned long ptr_end;
2070 	struct btrfs_path *fixup_path = NULL;
2071 
2072 	ptr = btrfs_item_ptr_offset(eb, slot);
2073 	ptr_end = ptr + item_size;
2074 	while (ptr < ptr_end) {
2075 		di = (struct btrfs_dir_item *)ptr;
2076 		name_len = btrfs_dir_name_len(eb, di);
2077 		ret = replay_one_name(trans, root, path, eb, di, key);
2078 		if (ret < 0)
2079 			break;
2080 		ptr = (unsigned long)(di + 1);
2081 		ptr += name_len;
2082 
2083 		/*
2084 		 * If this entry refers to a non-directory (directories can not
2085 		 * have a link count > 1) and it was added in the transaction
2086 		 * that was not committed, make sure we fixup the link count of
2087 		 * the inode it the entry points to. Otherwise something like
2088 		 * the following would result in a directory pointing to an
2089 		 * inode with a wrong link that does not account for this dir
2090 		 * entry:
2091 		 *
2092 		 * mkdir testdir
2093 		 * touch testdir/foo
2094 		 * touch testdir/bar
2095 		 * sync
2096 		 *
2097 		 * ln testdir/bar testdir/bar_link
2098 		 * ln testdir/foo testdir/foo_link
2099 		 * xfs_io -c "fsync" testdir/bar
2100 		 *
2101 		 * <power failure>
2102 		 *
2103 		 * mount fs, log replay happens
2104 		 *
2105 		 * File foo would remain with a link count of 1 when it has two
2106 		 * entries pointing to it in the directory testdir. This would
2107 		 * make it impossible to ever delete the parent directory has
2108 		 * it would result in stale dentries that can never be deleted.
2109 		 */
2110 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2111 			struct btrfs_key di_key;
2112 
2113 			if (!fixup_path) {
2114 				fixup_path = btrfs_alloc_path();
2115 				if (!fixup_path) {
2116 					ret = -ENOMEM;
2117 					break;
2118 				}
2119 			}
2120 
2121 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2122 			ret = link_to_fixup_dir(trans, root, fixup_path,
2123 						di_key.objectid);
2124 			if (ret)
2125 				break;
2126 		}
2127 		ret = 0;
2128 	}
2129 	btrfs_free_path(fixup_path);
2130 	return ret;
2131 }
2132 
2133 /*
2134  * directory replay has two parts.  There are the standard directory
2135  * items in the log copied from the subvolume, and range items
2136  * created in the log while the subvolume was logged.
2137  *
2138  * The range items tell us which parts of the key space the log
2139  * is authoritative for.  During replay, if a key in the subvolume
2140  * directory is in a logged range item, but not actually in the log
2141  * that means it was deleted from the directory before the fsync
2142  * and should be removed.
2143  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)2144 static noinline int find_dir_range(struct btrfs_root *root,
2145 				   struct btrfs_path *path,
2146 				   u64 dirid, int key_type,
2147 				   u64 *start_ret, u64 *end_ret)
2148 {
2149 	struct btrfs_key key;
2150 	u64 found_end;
2151 	struct btrfs_dir_log_item *item;
2152 	int ret;
2153 	int nritems;
2154 
2155 	if (*start_ret == (u64)-1)
2156 		return 1;
2157 
2158 	key.objectid = dirid;
2159 	key.type = key_type;
2160 	key.offset = *start_ret;
2161 
2162 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2163 	if (ret < 0)
2164 		goto out;
2165 	if (ret > 0) {
2166 		if (path->slots[0] == 0)
2167 			goto out;
2168 		path->slots[0]--;
2169 	}
2170 	if (ret != 0)
2171 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2172 
2173 	if (key.type != key_type || key.objectid != dirid) {
2174 		ret = 1;
2175 		goto next;
2176 	}
2177 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2178 			      struct btrfs_dir_log_item);
2179 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2180 
2181 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2182 		ret = 0;
2183 		*start_ret = key.offset;
2184 		*end_ret = found_end;
2185 		goto out;
2186 	}
2187 	ret = 1;
2188 next:
2189 	/* check the next slot in the tree to see if it is a valid item */
2190 	nritems = btrfs_header_nritems(path->nodes[0]);
2191 	path->slots[0]++;
2192 	if (path->slots[0] >= nritems) {
2193 		ret = btrfs_next_leaf(root, path);
2194 		if (ret)
2195 			goto out;
2196 	}
2197 
2198 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2199 
2200 	if (key.type != key_type || key.objectid != dirid) {
2201 		ret = 1;
2202 		goto out;
2203 	}
2204 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2205 			      struct btrfs_dir_log_item);
2206 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2207 	*start_ret = key.offset;
2208 	*end_ret = found_end;
2209 	ret = 0;
2210 out:
2211 	btrfs_release_path(path);
2212 	return ret;
2213 }
2214 
2215 /*
2216  * this looks for a given directory item in the log.  If the directory
2217  * item is not in the log, the item is removed and the inode it points
2218  * to is unlinked
2219  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2220 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2221 				      struct btrfs_root *root,
2222 				      struct btrfs_root *log,
2223 				      struct btrfs_path *path,
2224 				      struct btrfs_path *log_path,
2225 				      struct inode *dir,
2226 				      struct btrfs_key *dir_key)
2227 {
2228 	int ret;
2229 	struct extent_buffer *eb;
2230 	int slot;
2231 	u32 item_size;
2232 	struct btrfs_dir_item *di;
2233 	struct btrfs_dir_item *log_di;
2234 	int name_len;
2235 	unsigned long ptr;
2236 	unsigned long ptr_end;
2237 	char *name;
2238 	struct inode *inode;
2239 	struct btrfs_key location;
2240 
2241 again:
2242 	eb = path->nodes[0];
2243 	slot = path->slots[0];
2244 	item_size = btrfs_item_size_nr(eb, slot);
2245 	ptr = btrfs_item_ptr_offset(eb, slot);
2246 	ptr_end = ptr + item_size;
2247 	while (ptr < ptr_end) {
2248 		di = (struct btrfs_dir_item *)ptr;
2249 		name_len = btrfs_dir_name_len(eb, di);
2250 		name = kmalloc(name_len, GFP_NOFS);
2251 		if (!name) {
2252 			ret = -ENOMEM;
2253 			goto out;
2254 		}
2255 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2256 				  name_len);
2257 		log_di = NULL;
2258 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2259 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2260 						       dir_key->objectid,
2261 						       name, name_len, 0);
2262 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2263 			log_di = btrfs_lookup_dir_index_item(trans, log,
2264 						     log_path,
2265 						     dir_key->objectid,
2266 						     dir_key->offset,
2267 						     name, name_len, 0);
2268 		}
2269 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2270 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2271 			btrfs_release_path(path);
2272 			btrfs_release_path(log_path);
2273 			inode = read_one_inode(root, location.objectid);
2274 			if (!inode) {
2275 				kfree(name);
2276 				return -EIO;
2277 			}
2278 
2279 			ret = link_to_fixup_dir(trans, root,
2280 						path, location.objectid);
2281 			if (ret) {
2282 				kfree(name);
2283 				iput(inode);
2284 				goto out;
2285 			}
2286 
2287 			inc_nlink(inode);
2288 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2289 					BTRFS_I(inode), name, name_len);
2290 			if (!ret)
2291 				ret = btrfs_run_delayed_items(trans);
2292 			kfree(name);
2293 			iput(inode);
2294 			if (ret)
2295 				goto out;
2296 
2297 			/* there might still be more names under this key
2298 			 * check and repeat if required
2299 			 */
2300 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2301 						0, 0);
2302 			if (ret == 0)
2303 				goto again;
2304 			ret = 0;
2305 			goto out;
2306 		} else if (IS_ERR(log_di)) {
2307 			kfree(name);
2308 			return PTR_ERR(log_di);
2309 		}
2310 		btrfs_release_path(log_path);
2311 		kfree(name);
2312 
2313 		ptr = (unsigned long)(di + 1);
2314 		ptr += name_len;
2315 	}
2316 	ret = 0;
2317 out:
2318 	btrfs_release_path(path);
2319 	btrfs_release_path(log_path);
2320 	return ret;
2321 }
2322 
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2323 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2324 			      struct btrfs_root *root,
2325 			      struct btrfs_root *log,
2326 			      struct btrfs_path *path,
2327 			      const u64 ino)
2328 {
2329 	struct btrfs_key search_key;
2330 	struct btrfs_path *log_path;
2331 	int i;
2332 	int nritems;
2333 	int ret;
2334 
2335 	log_path = btrfs_alloc_path();
2336 	if (!log_path)
2337 		return -ENOMEM;
2338 
2339 	search_key.objectid = ino;
2340 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2341 	search_key.offset = 0;
2342 again:
2343 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2344 	if (ret < 0)
2345 		goto out;
2346 process_leaf:
2347 	nritems = btrfs_header_nritems(path->nodes[0]);
2348 	for (i = path->slots[0]; i < nritems; i++) {
2349 		struct btrfs_key key;
2350 		struct btrfs_dir_item *di;
2351 		struct btrfs_dir_item *log_di;
2352 		u32 total_size;
2353 		u32 cur;
2354 
2355 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2356 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2357 			ret = 0;
2358 			goto out;
2359 		}
2360 
2361 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2362 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2363 		cur = 0;
2364 		while (cur < total_size) {
2365 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2366 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2367 			u32 this_len = sizeof(*di) + name_len + data_len;
2368 			char *name;
2369 
2370 			name = kmalloc(name_len, GFP_NOFS);
2371 			if (!name) {
2372 				ret = -ENOMEM;
2373 				goto out;
2374 			}
2375 			read_extent_buffer(path->nodes[0], name,
2376 					   (unsigned long)(di + 1), name_len);
2377 
2378 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2379 						    name, name_len, 0);
2380 			btrfs_release_path(log_path);
2381 			if (!log_di) {
2382 				/* Doesn't exist in log tree, so delete it. */
2383 				btrfs_release_path(path);
2384 				di = btrfs_lookup_xattr(trans, root, path, ino,
2385 							name, name_len, -1);
2386 				kfree(name);
2387 				if (IS_ERR(di)) {
2388 					ret = PTR_ERR(di);
2389 					goto out;
2390 				}
2391 				ASSERT(di);
2392 				ret = btrfs_delete_one_dir_name(trans, root,
2393 								path, di);
2394 				if (ret)
2395 					goto out;
2396 				btrfs_release_path(path);
2397 				search_key = key;
2398 				goto again;
2399 			}
2400 			kfree(name);
2401 			if (IS_ERR(log_di)) {
2402 				ret = PTR_ERR(log_di);
2403 				goto out;
2404 			}
2405 			cur += this_len;
2406 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2407 		}
2408 	}
2409 	ret = btrfs_next_leaf(root, path);
2410 	if (ret > 0)
2411 		ret = 0;
2412 	else if (ret == 0)
2413 		goto process_leaf;
2414 out:
2415 	btrfs_free_path(log_path);
2416 	btrfs_release_path(path);
2417 	return ret;
2418 }
2419 
2420 
2421 /*
2422  * deletion replay happens before we copy any new directory items
2423  * out of the log or out of backreferences from inodes.  It
2424  * scans the log to find ranges of keys that log is authoritative for,
2425  * and then scans the directory to find items in those ranges that are
2426  * not present in the log.
2427  *
2428  * Anything we don't find in the log is unlinked and removed from the
2429  * directory.
2430  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2431 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2432 				       struct btrfs_root *root,
2433 				       struct btrfs_root *log,
2434 				       struct btrfs_path *path,
2435 				       u64 dirid, int del_all)
2436 {
2437 	u64 range_start;
2438 	u64 range_end;
2439 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2440 	int ret = 0;
2441 	struct btrfs_key dir_key;
2442 	struct btrfs_key found_key;
2443 	struct btrfs_path *log_path;
2444 	struct inode *dir;
2445 
2446 	dir_key.objectid = dirid;
2447 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2448 	log_path = btrfs_alloc_path();
2449 	if (!log_path)
2450 		return -ENOMEM;
2451 
2452 	dir = read_one_inode(root, dirid);
2453 	/* it isn't an error if the inode isn't there, that can happen
2454 	 * because we replay the deletes before we copy in the inode item
2455 	 * from the log
2456 	 */
2457 	if (!dir) {
2458 		btrfs_free_path(log_path);
2459 		return 0;
2460 	}
2461 again:
2462 	range_start = 0;
2463 	range_end = 0;
2464 	while (1) {
2465 		if (del_all)
2466 			range_end = (u64)-1;
2467 		else {
2468 			ret = find_dir_range(log, path, dirid, key_type,
2469 					     &range_start, &range_end);
2470 			if (ret < 0)
2471 				goto out;
2472 			else if (ret > 0)
2473 				break;
2474 		}
2475 
2476 		dir_key.offset = range_start;
2477 		while (1) {
2478 			int nritems;
2479 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2480 						0, 0);
2481 			if (ret < 0)
2482 				goto out;
2483 
2484 			nritems = btrfs_header_nritems(path->nodes[0]);
2485 			if (path->slots[0] >= nritems) {
2486 				ret = btrfs_next_leaf(root, path);
2487 				if (ret == 1)
2488 					break;
2489 				else if (ret < 0)
2490 					goto out;
2491 			}
2492 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2493 					      path->slots[0]);
2494 			if (found_key.objectid != dirid ||
2495 			    found_key.type != dir_key.type)
2496 				goto next_type;
2497 
2498 			if (found_key.offset > range_end)
2499 				break;
2500 
2501 			ret = check_item_in_log(trans, root, log, path,
2502 						log_path, dir,
2503 						&found_key);
2504 			if (ret)
2505 				goto out;
2506 			if (found_key.offset == (u64)-1)
2507 				break;
2508 			dir_key.offset = found_key.offset + 1;
2509 		}
2510 		btrfs_release_path(path);
2511 		if (range_end == (u64)-1)
2512 			break;
2513 		range_start = range_end + 1;
2514 	}
2515 
2516 next_type:
2517 	ret = 0;
2518 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2519 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2520 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2521 		btrfs_release_path(path);
2522 		goto again;
2523 	}
2524 out:
2525 	btrfs_release_path(path);
2526 	btrfs_free_path(log_path);
2527 	iput(dir);
2528 	return ret;
2529 }
2530 
2531 /*
2532  * the process_func used to replay items from the log tree.  This
2533  * gets called in two different stages.  The first stage just looks
2534  * for inodes and makes sure they are all copied into the subvolume.
2535  *
2536  * The second stage copies all the other item types from the log into
2537  * the subvolume.  The two stage approach is slower, but gets rid of
2538  * lots of complexity around inodes referencing other inodes that exist
2539  * only in the log (references come from either directory items or inode
2540  * back refs).
2541  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2542 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2543 			     struct walk_control *wc, u64 gen, int level)
2544 {
2545 	int nritems;
2546 	struct btrfs_path *path;
2547 	struct btrfs_root *root = wc->replay_dest;
2548 	struct btrfs_key key;
2549 	int i;
2550 	int ret;
2551 
2552 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2553 	if (ret)
2554 		return ret;
2555 
2556 	level = btrfs_header_level(eb);
2557 
2558 	if (level != 0)
2559 		return 0;
2560 
2561 	path = btrfs_alloc_path();
2562 	if (!path)
2563 		return -ENOMEM;
2564 
2565 	nritems = btrfs_header_nritems(eb);
2566 	for (i = 0; i < nritems; i++) {
2567 		btrfs_item_key_to_cpu(eb, &key, i);
2568 
2569 		/* inode keys are done during the first stage */
2570 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2571 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2572 			struct btrfs_inode_item *inode_item;
2573 			u32 mode;
2574 
2575 			inode_item = btrfs_item_ptr(eb, i,
2576 					    struct btrfs_inode_item);
2577 			/*
2578 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2579 			 * and never got linked before the fsync, skip it, as
2580 			 * replaying it is pointless since it would be deleted
2581 			 * later. We skip logging tmpfiles, but it's always
2582 			 * possible we are replaying a log created with a kernel
2583 			 * that used to log tmpfiles.
2584 			 */
2585 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2586 				wc->ignore_cur_inode = true;
2587 				continue;
2588 			} else {
2589 				wc->ignore_cur_inode = false;
2590 			}
2591 			ret = replay_xattr_deletes(wc->trans, root, log,
2592 						   path, key.objectid);
2593 			if (ret)
2594 				break;
2595 			mode = btrfs_inode_mode(eb, inode_item);
2596 			if (S_ISDIR(mode)) {
2597 				ret = replay_dir_deletes(wc->trans,
2598 					 root, log, path, key.objectid, 0);
2599 				if (ret)
2600 					break;
2601 			}
2602 			ret = overwrite_item(wc->trans, root, path,
2603 					     eb, i, &key);
2604 			if (ret)
2605 				break;
2606 
2607 			/*
2608 			 * Before replaying extents, truncate the inode to its
2609 			 * size. We need to do it now and not after log replay
2610 			 * because before an fsync we can have prealloc extents
2611 			 * added beyond the inode's i_size. If we did it after,
2612 			 * through orphan cleanup for example, we would drop
2613 			 * those prealloc extents just after replaying them.
2614 			 */
2615 			if (S_ISREG(mode)) {
2616 				struct inode *inode;
2617 				u64 from;
2618 
2619 				inode = read_one_inode(root, key.objectid);
2620 				if (!inode) {
2621 					ret = -EIO;
2622 					break;
2623 				}
2624 				from = ALIGN(i_size_read(inode),
2625 					     root->fs_info->sectorsize);
2626 				ret = btrfs_drop_extents(wc->trans, root, inode,
2627 							 from, (u64)-1, 1);
2628 				if (!ret) {
2629 					/* Update the inode's nbytes. */
2630 					ret = btrfs_update_inode(wc->trans,
2631 								 root, inode);
2632 				}
2633 				iput(inode);
2634 				if (ret)
2635 					break;
2636 			}
2637 
2638 			ret = link_to_fixup_dir(wc->trans, root,
2639 						path, key.objectid);
2640 			if (ret)
2641 				break;
2642 		}
2643 
2644 		if (wc->ignore_cur_inode)
2645 			continue;
2646 
2647 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2648 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2649 			ret = replay_one_dir_item(wc->trans, root, path,
2650 						  eb, i, &key);
2651 			if (ret)
2652 				break;
2653 		}
2654 
2655 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2656 			continue;
2657 
2658 		/* these keys are simply copied */
2659 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2660 			ret = overwrite_item(wc->trans, root, path,
2661 					     eb, i, &key);
2662 			if (ret)
2663 				break;
2664 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2665 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2666 			ret = add_inode_ref(wc->trans, root, log, path,
2667 					    eb, i, &key);
2668 			if (ret && ret != -ENOENT)
2669 				break;
2670 			ret = 0;
2671 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2672 			ret = replay_one_extent(wc->trans, root, path,
2673 						eb, i, &key);
2674 			if (ret)
2675 				break;
2676 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2677 			ret = replay_one_dir_item(wc->trans, root, path,
2678 						  eb, i, &key);
2679 			if (ret)
2680 				break;
2681 		}
2682 	}
2683 	btrfs_free_path(path);
2684 	return ret;
2685 }
2686 
2687 /*
2688  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2689  */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2690 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2691 {
2692 	struct btrfs_block_group *cache;
2693 
2694 	cache = btrfs_lookup_block_group(fs_info, start);
2695 	if (!cache) {
2696 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2697 		return;
2698 	}
2699 
2700 	spin_lock(&cache->space_info->lock);
2701 	spin_lock(&cache->lock);
2702 	cache->reserved -= fs_info->nodesize;
2703 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2704 	spin_unlock(&cache->lock);
2705 	spin_unlock(&cache->space_info->lock);
2706 
2707 	btrfs_put_block_group(cache);
2708 }
2709 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2710 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2711 				   struct btrfs_root *root,
2712 				   struct btrfs_path *path, int *level,
2713 				   struct walk_control *wc)
2714 {
2715 	struct btrfs_fs_info *fs_info = root->fs_info;
2716 	u64 bytenr;
2717 	u64 ptr_gen;
2718 	struct extent_buffer *next;
2719 	struct extent_buffer *cur;
2720 	u32 blocksize;
2721 	int ret = 0;
2722 
2723 	while (*level > 0) {
2724 		struct btrfs_key first_key;
2725 
2726 		cur = path->nodes[*level];
2727 
2728 		WARN_ON(btrfs_header_level(cur) != *level);
2729 
2730 		if (path->slots[*level] >=
2731 		    btrfs_header_nritems(cur))
2732 			break;
2733 
2734 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2735 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2736 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2737 		blocksize = fs_info->nodesize;
2738 
2739 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2740 		if (IS_ERR(next))
2741 			return PTR_ERR(next);
2742 
2743 		if (*level == 1) {
2744 			ret = wc->process_func(root, next, wc, ptr_gen,
2745 					       *level - 1);
2746 			if (ret) {
2747 				free_extent_buffer(next);
2748 				return ret;
2749 			}
2750 
2751 			path->slots[*level]++;
2752 			if (wc->free) {
2753 				ret = btrfs_read_buffer(next, ptr_gen,
2754 							*level - 1, &first_key);
2755 				if (ret) {
2756 					free_extent_buffer(next);
2757 					return ret;
2758 				}
2759 
2760 				if (trans) {
2761 					btrfs_tree_lock(next);
2762 					btrfs_set_lock_blocking_write(next);
2763 					btrfs_clean_tree_block(next);
2764 					btrfs_wait_tree_block_writeback(next);
2765 					btrfs_tree_unlock(next);
2766 					ret = btrfs_pin_reserved_extent(trans,
2767 							bytenr, blocksize);
2768 					if (ret) {
2769 						free_extent_buffer(next);
2770 						return ret;
2771 					}
2772 				} else {
2773 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2774 						clear_extent_buffer_dirty(next);
2775 					unaccount_log_buffer(fs_info, bytenr);
2776 				}
2777 			}
2778 			free_extent_buffer(next);
2779 			continue;
2780 		}
2781 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2782 		if (ret) {
2783 			free_extent_buffer(next);
2784 			return ret;
2785 		}
2786 
2787 		if (path->nodes[*level-1])
2788 			free_extent_buffer(path->nodes[*level-1]);
2789 		path->nodes[*level-1] = next;
2790 		*level = btrfs_header_level(next);
2791 		path->slots[*level] = 0;
2792 		cond_resched();
2793 	}
2794 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2795 
2796 	cond_resched();
2797 	return 0;
2798 }
2799 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2800 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2801 				 struct btrfs_root *root,
2802 				 struct btrfs_path *path, int *level,
2803 				 struct walk_control *wc)
2804 {
2805 	struct btrfs_fs_info *fs_info = root->fs_info;
2806 	int i;
2807 	int slot;
2808 	int ret;
2809 
2810 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2811 		slot = path->slots[i];
2812 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2813 			path->slots[i]++;
2814 			*level = i;
2815 			WARN_ON(*level == 0);
2816 			return 0;
2817 		} else {
2818 			ret = wc->process_func(root, path->nodes[*level], wc,
2819 				 btrfs_header_generation(path->nodes[*level]),
2820 				 *level);
2821 			if (ret)
2822 				return ret;
2823 
2824 			if (wc->free) {
2825 				struct extent_buffer *next;
2826 
2827 				next = path->nodes[*level];
2828 
2829 				if (trans) {
2830 					btrfs_tree_lock(next);
2831 					btrfs_set_lock_blocking_write(next);
2832 					btrfs_clean_tree_block(next);
2833 					btrfs_wait_tree_block_writeback(next);
2834 					btrfs_tree_unlock(next);
2835 					ret = btrfs_pin_reserved_extent(trans,
2836 						     path->nodes[*level]->start,
2837 						     path->nodes[*level]->len);
2838 					if (ret)
2839 						return ret;
2840 				} else {
2841 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2842 						clear_extent_buffer_dirty(next);
2843 
2844 					unaccount_log_buffer(fs_info,
2845 						path->nodes[*level]->start);
2846 				}
2847 			}
2848 			free_extent_buffer(path->nodes[*level]);
2849 			path->nodes[*level] = NULL;
2850 			*level = i + 1;
2851 		}
2852 	}
2853 	return 1;
2854 }
2855 
2856 /*
2857  * drop the reference count on the tree rooted at 'snap'.  This traverses
2858  * the tree freeing any blocks that have a ref count of zero after being
2859  * decremented.
2860  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2861 static int walk_log_tree(struct btrfs_trans_handle *trans,
2862 			 struct btrfs_root *log, struct walk_control *wc)
2863 {
2864 	struct btrfs_fs_info *fs_info = log->fs_info;
2865 	int ret = 0;
2866 	int wret;
2867 	int level;
2868 	struct btrfs_path *path;
2869 	int orig_level;
2870 
2871 	path = btrfs_alloc_path();
2872 	if (!path)
2873 		return -ENOMEM;
2874 
2875 	level = btrfs_header_level(log->node);
2876 	orig_level = level;
2877 	path->nodes[level] = log->node;
2878 	atomic_inc(&log->node->refs);
2879 	path->slots[level] = 0;
2880 
2881 	while (1) {
2882 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2883 		if (wret > 0)
2884 			break;
2885 		if (wret < 0) {
2886 			ret = wret;
2887 			goto out;
2888 		}
2889 
2890 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2891 		if (wret > 0)
2892 			break;
2893 		if (wret < 0) {
2894 			ret = wret;
2895 			goto out;
2896 		}
2897 	}
2898 
2899 	/* was the root node processed? if not, catch it here */
2900 	if (path->nodes[orig_level]) {
2901 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2902 			 btrfs_header_generation(path->nodes[orig_level]),
2903 			 orig_level);
2904 		if (ret)
2905 			goto out;
2906 		if (wc->free) {
2907 			struct extent_buffer *next;
2908 
2909 			next = path->nodes[orig_level];
2910 
2911 			if (trans) {
2912 				btrfs_tree_lock(next);
2913 				btrfs_set_lock_blocking_write(next);
2914 				btrfs_clean_tree_block(next);
2915 				btrfs_wait_tree_block_writeback(next);
2916 				btrfs_tree_unlock(next);
2917 				ret = btrfs_pin_reserved_extent(trans,
2918 						next->start, next->len);
2919 				if (ret)
2920 					goto out;
2921 			} else {
2922 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2923 					clear_extent_buffer_dirty(next);
2924 				unaccount_log_buffer(fs_info, next->start);
2925 			}
2926 		}
2927 	}
2928 
2929 out:
2930 	btrfs_free_path(path);
2931 	return ret;
2932 }
2933 
2934 /*
2935  * helper function to update the item for a given subvolumes log root
2936  * in the tree of log roots
2937  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2938 static int update_log_root(struct btrfs_trans_handle *trans,
2939 			   struct btrfs_root *log,
2940 			   struct btrfs_root_item *root_item)
2941 {
2942 	struct btrfs_fs_info *fs_info = log->fs_info;
2943 	int ret;
2944 
2945 	if (log->log_transid == 1) {
2946 		/* insert root item on the first sync */
2947 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2948 				&log->root_key, root_item);
2949 	} else {
2950 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2951 				&log->root_key, root_item);
2952 	}
2953 	return ret;
2954 }
2955 
wait_log_commit(struct btrfs_root * root,int transid)2956 static void wait_log_commit(struct btrfs_root *root, int transid)
2957 {
2958 	DEFINE_WAIT(wait);
2959 	int index = transid % 2;
2960 
2961 	/*
2962 	 * we only allow two pending log transactions at a time,
2963 	 * so we know that if ours is more than 2 older than the
2964 	 * current transaction, we're done
2965 	 */
2966 	for (;;) {
2967 		prepare_to_wait(&root->log_commit_wait[index],
2968 				&wait, TASK_UNINTERRUPTIBLE);
2969 
2970 		if (!(root->log_transid_committed < transid &&
2971 		      atomic_read(&root->log_commit[index])))
2972 			break;
2973 
2974 		mutex_unlock(&root->log_mutex);
2975 		schedule();
2976 		mutex_lock(&root->log_mutex);
2977 	}
2978 	finish_wait(&root->log_commit_wait[index], &wait);
2979 }
2980 
wait_for_writer(struct btrfs_root * root)2981 static void wait_for_writer(struct btrfs_root *root)
2982 {
2983 	DEFINE_WAIT(wait);
2984 
2985 	for (;;) {
2986 		prepare_to_wait(&root->log_writer_wait, &wait,
2987 				TASK_UNINTERRUPTIBLE);
2988 		if (!atomic_read(&root->log_writers))
2989 			break;
2990 
2991 		mutex_unlock(&root->log_mutex);
2992 		schedule();
2993 		mutex_lock(&root->log_mutex);
2994 	}
2995 	finish_wait(&root->log_writer_wait, &wait);
2996 }
2997 
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2998 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2999 					struct btrfs_log_ctx *ctx)
3000 {
3001 	if (!ctx)
3002 		return;
3003 
3004 	mutex_lock(&root->log_mutex);
3005 	list_del_init(&ctx->list);
3006 	mutex_unlock(&root->log_mutex);
3007 }
3008 
3009 /*
3010  * Invoked in log mutex context, or be sure there is no other task which
3011  * can access the list.
3012  */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)3013 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3014 					     int index, int error)
3015 {
3016 	struct btrfs_log_ctx *ctx;
3017 	struct btrfs_log_ctx *safe;
3018 
3019 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3020 		list_del_init(&ctx->list);
3021 		ctx->log_ret = error;
3022 	}
3023 
3024 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3025 }
3026 
3027 /*
3028  * btrfs_sync_log does sends a given tree log down to the disk and
3029  * updates the super blocks to record it.  When this call is done,
3030  * you know that any inodes previously logged are safely on disk only
3031  * if it returns 0.
3032  *
3033  * Any other return value means you need to call btrfs_commit_transaction.
3034  * Some of the edge cases for fsyncing directories that have had unlinks
3035  * or renames done in the past mean that sometimes the only safe
3036  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3037  * that has happened.
3038  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)3039 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3040 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3041 {
3042 	int index1;
3043 	int index2;
3044 	int mark;
3045 	int ret;
3046 	struct btrfs_fs_info *fs_info = root->fs_info;
3047 	struct btrfs_root *log = root->log_root;
3048 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3049 	struct btrfs_root_item new_root_item;
3050 	int log_transid = 0;
3051 	struct btrfs_log_ctx root_log_ctx;
3052 	struct blk_plug plug;
3053 
3054 	mutex_lock(&root->log_mutex);
3055 	log_transid = ctx->log_transid;
3056 	if (root->log_transid_committed >= log_transid) {
3057 		mutex_unlock(&root->log_mutex);
3058 		return ctx->log_ret;
3059 	}
3060 
3061 	index1 = log_transid % 2;
3062 	if (atomic_read(&root->log_commit[index1])) {
3063 		wait_log_commit(root, log_transid);
3064 		mutex_unlock(&root->log_mutex);
3065 		return ctx->log_ret;
3066 	}
3067 	ASSERT(log_transid == root->log_transid);
3068 	atomic_set(&root->log_commit[index1], 1);
3069 
3070 	/* wait for previous tree log sync to complete */
3071 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3072 		wait_log_commit(root, log_transid - 1);
3073 
3074 	while (1) {
3075 		int batch = atomic_read(&root->log_batch);
3076 		/* when we're on an ssd, just kick the log commit out */
3077 		if (!btrfs_test_opt(fs_info, SSD) &&
3078 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3079 			mutex_unlock(&root->log_mutex);
3080 			schedule_timeout_uninterruptible(1);
3081 			mutex_lock(&root->log_mutex);
3082 		}
3083 		wait_for_writer(root);
3084 		if (batch == atomic_read(&root->log_batch))
3085 			break;
3086 	}
3087 
3088 	/* bail out if we need to do a full commit */
3089 	if (btrfs_need_log_full_commit(trans)) {
3090 		ret = -EAGAIN;
3091 		mutex_unlock(&root->log_mutex);
3092 		goto out;
3093 	}
3094 
3095 	if (log_transid % 2 == 0)
3096 		mark = EXTENT_DIRTY;
3097 	else
3098 		mark = EXTENT_NEW;
3099 
3100 	/* we start IO on  all the marked extents here, but we don't actually
3101 	 * wait for them until later.
3102 	 */
3103 	blk_start_plug(&plug);
3104 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3105 	if (ret) {
3106 		blk_finish_plug(&plug);
3107 		btrfs_abort_transaction(trans, ret);
3108 		btrfs_set_log_full_commit(trans);
3109 		mutex_unlock(&root->log_mutex);
3110 		goto out;
3111 	}
3112 
3113 	/*
3114 	 * We _must_ update under the root->log_mutex in order to make sure we
3115 	 * have a consistent view of the log root we are trying to commit at
3116 	 * this moment.
3117 	 *
3118 	 * We _must_ copy this into a local copy, because we are not holding the
3119 	 * log_root_tree->log_mutex yet.  This is important because when we
3120 	 * commit the log_root_tree we must have a consistent view of the
3121 	 * log_root_tree when we update the super block to point at the
3122 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3123 	 * with the commit and possibly point at the new block which we may not
3124 	 * have written out.
3125 	 */
3126 	btrfs_set_root_node(&log->root_item, log->node);
3127 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3128 
3129 	root->log_transid++;
3130 	log->log_transid = root->log_transid;
3131 	root->log_start_pid = 0;
3132 	/*
3133 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3134 	 * in their headers. new modifications of the log will be written to
3135 	 * new positions. so it's safe to allow log writers to go in.
3136 	 */
3137 	mutex_unlock(&root->log_mutex);
3138 
3139 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3140 
3141 	mutex_lock(&log_root_tree->log_mutex);
3142 
3143 	index2 = log_root_tree->log_transid % 2;
3144 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3145 	root_log_ctx.log_transid = log_root_tree->log_transid;
3146 
3147 	/*
3148 	 * Now we are safe to update the log_root_tree because we're under the
3149 	 * log_mutex, and we're a current writer so we're holding the commit
3150 	 * open until we drop the log_mutex.
3151 	 */
3152 	ret = update_log_root(trans, log, &new_root_item);
3153 	if (ret) {
3154 		if (!list_empty(&root_log_ctx.list))
3155 			list_del_init(&root_log_ctx.list);
3156 
3157 		blk_finish_plug(&plug);
3158 		btrfs_set_log_full_commit(trans);
3159 
3160 		if (ret != -ENOSPC) {
3161 			btrfs_abort_transaction(trans, ret);
3162 			mutex_unlock(&log_root_tree->log_mutex);
3163 			goto out;
3164 		}
3165 		btrfs_wait_tree_log_extents(log, mark);
3166 		mutex_unlock(&log_root_tree->log_mutex);
3167 		ret = -EAGAIN;
3168 		goto out;
3169 	}
3170 
3171 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3172 		blk_finish_plug(&plug);
3173 		list_del_init(&root_log_ctx.list);
3174 		mutex_unlock(&log_root_tree->log_mutex);
3175 		ret = root_log_ctx.log_ret;
3176 		goto out;
3177 	}
3178 
3179 	index2 = root_log_ctx.log_transid % 2;
3180 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3181 		blk_finish_plug(&plug);
3182 		ret = btrfs_wait_tree_log_extents(log, mark);
3183 		wait_log_commit(log_root_tree,
3184 				root_log_ctx.log_transid);
3185 		mutex_unlock(&log_root_tree->log_mutex);
3186 		if (!ret)
3187 			ret = root_log_ctx.log_ret;
3188 		goto out;
3189 	}
3190 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3191 	atomic_set(&log_root_tree->log_commit[index2], 1);
3192 
3193 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3194 		wait_log_commit(log_root_tree,
3195 				root_log_ctx.log_transid - 1);
3196 	}
3197 
3198 	/*
3199 	 * now that we've moved on to the tree of log tree roots,
3200 	 * check the full commit flag again
3201 	 */
3202 	if (btrfs_need_log_full_commit(trans)) {
3203 		blk_finish_plug(&plug);
3204 		btrfs_wait_tree_log_extents(log, mark);
3205 		mutex_unlock(&log_root_tree->log_mutex);
3206 		ret = -EAGAIN;
3207 		goto out_wake_log_root;
3208 	}
3209 
3210 	ret = btrfs_write_marked_extents(fs_info,
3211 					 &log_root_tree->dirty_log_pages,
3212 					 EXTENT_DIRTY | EXTENT_NEW);
3213 	blk_finish_plug(&plug);
3214 	if (ret) {
3215 		btrfs_set_log_full_commit(trans);
3216 		btrfs_abort_transaction(trans, ret);
3217 		mutex_unlock(&log_root_tree->log_mutex);
3218 		goto out_wake_log_root;
3219 	}
3220 	ret = btrfs_wait_tree_log_extents(log, mark);
3221 	if (!ret)
3222 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3223 						  EXTENT_NEW | EXTENT_DIRTY);
3224 	if (ret) {
3225 		btrfs_set_log_full_commit(trans);
3226 		mutex_unlock(&log_root_tree->log_mutex);
3227 		goto out_wake_log_root;
3228 	}
3229 
3230 	btrfs_set_super_log_root(fs_info->super_for_commit,
3231 				 log_root_tree->node->start);
3232 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3233 				       btrfs_header_level(log_root_tree->node));
3234 
3235 	log_root_tree->log_transid++;
3236 	mutex_unlock(&log_root_tree->log_mutex);
3237 
3238 	/*
3239 	 * Nobody else is going to jump in and write the ctree
3240 	 * super here because the log_commit atomic below is protecting
3241 	 * us.  We must be called with a transaction handle pinning
3242 	 * the running transaction open, so a full commit can't hop
3243 	 * in and cause problems either.
3244 	 */
3245 	ret = write_all_supers(fs_info, 1);
3246 	if (ret) {
3247 		btrfs_set_log_full_commit(trans);
3248 		btrfs_abort_transaction(trans, ret);
3249 		goto out_wake_log_root;
3250 	}
3251 
3252 	mutex_lock(&root->log_mutex);
3253 	if (root->last_log_commit < log_transid)
3254 		root->last_log_commit = log_transid;
3255 	mutex_unlock(&root->log_mutex);
3256 
3257 out_wake_log_root:
3258 	mutex_lock(&log_root_tree->log_mutex);
3259 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3260 
3261 	log_root_tree->log_transid_committed++;
3262 	atomic_set(&log_root_tree->log_commit[index2], 0);
3263 	mutex_unlock(&log_root_tree->log_mutex);
3264 
3265 	/*
3266 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3267 	 * all the updates above are seen by the woken threads. It might not be
3268 	 * necessary, but proving that seems to be hard.
3269 	 */
3270 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3271 out:
3272 	mutex_lock(&root->log_mutex);
3273 	btrfs_remove_all_log_ctxs(root, index1, ret);
3274 	root->log_transid_committed++;
3275 	atomic_set(&root->log_commit[index1], 0);
3276 	mutex_unlock(&root->log_mutex);
3277 
3278 	/*
3279 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3280 	 * all the updates above are seen by the woken threads. It might not be
3281 	 * necessary, but proving that seems to be hard.
3282 	 */
3283 	cond_wake_up(&root->log_commit_wait[index1]);
3284 	return ret;
3285 }
3286 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3287 static void free_log_tree(struct btrfs_trans_handle *trans,
3288 			  struct btrfs_root *log)
3289 {
3290 	int ret;
3291 	struct walk_control wc = {
3292 		.free = 1,
3293 		.process_func = process_one_buffer
3294 	};
3295 
3296 	ret = walk_log_tree(trans, log, &wc);
3297 	if (ret) {
3298 		if (trans)
3299 			btrfs_abort_transaction(trans, ret);
3300 		else
3301 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3302 	}
3303 
3304 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3305 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3306 	extent_io_tree_release(&log->log_csum_range);
3307 	btrfs_put_root(log);
3308 }
3309 
3310 /*
3311  * free all the extents used by the tree log.  This should be called
3312  * at commit time of the full transaction
3313  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3314 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3315 {
3316 	if (root->log_root) {
3317 		free_log_tree(trans, root->log_root);
3318 		root->log_root = NULL;
3319 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3320 	}
3321 	return 0;
3322 }
3323 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3324 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3325 			     struct btrfs_fs_info *fs_info)
3326 {
3327 	if (fs_info->log_root_tree) {
3328 		free_log_tree(trans, fs_info->log_root_tree);
3329 		fs_info->log_root_tree = NULL;
3330 	}
3331 	return 0;
3332 }
3333 
3334 /*
3335  * Check if an inode was logged in the current transaction. We can't always rely
3336  * on an inode's logged_trans value, because it's an in-memory only field and
3337  * therefore not persisted. This means that its value is lost if the inode gets
3338  * evicted and loaded again from disk (in which case it has a value of 0, and
3339  * certainly it is smaller then any possible transaction ID), when that happens
3340  * the full_sync flag is set in the inode's runtime flags, so on that case we
3341  * assume eviction happened and ignore the logged_trans value, assuming the
3342  * worst case, that the inode was logged before in the current transaction.
3343  */
inode_logged(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3344 static bool inode_logged(struct btrfs_trans_handle *trans,
3345 			 struct btrfs_inode *inode)
3346 {
3347 	if (inode->logged_trans == trans->transid)
3348 		return true;
3349 
3350 	if (inode->last_trans == trans->transid &&
3351 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3352 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3353 		return true;
3354 
3355 	return false;
3356 }
3357 
3358 /*
3359  * If both a file and directory are logged, and unlinks or renames are
3360  * mixed in, we have a few interesting corners:
3361  *
3362  * create file X in dir Y
3363  * link file X to X.link in dir Y
3364  * fsync file X
3365  * unlink file X but leave X.link
3366  * fsync dir Y
3367  *
3368  * After a crash we would expect only X.link to exist.  But file X
3369  * didn't get fsync'd again so the log has back refs for X and X.link.
3370  *
3371  * We solve this by removing directory entries and inode backrefs from the
3372  * log when a file that was logged in the current transaction is
3373  * unlinked.  Any later fsync will include the updated log entries, and
3374  * we'll be able to reconstruct the proper directory items from backrefs.
3375  *
3376  * This optimizations allows us to avoid relogging the entire inode
3377  * or the entire directory.
3378  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * dir,u64 index)3379 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3380 				 struct btrfs_root *root,
3381 				 const char *name, int name_len,
3382 				 struct btrfs_inode *dir, u64 index)
3383 {
3384 	struct btrfs_root *log;
3385 	struct btrfs_dir_item *di;
3386 	struct btrfs_path *path;
3387 	int ret;
3388 	int err = 0;
3389 	int bytes_del = 0;
3390 	u64 dir_ino = btrfs_ino(dir);
3391 
3392 	if (!inode_logged(trans, dir))
3393 		return 0;
3394 
3395 	ret = join_running_log_trans(root);
3396 	if (ret)
3397 		return 0;
3398 
3399 	mutex_lock(&dir->log_mutex);
3400 
3401 	log = root->log_root;
3402 	path = btrfs_alloc_path();
3403 	if (!path) {
3404 		err = -ENOMEM;
3405 		goto out_unlock;
3406 	}
3407 
3408 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3409 				   name, name_len, -1);
3410 	if (IS_ERR(di)) {
3411 		err = PTR_ERR(di);
3412 		goto fail;
3413 	}
3414 	if (di) {
3415 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3416 		bytes_del += name_len;
3417 		if (ret) {
3418 			err = ret;
3419 			goto fail;
3420 		}
3421 	}
3422 	btrfs_release_path(path);
3423 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3424 					 index, name, name_len, -1);
3425 	if (IS_ERR(di)) {
3426 		err = PTR_ERR(di);
3427 		goto fail;
3428 	}
3429 	if (di) {
3430 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3431 		bytes_del += name_len;
3432 		if (ret) {
3433 			err = ret;
3434 			goto fail;
3435 		}
3436 	}
3437 
3438 	/* update the directory size in the log to reflect the names
3439 	 * we have removed
3440 	 */
3441 	if (bytes_del) {
3442 		struct btrfs_key key;
3443 
3444 		key.objectid = dir_ino;
3445 		key.offset = 0;
3446 		key.type = BTRFS_INODE_ITEM_KEY;
3447 		btrfs_release_path(path);
3448 
3449 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3450 		if (ret < 0) {
3451 			err = ret;
3452 			goto fail;
3453 		}
3454 		if (ret == 0) {
3455 			struct btrfs_inode_item *item;
3456 			u64 i_size;
3457 
3458 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3459 					      struct btrfs_inode_item);
3460 			i_size = btrfs_inode_size(path->nodes[0], item);
3461 			if (i_size > bytes_del)
3462 				i_size -= bytes_del;
3463 			else
3464 				i_size = 0;
3465 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3466 			btrfs_mark_buffer_dirty(path->nodes[0]);
3467 		} else
3468 			ret = 0;
3469 		btrfs_release_path(path);
3470 	}
3471 fail:
3472 	btrfs_free_path(path);
3473 out_unlock:
3474 	mutex_unlock(&dir->log_mutex);
3475 	if (err == -ENOSPC) {
3476 		btrfs_set_log_full_commit(trans);
3477 		err = 0;
3478 	} else if (err < 0 && err != -ENOENT) {
3479 		/* ENOENT can be returned if the entry hasn't been fsynced yet */
3480 		btrfs_abort_transaction(trans, err);
3481 	}
3482 
3483 	btrfs_end_log_trans(root);
3484 
3485 	return err;
3486 }
3487 
3488 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * inode,u64 dirid)3489 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3490 			       struct btrfs_root *root,
3491 			       const char *name, int name_len,
3492 			       struct btrfs_inode *inode, u64 dirid)
3493 {
3494 	struct btrfs_root *log;
3495 	u64 index;
3496 	int ret;
3497 
3498 	if (!inode_logged(trans, inode))
3499 		return 0;
3500 
3501 	ret = join_running_log_trans(root);
3502 	if (ret)
3503 		return 0;
3504 	log = root->log_root;
3505 	mutex_lock(&inode->log_mutex);
3506 
3507 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3508 				  dirid, &index);
3509 	mutex_unlock(&inode->log_mutex);
3510 	if (ret == -ENOSPC) {
3511 		btrfs_set_log_full_commit(trans);
3512 		ret = 0;
3513 	} else if (ret < 0 && ret != -ENOENT)
3514 		btrfs_abort_transaction(trans, ret);
3515 	btrfs_end_log_trans(root);
3516 
3517 	return ret;
3518 }
3519 
3520 /*
3521  * creates a range item in the log for 'dirid'.  first_offset and
3522  * last_offset tell us which parts of the key space the log should
3523  * be considered authoritative for.
3524  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)3525 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3526 				       struct btrfs_root *log,
3527 				       struct btrfs_path *path,
3528 				       int key_type, u64 dirid,
3529 				       u64 first_offset, u64 last_offset)
3530 {
3531 	int ret;
3532 	struct btrfs_key key;
3533 	struct btrfs_dir_log_item *item;
3534 
3535 	key.objectid = dirid;
3536 	key.offset = first_offset;
3537 	if (key_type == BTRFS_DIR_ITEM_KEY)
3538 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3539 	else
3540 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3541 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3542 	if (ret)
3543 		return ret;
3544 
3545 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3546 			      struct btrfs_dir_log_item);
3547 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3548 	btrfs_mark_buffer_dirty(path->nodes[0]);
3549 	btrfs_release_path(path);
3550 	return 0;
3551 }
3552 
3553 /*
3554  * log all the items included in the current transaction for a given
3555  * directory.  This also creates the range items in the log tree required
3556  * to replay anything deleted before the fsync
3557  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3558 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3559 			  struct btrfs_root *root, struct btrfs_inode *inode,
3560 			  struct btrfs_path *path,
3561 			  struct btrfs_path *dst_path, int key_type,
3562 			  struct btrfs_log_ctx *ctx,
3563 			  u64 min_offset, u64 *last_offset_ret)
3564 {
3565 	struct btrfs_key min_key;
3566 	struct btrfs_root *log = root->log_root;
3567 	struct extent_buffer *src;
3568 	int err = 0;
3569 	int ret;
3570 	int i;
3571 	int nritems;
3572 	u64 first_offset = min_offset;
3573 	u64 last_offset = (u64)-1;
3574 	u64 ino = btrfs_ino(inode);
3575 
3576 	log = root->log_root;
3577 
3578 	min_key.objectid = ino;
3579 	min_key.type = key_type;
3580 	min_key.offset = min_offset;
3581 
3582 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3583 
3584 	/*
3585 	 * we didn't find anything from this transaction, see if there
3586 	 * is anything at all
3587 	 */
3588 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3589 		min_key.objectid = ino;
3590 		min_key.type = key_type;
3591 		min_key.offset = (u64)-1;
3592 		btrfs_release_path(path);
3593 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3594 		if (ret < 0) {
3595 			btrfs_release_path(path);
3596 			return ret;
3597 		}
3598 		ret = btrfs_previous_item(root, path, ino, key_type);
3599 
3600 		/* if ret == 0 there are items for this type,
3601 		 * create a range to tell us the last key of this type.
3602 		 * otherwise, there are no items in this directory after
3603 		 * *min_offset, and we create a range to indicate that.
3604 		 */
3605 		if (ret == 0) {
3606 			struct btrfs_key tmp;
3607 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3608 					      path->slots[0]);
3609 			if (key_type == tmp.type)
3610 				first_offset = max(min_offset, tmp.offset) + 1;
3611 		}
3612 		goto done;
3613 	}
3614 
3615 	/* go backward to find any previous key */
3616 	ret = btrfs_previous_item(root, path, ino, key_type);
3617 	if (ret == 0) {
3618 		struct btrfs_key tmp;
3619 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3620 		if (key_type == tmp.type) {
3621 			first_offset = tmp.offset;
3622 			ret = overwrite_item(trans, log, dst_path,
3623 					     path->nodes[0], path->slots[0],
3624 					     &tmp);
3625 			if (ret) {
3626 				err = ret;
3627 				goto done;
3628 			}
3629 		}
3630 	}
3631 	btrfs_release_path(path);
3632 
3633 	/*
3634 	 * Find the first key from this transaction again.  See the note for
3635 	 * log_new_dir_dentries, if we're logging a directory recursively we
3636 	 * won't be holding its i_mutex, which means we can modify the directory
3637 	 * while we're logging it.  If we remove an entry between our first
3638 	 * search and this search we'll not find the key again and can just
3639 	 * bail.
3640 	 */
3641 search:
3642 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3643 	if (ret != 0)
3644 		goto done;
3645 
3646 	/*
3647 	 * we have a block from this transaction, log every item in it
3648 	 * from our directory
3649 	 */
3650 	while (1) {
3651 		struct btrfs_key tmp;
3652 		src = path->nodes[0];
3653 		nritems = btrfs_header_nritems(src);
3654 		for (i = path->slots[0]; i < nritems; i++) {
3655 			struct btrfs_dir_item *di;
3656 
3657 			btrfs_item_key_to_cpu(src, &min_key, i);
3658 
3659 			if (min_key.objectid != ino || min_key.type != key_type)
3660 				goto done;
3661 
3662 			if (need_resched()) {
3663 				btrfs_release_path(path);
3664 				cond_resched();
3665 				goto search;
3666 			}
3667 
3668 			ret = overwrite_item(trans, log, dst_path, src, i,
3669 					     &min_key);
3670 			if (ret) {
3671 				err = ret;
3672 				goto done;
3673 			}
3674 
3675 			/*
3676 			 * We must make sure that when we log a directory entry,
3677 			 * the corresponding inode, after log replay, has a
3678 			 * matching link count. For example:
3679 			 *
3680 			 * touch foo
3681 			 * mkdir mydir
3682 			 * sync
3683 			 * ln foo mydir/bar
3684 			 * xfs_io -c "fsync" mydir
3685 			 * <crash>
3686 			 * <mount fs and log replay>
3687 			 *
3688 			 * Would result in a fsync log that when replayed, our
3689 			 * file inode would have a link count of 1, but we get
3690 			 * two directory entries pointing to the same inode.
3691 			 * After removing one of the names, it would not be
3692 			 * possible to remove the other name, which resulted
3693 			 * always in stale file handle errors, and would not
3694 			 * be possible to rmdir the parent directory, since
3695 			 * its i_size could never decrement to the value
3696 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3697 			 */
3698 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3699 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3700 			if (ctx &&
3701 			    (btrfs_dir_transid(src, di) == trans->transid ||
3702 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3703 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3704 				ctx->log_new_dentries = true;
3705 		}
3706 		path->slots[0] = nritems;
3707 
3708 		/*
3709 		 * look ahead to the next item and see if it is also
3710 		 * from this directory and from this transaction
3711 		 */
3712 		ret = btrfs_next_leaf(root, path);
3713 		if (ret) {
3714 			if (ret == 1)
3715 				last_offset = (u64)-1;
3716 			else
3717 				err = ret;
3718 			goto done;
3719 		}
3720 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3721 		if (tmp.objectid != ino || tmp.type != key_type) {
3722 			last_offset = (u64)-1;
3723 			goto done;
3724 		}
3725 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3726 			ret = overwrite_item(trans, log, dst_path,
3727 					     path->nodes[0], path->slots[0],
3728 					     &tmp);
3729 			if (ret)
3730 				err = ret;
3731 			else
3732 				last_offset = tmp.offset;
3733 			goto done;
3734 		}
3735 	}
3736 done:
3737 	btrfs_release_path(path);
3738 	btrfs_release_path(dst_path);
3739 
3740 	if (err == 0) {
3741 		*last_offset_ret = last_offset;
3742 		/*
3743 		 * insert the log range keys to indicate where the log
3744 		 * is valid
3745 		 */
3746 		ret = insert_dir_log_key(trans, log, path, key_type,
3747 					 ino, first_offset, last_offset);
3748 		if (ret)
3749 			err = ret;
3750 	}
3751 	return err;
3752 }
3753 
3754 /*
3755  * logging directories is very similar to logging inodes, We find all the items
3756  * from the current transaction and write them to the log.
3757  *
3758  * The recovery code scans the directory in the subvolume, and if it finds a
3759  * key in the range logged that is not present in the log tree, then it means
3760  * that dir entry was unlinked during the transaction.
3761  *
3762  * In order for that scan to work, we must include one key smaller than
3763  * the smallest logged by this transaction and one key larger than the largest
3764  * key logged by this transaction.
3765  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)3766 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3767 			  struct btrfs_root *root, struct btrfs_inode *inode,
3768 			  struct btrfs_path *path,
3769 			  struct btrfs_path *dst_path,
3770 			  struct btrfs_log_ctx *ctx)
3771 {
3772 	u64 min_key;
3773 	u64 max_key;
3774 	int ret;
3775 	int key_type = BTRFS_DIR_ITEM_KEY;
3776 
3777 again:
3778 	min_key = 0;
3779 	max_key = 0;
3780 	while (1) {
3781 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3782 				ctx, min_key, &max_key);
3783 		if (ret)
3784 			return ret;
3785 		if (max_key == (u64)-1)
3786 			break;
3787 		min_key = max_key + 1;
3788 	}
3789 
3790 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3791 		key_type = BTRFS_DIR_INDEX_KEY;
3792 		goto again;
3793 	}
3794 	return 0;
3795 }
3796 
3797 /*
3798  * a helper function to drop items from the log before we relog an
3799  * inode.  max_key_type indicates the highest item type to remove.
3800  * This cannot be run for file data extents because it does not
3801  * free the extents they point to.
3802  */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)3803 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3804 				  struct btrfs_root *log,
3805 				  struct btrfs_path *path,
3806 				  u64 objectid, int max_key_type)
3807 {
3808 	int ret;
3809 	struct btrfs_key key;
3810 	struct btrfs_key found_key;
3811 	int start_slot;
3812 
3813 	key.objectid = objectid;
3814 	key.type = max_key_type;
3815 	key.offset = (u64)-1;
3816 
3817 	while (1) {
3818 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3819 		BUG_ON(ret == 0); /* Logic error */
3820 		if (ret < 0)
3821 			break;
3822 
3823 		if (path->slots[0] == 0)
3824 			break;
3825 
3826 		path->slots[0]--;
3827 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3828 				      path->slots[0]);
3829 
3830 		if (found_key.objectid != objectid)
3831 			break;
3832 
3833 		found_key.offset = 0;
3834 		found_key.type = 0;
3835 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3836 		if (ret < 0)
3837 			break;
3838 
3839 		ret = btrfs_del_items(trans, log, path, start_slot,
3840 				      path->slots[0] - start_slot + 1);
3841 		/*
3842 		 * If start slot isn't 0 then we don't need to re-search, we've
3843 		 * found the last guy with the objectid in this tree.
3844 		 */
3845 		if (ret || start_slot != 0)
3846 			break;
3847 		btrfs_release_path(path);
3848 	}
3849 	btrfs_release_path(path);
3850 	if (ret > 0)
3851 		ret = 0;
3852 	return ret;
3853 }
3854 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)3855 static void fill_inode_item(struct btrfs_trans_handle *trans,
3856 			    struct extent_buffer *leaf,
3857 			    struct btrfs_inode_item *item,
3858 			    struct inode *inode, int log_inode_only,
3859 			    u64 logged_isize)
3860 {
3861 	struct btrfs_map_token token;
3862 
3863 	btrfs_init_map_token(&token, leaf);
3864 
3865 	if (log_inode_only) {
3866 		/* set the generation to zero so the recover code
3867 		 * can tell the difference between an logging
3868 		 * just to say 'this inode exists' and a logging
3869 		 * to say 'update this inode with these values'
3870 		 */
3871 		btrfs_set_token_inode_generation(&token, item, 0);
3872 		btrfs_set_token_inode_size(&token, item, logged_isize);
3873 	} else {
3874 		btrfs_set_token_inode_generation(&token, item,
3875 						 BTRFS_I(inode)->generation);
3876 		btrfs_set_token_inode_size(&token, item, inode->i_size);
3877 	}
3878 
3879 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3880 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3881 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3882 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3883 
3884 	btrfs_set_token_timespec_sec(&token, &item->atime,
3885 				     inode->i_atime.tv_sec);
3886 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3887 				      inode->i_atime.tv_nsec);
3888 
3889 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3890 				     inode->i_mtime.tv_sec);
3891 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3892 				      inode->i_mtime.tv_nsec);
3893 
3894 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3895 				     inode->i_ctime.tv_sec);
3896 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3897 				      inode->i_ctime.tv_nsec);
3898 
3899 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3900 
3901 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3902 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3903 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3904 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3905 	btrfs_set_token_inode_block_group(&token, item, 0);
3906 }
3907 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode)3908 static int log_inode_item(struct btrfs_trans_handle *trans,
3909 			  struct btrfs_root *log, struct btrfs_path *path,
3910 			  struct btrfs_inode *inode)
3911 {
3912 	struct btrfs_inode_item *inode_item;
3913 	int ret;
3914 
3915 	ret = btrfs_insert_empty_item(trans, log, path,
3916 				      &inode->location, sizeof(*inode_item));
3917 	if (ret && ret != -EEXIST)
3918 		return ret;
3919 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3920 				    struct btrfs_inode_item);
3921 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3922 			0, 0);
3923 	btrfs_release_path(path);
3924 	return 0;
3925 }
3926 
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)3927 static int log_csums(struct btrfs_trans_handle *trans,
3928 		     struct btrfs_inode *inode,
3929 		     struct btrfs_root *log_root,
3930 		     struct btrfs_ordered_sum *sums)
3931 {
3932 	const u64 lock_end = sums->bytenr + sums->len - 1;
3933 	struct extent_state *cached_state = NULL;
3934 	int ret;
3935 
3936 	/*
3937 	 * If this inode was not used for reflink operations in the current
3938 	 * transaction with new extents, then do the fast path, no need to
3939 	 * worry about logging checksum items with overlapping ranges.
3940 	 */
3941 	if (inode->last_reflink_trans < trans->transid)
3942 		return btrfs_csum_file_blocks(trans, log_root, sums);
3943 
3944 	/*
3945 	 * Serialize logging for checksums. This is to avoid racing with the
3946 	 * same checksum being logged by another task that is logging another
3947 	 * file which happens to refer to the same extent as well. Such races
3948 	 * can leave checksum items in the log with overlapping ranges.
3949 	 */
3950 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3951 			       lock_end, &cached_state);
3952 	if (ret)
3953 		return ret;
3954 	/*
3955 	 * Due to extent cloning, we might have logged a csum item that covers a
3956 	 * subrange of a cloned extent, and later we can end up logging a csum
3957 	 * item for a larger subrange of the same extent or the entire range.
3958 	 * This would leave csum items in the log tree that cover the same range
3959 	 * and break the searches for checksums in the log tree, resulting in
3960 	 * some checksums missing in the fs/subvolume tree. So just delete (or
3961 	 * trim and adjust) any existing csum items in the log for this range.
3962 	 */
3963 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3964 	if (!ret)
3965 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
3966 
3967 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3968 			     &cached_state);
3969 
3970 	return ret;
3971 }
3972 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize)3973 static noinline int copy_items(struct btrfs_trans_handle *trans,
3974 			       struct btrfs_inode *inode,
3975 			       struct btrfs_path *dst_path,
3976 			       struct btrfs_path *src_path,
3977 			       int start_slot, int nr, int inode_only,
3978 			       u64 logged_isize)
3979 {
3980 	struct btrfs_fs_info *fs_info = trans->fs_info;
3981 	unsigned long src_offset;
3982 	unsigned long dst_offset;
3983 	struct btrfs_root *log = inode->root->log_root;
3984 	struct btrfs_file_extent_item *extent;
3985 	struct btrfs_inode_item *inode_item;
3986 	struct extent_buffer *src = src_path->nodes[0];
3987 	int ret;
3988 	struct btrfs_key *ins_keys;
3989 	u32 *ins_sizes;
3990 	char *ins_data;
3991 	int i;
3992 	struct list_head ordered_sums;
3993 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3994 
3995 	INIT_LIST_HEAD(&ordered_sums);
3996 
3997 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3998 			   nr * sizeof(u32), GFP_NOFS);
3999 	if (!ins_data)
4000 		return -ENOMEM;
4001 
4002 	ins_sizes = (u32 *)ins_data;
4003 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4004 
4005 	for (i = 0; i < nr; i++) {
4006 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4007 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4008 	}
4009 	ret = btrfs_insert_empty_items(trans, log, dst_path,
4010 				       ins_keys, ins_sizes, nr);
4011 	if (ret) {
4012 		kfree(ins_data);
4013 		return ret;
4014 	}
4015 
4016 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4017 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4018 						   dst_path->slots[0]);
4019 
4020 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4021 
4022 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4023 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
4024 						    dst_path->slots[0],
4025 						    struct btrfs_inode_item);
4026 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4027 					&inode->vfs_inode,
4028 					inode_only == LOG_INODE_EXISTS,
4029 					logged_isize);
4030 		} else {
4031 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4032 					   src_offset, ins_sizes[i]);
4033 		}
4034 
4035 		/* take a reference on file data extents so that truncates
4036 		 * or deletes of this inode don't have to relog the inode
4037 		 * again
4038 		 */
4039 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4040 		    !skip_csum) {
4041 			int found_type;
4042 			extent = btrfs_item_ptr(src, start_slot + i,
4043 						struct btrfs_file_extent_item);
4044 
4045 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4046 				continue;
4047 
4048 			found_type = btrfs_file_extent_type(src, extent);
4049 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4050 				u64 ds, dl, cs, cl;
4051 				ds = btrfs_file_extent_disk_bytenr(src,
4052 								extent);
4053 				/* ds == 0 is a hole */
4054 				if (ds == 0)
4055 					continue;
4056 
4057 				dl = btrfs_file_extent_disk_num_bytes(src,
4058 								extent);
4059 				cs = btrfs_file_extent_offset(src, extent);
4060 				cl = btrfs_file_extent_num_bytes(src,
4061 								extent);
4062 				if (btrfs_file_extent_compression(src,
4063 								  extent)) {
4064 					cs = 0;
4065 					cl = dl;
4066 				}
4067 
4068 				ret = btrfs_lookup_csums_range(
4069 						fs_info->csum_root,
4070 						ds + cs, ds + cs + cl - 1,
4071 						&ordered_sums, 0);
4072 				if (ret)
4073 					break;
4074 			}
4075 		}
4076 	}
4077 
4078 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4079 	btrfs_release_path(dst_path);
4080 	kfree(ins_data);
4081 
4082 	/*
4083 	 * we have to do this after the loop above to avoid changing the
4084 	 * log tree while trying to change the log tree.
4085 	 */
4086 	while (!list_empty(&ordered_sums)) {
4087 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4088 						   struct btrfs_ordered_sum,
4089 						   list);
4090 		if (!ret)
4091 			ret = log_csums(trans, inode, log, sums);
4092 		list_del(&sums->list);
4093 		kfree(sums);
4094 	}
4095 
4096 	return ret;
4097 }
4098 
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4099 static int extent_cmp(void *priv, const struct list_head *a,
4100 		      const struct list_head *b)
4101 {
4102 	struct extent_map *em1, *em2;
4103 
4104 	em1 = list_entry(a, struct extent_map, list);
4105 	em2 = list_entry(b, struct extent_map, list);
4106 
4107 	if (em1->start < em2->start)
4108 		return -1;
4109 	else if (em1->start > em2->start)
4110 		return 1;
4111 	return 0;
4112 }
4113 
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4114 static int log_extent_csums(struct btrfs_trans_handle *trans,
4115 			    struct btrfs_inode *inode,
4116 			    struct btrfs_root *log_root,
4117 			    const struct extent_map *em,
4118 			    struct btrfs_log_ctx *ctx)
4119 {
4120 	struct btrfs_ordered_extent *ordered;
4121 	u64 csum_offset;
4122 	u64 csum_len;
4123 	u64 mod_start = em->mod_start;
4124 	u64 mod_len = em->mod_len;
4125 	LIST_HEAD(ordered_sums);
4126 	int ret = 0;
4127 
4128 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4129 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4130 	    em->block_start == EXTENT_MAP_HOLE)
4131 		return 0;
4132 
4133 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4134 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4135 		const u64 mod_end = mod_start + mod_len;
4136 		struct btrfs_ordered_sum *sums;
4137 
4138 		if (mod_len == 0)
4139 			break;
4140 
4141 		if (ordered_end <= mod_start)
4142 			continue;
4143 		if (mod_end <= ordered->file_offset)
4144 			break;
4145 
4146 		/*
4147 		 * We are going to copy all the csums on this ordered extent, so
4148 		 * go ahead and adjust mod_start and mod_len in case this ordered
4149 		 * extent has already been logged.
4150 		 */
4151 		if (ordered->file_offset > mod_start) {
4152 			if (ordered_end >= mod_end)
4153 				mod_len = ordered->file_offset - mod_start;
4154 			/*
4155 			 * If we have this case
4156 			 *
4157 			 * |--------- logged extent ---------|
4158 			 *       |----- ordered extent ----|
4159 			 *
4160 			 * Just don't mess with mod_start and mod_len, we'll
4161 			 * just end up logging more csums than we need and it
4162 			 * will be ok.
4163 			 */
4164 		} else {
4165 			if (ordered_end < mod_end) {
4166 				mod_len = mod_end - ordered_end;
4167 				mod_start = ordered_end;
4168 			} else {
4169 				mod_len = 0;
4170 			}
4171 		}
4172 
4173 		/*
4174 		 * To keep us from looping for the above case of an ordered
4175 		 * extent that falls inside of the logged extent.
4176 		 */
4177 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4178 			continue;
4179 
4180 		list_for_each_entry(sums, &ordered->list, list) {
4181 			ret = log_csums(trans, inode, log_root, sums);
4182 			if (ret)
4183 				return ret;
4184 		}
4185 	}
4186 
4187 	/* We're done, found all csums in the ordered extents. */
4188 	if (mod_len == 0)
4189 		return 0;
4190 
4191 	/* If we're compressed we have to save the entire range of csums. */
4192 	if (em->compress_type) {
4193 		csum_offset = 0;
4194 		csum_len = max(em->block_len, em->orig_block_len);
4195 	} else {
4196 		csum_offset = mod_start - em->start;
4197 		csum_len = mod_len;
4198 	}
4199 
4200 	/* block start is already adjusted for the file extent offset. */
4201 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4202 				       em->block_start + csum_offset,
4203 				       em->block_start + csum_offset +
4204 				       csum_len - 1, &ordered_sums, 0);
4205 	if (ret)
4206 		return ret;
4207 
4208 	while (!list_empty(&ordered_sums)) {
4209 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4210 						   struct btrfs_ordered_sum,
4211 						   list);
4212 		if (!ret)
4213 			ret = log_csums(trans, inode, log_root, sums);
4214 		list_del(&sums->list);
4215 		kfree(sums);
4216 	}
4217 
4218 	return ret;
4219 }
4220 
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * root,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4221 static int log_one_extent(struct btrfs_trans_handle *trans,
4222 			  struct btrfs_inode *inode, struct btrfs_root *root,
4223 			  const struct extent_map *em,
4224 			  struct btrfs_path *path,
4225 			  struct btrfs_log_ctx *ctx)
4226 {
4227 	struct btrfs_root *log = root->log_root;
4228 	struct btrfs_file_extent_item *fi;
4229 	struct extent_buffer *leaf;
4230 	struct btrfs_map_token token;
4231 	struct btrfs_key key;
4232 	u64 extent_offset = em->start - em->orig_start;
4233 	u64 block_len;
4234 	int ret;
4235 	int extent_inserted = 0;
4236 
4237 	ret = log_extent_csums(trans, inode, log, em, ctx);
4238 	if (ret)
4239 		return ret;
4240 
4241 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4242 				   em->start + em->len, NULL, 0, 1,
4243 				   sizeof(*fi), &extent_inserted);
4244 	if (ret)
4245 		return ret;
4246 
4247 	if (!extent_inserted) {
4248 		key.objectid = btrfs_ino(inode);
4249 		key.type = BTRFS_EXTENT_DATA_KEY;
4250 		key.offset = em->start;
4251 
4252 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4253 					      sizeof(*fi));
4254 		if (ret)
4255 			return ret;
4256 	}
4257 	leaf = path->nodes[0];
4258 	btrfs_init_map_token(&token, leaf);
4259 	fi = btrfs_item_ptr(leaf, path->slots[0],
4260 			    struct btrfs_file_extent_item);
4261 
4262 	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4263 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4264 		btrfs_set_token_file_extent_type(&token, fi,
4265 						 BTRFS_FILE_EXTENT_PREALLOC);
4266 	else
4267 		btrfs_set_token_file_extent_type(&token, fi,
4268 						 BTRFS_FILE_EXTENT_REG);
4269 
4270 	block_len = max(em->block_len, em->orig_block_len);
4271 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4272 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4273 							em->block_start);
4274 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4275 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4276 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4277 							em->block_start -
4278 							extent_offset);
4279 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4280 	} else {
4281 		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4282 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4283 	}
4284 
4285 	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4286 	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4287 	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4288 	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4289 	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4290 	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4291 	btrfs_mark_buffer_dirty(leaf);
4292 
4293 	btrfs_release_path(path);
4294 
4295 	return ret;
4296 }
4297 
4298 /*
4299  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4300  * lose them after doing a fast fsync and replaying the log. We scan the
4301  * subvolume's root instead of iterating the inode's extent map tree because
4302  * otherwise we can log incorrect extent items based on extent map conversion.
4303  * That can happen due to the fact that extent maps are merged when they
4304  * are not in the extent map tree's list of modified extents.
4305  */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)4306 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4307 				      struct btrfs_inode *inode,
4308 				      struct btrfs_path *path)
4309 {
4310 	struct btrfs_root *root = inode->root;
4311 	struct btrfs_key key;
4312 	const u64 i_size = i_size_read(&inode->vfs_inode);
4313 	const u64 ino = btrfs_ino(inode);
4314 	struct btrfs_path *dst_path = NULL;
4315 	bool dropped_extents = false;
4316 	u64 truncate_offset = i_size;
4317 	struct extent_buffer *leaf;
4318 	int slot;
4319 	int ins_nr = 0;
4320 	int start_slot;
4321 	int ret;
4322 
4323 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4324 		return 0;
4325 
4326 	key.objectid = ino;
4327 	key.type = BTRFS_EXTENT_DATA_KEY;
4328 	key.offset = i_size;
4329 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4330 	if (ret < 0)
4331 		goto out;
4332 
4333 	/*
4334 	 * We must check if there is a prealloc extent that starts before the
4335 	 * i_size and crosses the i_size boundary. This is to ensure later we
4336 	 * truncate down to the end of that extent and not to the i_size, as
4337 	 * otherwise we end up losing part of the prealloc extent after a log
4338 	 * replay and with an implicit hole if there is another prealloc extent
4339 	 * that starts at an offset beyond i_size.
4340 	 */
4341 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4342 	if (ret < 0)
4343 		goto out;
4344 
4345 	if (ret == 0) {
4346 		struct btrfs_file_extent_item *ei;
4347 
4348 		leaf = path->nodes[0];
4349 		slot = path->slots[0];
4350 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4351 
4352 		if (btrfs_file_extent_type(leaf, ei) ==
4353 		    BTRFS_FILE_EXTENT_PREALLOC) {
4354 			u64 extent_end;
4355 
4356 			btrfs_item_key_to_cpu(leaf, &key, slot);
4357 			extent_end = key.offset +
4358 				btrfs_file_extent_num_bytes(leaf, ei);
4359 
4360 			if (extent_end > i_size)
4361 				truncate_offset = extent_end;
4362 		}
4363 	} else {
4364 		ret = 0;
4365 	}
4366 
4367 	while (true) {
4368 		leaf = path->nodes[0];
4369 		slot = path->slots[0];
4370 
4371 		if (slot >= btrfs_header_nritems(leaf)) {
4372 			if (ins_nr > 0) {
4373 				ret = copy_items(trans, inode, dst_path, path,
4374 						 start_slot, ins_nr, 1, 0);
4375 				if (ret < 0)
4376 					goto out;
4377 				ins_nr = 0;
4378 			}
4379 			ret = btrfs_next_leaf(root, path);
4380 			if (ret < 0)
4381 				goto out;
4382 			if (ret > 0) {
4383 				ret = 0;
4384 				break;
4385 			}
4386 			continue;
4387 		}
4388 
4389 		btrfs_item_key_to_cpu(leaf, &key, slot);
4390 		if (key.objectid > ino)
4391 			break;
4392 		if (WARN_ON_ONCE(key.objectid < ino) ||
4393 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4394 		    key.offset < i_size) {
4395 			path->slots[0]++;
4396 			continue;
4397 		}
4398 		if (!dropped_extents) {
4399 			/*
4400 			 * Avoid logging extent items logged in past fsync calls
4401 			 * and leading to duplicate keys in the log tree.
4402 			 */
4403 			do {
4404 				ret = btrfs_truncate_inode_items(trans,
4405 							 root->log_root,
4406 							 &inode->vfs_inode,
4407 							 truncate_offset,
4408 							 BTRFS_EXTENT_DATA_KEY);
4409 			} while (ret == -EAGAIN);
4410 			if (ret)
4411 				goto out;
4412 			dropped_extents = true;
4413 		}
4414 		if (ins_nr == 0)
4415 			start_slot = slot;
4416 		ins_nr++;
4417 		path->slots[0]++;
4418 		if (!dst_path) {
4419 			dst_path = btrfs_alloc_path();
4420 			if (!dst_path) {
4421 				ret = -ENOMEM;
4422 				goto out;
4423 			}
4424 		}
4425 	}
4426 	if (ins_nr > 0)
4427 		ret = copy_items(trans, inode, dst_path, path,
4428 				 start_slot, ins_nr, 1, 0);
4429 out:
4430 	btrfs_release_path(path);
4431 	btrfs_free_path(dst_path);
4432 	return ret;
4433 }
4434 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4435 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4436 				     struct btrfs_root *root,
4437 				     struct btrfs_inode *inode,
4438 				     struct btrfs_path *path,
4439 				     struct btrfs_log_ctx *ctx)
4440 {
4441 	struct btrfs_ordered_extent *ordered;
4442 	struct btrfs_ordered_extent *tmp;
4443 	struct extent_map *em, *n;
4444 	struct list_head extents;
4445 	struct extent_map_tree *tree = &inode->extent_tree;
4446 	u64 test_gen;
4447 	int ret = 0;
4448 	int num = 0;
4449 
4450 	INIT_LIST_HEAD(&extents);
4451 
4452 	write_lock(&tree->lock);
4453 	test_gen = root->fs_info->last_trans_committed;
4454 
4455 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4456 		list_del_init(&em->list);
4457 		/*
4458 		 * Just an arbitrary number, this can be really CPU intensive
4459 		 * once we start getting a lot of extents, and really once we
4460 		 * have a bunch of extents we just want to commit since it will
4461 		 * be faster.
4462 		 */
4463 		if (++num > 32768) {
4464 			list_del_init(&tree->modified_extents);
4465 			ret = -EFBIG;
4466 			goto process;
4467 		}
4468 
4469 		if (em->generation <= test_gen)
4470 			continue;
4471 
4472 		/* We log prealloc extents beyond eof later. */
4473 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4474 		    em->start >= i_size_read(&inode->vfs_inode))
4475 			continue;
4476 
4477 		/* Need a ref to keep it from getting evicted from cache */
4478 		refcount_inc(&em->refs);
4479 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4480 		list_add_tail(&em->list, &extents);
4481 		num++;
4482 	}
4483 
4484 	list_sort(NULL, &extents, extent_cmp);
4485 process:
4486 	while (!list_empty(&extents)) {
4487 		em = list_entry(extents.next, struct extent_map, list);
4488 
4489 		list_del_init(&em->list);
4490 
4491 		/*
4492 		 * If we had an error we just need to delete everybody from our
4493 		 * private list.
4494 		 */
4495 		if (ret) {
4496 			clear_em_logging(tree, em);
4497 			free_extent_map(em);
4498 			continue;
4499 		}
4500 
4501 		write_unlock(&tree->lock);
4502 
4503 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4504 		write_lock(&tree->lock);
4505 		clear_em_logging(tree, em);
4506 		free_extent_map(em);
4507 	}
4508 	WARN_ON(!list_empty(&extents));
4509 	write_unlock(&tree->lock);
4510 
4511 	btrfs_release_path(path);
4512 	if (!ret)
4513 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4514 	if (ret)
4515 		return ret;
4516 
4517 	/*
4518 	 * We have logged all extents successfully, now make sure the commit of
4519 	 * the current transaction waits for the ordered extents to complete
4520 	 * before it commits and wipes out the log trees, otherwise we would
4521 	 * lose data if an ordered extents completes after the transaction
4522 	 * commits and a power failure happens after the transaction commit.
4523 	 */
4524 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4525 		list_del_init(&ordered->log_list);
4526 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4527 
4528 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4529 			spin_lock_irq(&inode->ordered_tree.lock);
4530 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4531 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4532 				atomic_inc(&trans->transaction->pending_ordered);
4533 			}
4534 			spin_unlock_irq(&inode->ordered_tree.lock);
4535 		}
4536 		btrfs_put_ordered_extent(ordered);
4537 	}
4538 
4539 	return 0;
4540 }
4541 
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)4542 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4543 			     struct btrfs_path *path, u64 *size_ret)
4544 {
4545 	struct btrfs_key key;
4546 	int ret;
4547 
4548 	key.objectid = btrfs_ino(inode);
4549 	key.type = BTRFS_INODE_ITEM_KEY;
4550 	key.offset = 0;
4551 
4552 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4553 	if (ret < 0) {
4554 		return ret;
4555 	} else if (ret > 0) {
4556 		*size_ret = 0;
4557 	} else {
4558 		struct btrfs_inode_item *item;
4559 
4560 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4561 				      struct btrfs_inode_item);
4562 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4563 		/*
4564 		 * If the in-memory inode's i_size is smaller then the inode
4565 		 * size stored in the btree, return the inode's i_size, so
4566 		 * that we get a correct inode size after replaying the log
4567 		 * when before a power failure we had a shrinking truncate
4568 		 * followed by addition of a new name (rename / new hard link).
4569 		 * Otherwise return the inode size from the btree, to avoid
4570 		 * data loss when replaying a log due to previously doing a
4571 		 * write that expands the inode's size and logging a new name
4572 		 * immediately after.
4573 		 */
4574 		if (*size_ret > inode->vfs_inode.i_size)
4575 			*size_ret = inode->vfs_inode.i_size;
4576 	}
4577 
4578 	btrfs_release_path(path);
4579 	return 0;
4580 }
4581 
4582 /*
4583  * At the moment we always log all xattrs. This is to figure out at log replay
4584  * time which xattrs must have their deletion replayed. If a xattr is missing
4585  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4586  * because if a xattr is deleted, the inode is fsynced and a power failure
4587  * happens, causing the log to be replayed the next time the fs is mounted,
4588  * we want the xattr to not exist anymore (same behaviour as other filesystems
4589  * with a journal, ext3/4, xfs, f2fs, etc).
4590  */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)4591 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4592 				struct btrfs_root *root,
4593 				struct btrfs_inode *inode,
4594 				struct btrfs_path *path,
4595 				struct btrfs_path *dst_path)
4596 {
4597 	int ret;
4598 	struct btrfs_key key;
4599 	const u64 ino = btrfs_ino(inode);
4600 	int ins_nr = 0;
4601 	int start_slot = 0;
4602 	bool found_xattrs = false;
4603 
4604 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4605 		return 0;
4606 
4607 	key.objectid = ino;
4608 	key.type = BTRFS_XATTR_ITEM_KEY;
4609 	key.offset = 0;
4610 
4611 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4612 	if (ret < 0)
4613 		return ret;
4614 
4615 	while (true) {
4616 		int slot = path->slots[0];
4617 		struct extent_buffer *leaf = path->nodes[0];
4618 		int nritems = btrfs_header_nritems(leaf);
4619 
4620 		if (slot >= nritems) {
4621 			if (ins_nr > 0) {
4622 				ret = copy_items(trans, inode, dst_path, path,
4623 						 start_slot, ins_nr, 1, 0);
4624 				if (ret < 0)
4625 					return ret;
4626 				ins_nr = 0;
4627 			}
4628 			ret = btrfs_next_leaf(root, path);
4629 			if (ret < 0)
4630 				return ret;
4631 			else if (ret > 0)
4632 				break;
4633 			continue;
4634 		}
4635 
4636 		btrfs_item_key_to_cpu(leaf, &key, slot);
4637 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4638 			break;
4639 
4640 		if (ins_nr == 0)
4641 			start_slot = slot;
4642 		ins_nr++;
4643 		path->slots[0]++;
4644 		found_xattrs = true;
4645 		cond_resched();
4646 	}
4647 	if (ins_nr > 0) {
4648 		ret = copy_items(trans, inode, dst_path, path,
4649 				 start_slot, ins_nr, 1, 0);
4650 		if (ret < 0)
4651 			return ret;
4652 	}
4653 
4654 	if (!found_xattrs)
4655 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4656 
4657 	return 0;
4658 }
4659 
4660 /*
4661  * When using the NO_HOLES feature if we punched a hole that causes the
4662  * deletion of entire leafs or all the extent items of the first leaf (the one
4663  * that contains the inode item and references) we may end up not processing
4664  * any extents, because there are no leafs with a generation matching the
4665  * current transaction that have extent items for our inode. So we need to find
4666  * if any holes exist and then log them. We also need to log holes after any
4667  * truncate operation that changes the inode's size.
4668  */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)4669 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4670 			   struct btrfs_root *root,
4671 			   struct btrfs_inode *inode,
4672 			   struct btrfs_path *path)
4673 {
4674 	struct btrfs_fs_info *fs_info = root->fs_info;
4675 	struct btrfs_key key;
4676 	const u64 ino = btrfs_ino(inode);
4677 	const u64 i_size = i_size_read(&inode->vfs_inode);
4678 	u64 prev_extent_end = 0;
4679 	int ret;
4680 
4681 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4682 		return 0;
4683 
4684 	key.objectid = ino;
4685 	key.type = BTRFS_EXTENT_DATA_KEY;
4686 	key.offset = 0;
4687 
4688 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4689 	if (ret < 0)
4690 		return ret;
4691 
4692 	while (true) {
4693 		struct extent_buffer *leaf = path->nodes[0];
4694 
4695 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4696 			ret = btrfs_next_leaf(root, path);
4697 			if (ret < 0)
4698 				return ret;
4699 			if (ret > 0) {
4700 				ret = 0;
4701 				break;
4702 			}
4703 			leaf = path->nodes[0];
4704 		}
4705 
4706 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4707 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4708 			break;
4709 
4710 		/* We have a hole, log it. */
4711 		if (prev_extent_end < key.offset) {
4712 			const u64 hole_len = key.offset - prev_extent_end;
4713 
4714 			/*
4715 			 * Release the path to avoid deadlocks with other code
4716 			 * paths that search the root while holding locks on
4717 			 * leafs from the log root.
4718 			 */
4719 			btrfs_release_path(path);
4720 			ret = btrfs_insert_file_extent(trans, root->log_root,
4721 						       ino, prev_extent_end, 0,
4722 						       0, hole_len, 0, hole_len,
4723 						       0, 0, 0);
4724 			if (ret < 0)
4725 				return ret;
4726 
4727 			/*
4728 			 * Search for the same key again in the root. Since it's
4729 			 * an extent item and we are holding the inode lock, the
4730 			 * key must still exist. If it doesn't just emit warning
4731 			 * and return an error to fall back to a transaction
4732 			 * commit.
4733 			 */
4734 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4735 			if (ret < 0)
4736 				return ret;
4737 			if (WARN_ON(ret > 0))
4738 				return -ENOENT;
4739 			leaf = path->nodes[0];
4740 		}
4741 
4742 		prev_extent_end = btrfs_file_extent_end(path);
4743 		path->slots[0]++;
4744 		cond_resched();
4745 	}
4746 
4747 	if (prev_extent_end < i_size) {
4748 		u64 hole_len;
4749 
4750 		btrfs_release_path(path);
4751 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4752 		ret = btrfs_insert_file_extent(trans, root->log_root,
4753 					       ino, prev_extent_end, 0, 0,
4754 					       hole_len, 0, hole_len,
4755 					       0, 0, 0);
4756 		if (ret < 0)
4757 			return ret;
4758 	}
4759 
4760 	return 0;
4761 }
4762 
4763 /*
4764  * When we are logging a new inode X, check if it doesn't have a reference that
4765  * matches the reference from some other inode Y created in a past transaction
4766  * and that was renamed in the current transaction. If we don't do this, then at
4767  * log replay time we can lose inode Y (and all its files if it's a directory):
4768  *
4769  * mkdir /mnt/x
4770  * echo "hello world" > /mnt/x/foobar
4771  * sync
4772  * mv /mnt/x /mnt/y
4773  * mkdir /mnt/x                 # or touch /mnt/x
4774  * xfs_io -c fsync /mnt/x
4775  * <power fail>
4776  * mount fs, trigger log replay
4777  *
4778  * After the log replay procedure, we would lose the first directory and all its
4779  * files (file foobar).
4780  * For the case where inode Y is not a directory we simply end up losing it:
4781  *
4782  * echo "123" > /mnt/foo
4783  * sync
4784  * mv /mnt/foo /mnt/bar
4785  * echo "abc" > /mnt/foo
4786  * xfs_io -c fsync /mnt/foo
4787  * <power fail>
4788  *
4789  * We also need this for cases where a snapshot entry is replaced by some other
4790  * entry (file or directory) otherwise we end up with an unreplayable log due to
4791  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4792  * if it were a regular entry:
4793  *
4794  * mkdir /mnt/x
4795  * btrfs subvolume snapshot /mnt /mnt/x/snap
4796  * btrfs subvolume delete /mnt/x/snap
4797  * rmdir /mnt/x
4798  * mkdir /mnt/x
4799  * fsync /mnt/x or fsync some new file inside it
4800  * <power fail>
4801  *
4802  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4803  * the same transaction.
4804  */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)4805 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4806 					 const int slot,
4807 					 const struct btrfs_key *key,
4808 					 struct btrfs_inode *inode,
4809 					 u64 *other_ino, u64 *other_parent)
4810 {
4811 	int ret;
4812 	struct btrfs_path *search_path;
4813 	char *name = NULL;
4814 	u32 name_len = 0;
4815 	u32 item_size = btrfs_item_size_nr(eb, slot);
4816 	u32 cur_offset = 0;
4817 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4818 
4819 	search_path = btrfs_alloc_path();
4820 	if (!search_path)
4821 		return -ENOMEM;
4822 	search_path->search_commit_root = 1;
4823 	search_path->skip_locking = 1;
4824 
4825 	while (cur_offset < item_size) {
4826 		u64 parent;
4827 		u32 this_name_len;
4828 		u32 this_len;
4829 		unsigned long name_ptr;
4830 		struct btrfs_dir_item *di;
4831 
4832 		if (key->type == BTRFS_INODE_REF_KEY) {
4833 			struct btrfs_inode_ref *iref;
4834 
4835 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4836 			parent = key->offset;
4837 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4838 			name_ptr = (unsigned long)(iref + 1);
4839 			this_len = sizeof(*iref) + this_name_len;
4840 		} else {
4841 			struct btrfs_inode_extref *extref;
4842 
4843 			extref = (struct btrfs_inode_extref *)(ptr +
4844 							       cur_offset);
4845 			parent = btrfs_inode_extref_parent(eb, extref);
4846 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4847 			name_ptr = (unsigned long)&extref->name;
4848 			this_len = sizeof(*extref) + this_name_len;
4849 		}
4850 
4851 		if (this_name_len > name_len) {
4852 			char *new_name;
4853 
4854 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4855 			if (!new_name) {
4856 				ret = -ENOMEM;
4857 				goto out;
4858 			}
4859 			name_len = this_name_len;
4860 			name = new_name;
4861 		}
4862 
4863 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4864 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4865 				parent, name, this_name_len, 0);
4866 		if (di && !IS_ERR(di)) {
4867 			struct btrfs_key di_key;
4868 
4869 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4870 						  di, &di_key);
4871 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4872 				if (di_key.objectid != key->objectid) {
4873 					ret = 1;
4874 					*other_ino = di_key.objectid;
4875 					*other_parent = parent;
4876 				} else {
4877 					ret = 0;
4878 				}
4879 			} else {
4880 				ret = -EAGAIN;
4881 			}
4882 			goto out;
4883 		} else if (IS_ERR(di)) {
4884 			ret = PTR_ERR(di);
4885 			goto out;
4886 		}
4887 		btrfs_release_path(search_path);
4888 
4889 		cur_offset += this_len;
4890 	}
4891 	ret = 0;
4892 out:
4893 	btrfs_free_path(search_path);
4894 	kfree(name);
4895 	return ret;
4896 }
4897 
4898 struct btrfs_ino_list {
4899 	u64 ino;
4900 	u64 parent;
4901 	struct list_head list;
4902 };
4903 
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx,u64 ino,u64 parent)4904 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4905 				  struct btrfs_root *root,
4906 				  struct btrfs_path *path,
4907 				  struct btrfs_log_ctx *ctx,
4908 				  u64 ino, u64 parent)
4909 {
4910 	struct btrfs_ino_list *ino_elem;
4911 	LIST_HEAD(inode_list);
4912 	int ret = 0;
4913 
4914 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4915 	if (!ino_elem)
4916 		return -ENOMEM;
4917 	ino_elem->ino = ino;
4918 	ino_elem->parent = parent;
4919 	list_add_tail(&ino_elem->list, &inode_list);
4920 
4921 	while (!list_empty(&inode_list)) {
4922 		struct btrfs_fs_info *fs_info = root->fs_info;
4923 		struct btrfs_key key;
4924 		struct inode *inode;
4925 
4926 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4927 					    list);
4928 		ino = ino_elem->ino;
4929 		parent = ino_elem->parent;
4930 		list_del(&ino_elem->list);
4931 		kfree(ino_elem);
4932 		if (ret)
4933 			continue;
4934 
4935 		btrfs_release_path(path);
4936 
4937 		inode = btrfs_iget(fs_info->sb, ino, root);
4938 		/*
4939 		 * If the other inode that had a conflicting dir entry was
4940 		 * deleted in the current transaction, we need to log its parent
4941 		 * directory.
4942 		 */
4943 		if (IS_ERR(inode)) {
4944 			ret = PTR_ERR(inode);
4945 			if (ret == -ENOENT) {
4946 				inode = btrfs_iget(fs_info->sb, parent, root);
4947 				if (IS_ERR(inode)) {
4948 					ret = PTR_ERR(inode);
4949 				} else {
4950 					ret = btrfs_log_inode(trans, root,
4951 						      BTRFS_I(inode),
4952 						      LOG_OTHER_INODE_ALL,
4953 						      ctx);
4954 					btrfs_add_delayed_iput(inode);
4955 				}
4956 			}
4957 			continue;
4958 		}
4959 		/*
4960 		 * If the inode was already logged skip it - otherwise we can
4961 		 * hit an infinite loop. Example:
4962 		 *
4963 		 * From the commit root (previous transaction) we have the
4964 		 * following inodes:
4965 		 *
4966 		 * inode 257 a directory
4967 		 * inode 258 with references "zz" and "zz_link" on inode 257
4968 		 * inode 259 with reference "a" on inode 257
4969 		 *
4970 		 * And in the current (uncommitted) transaction we have:
4971 		 *
4972 		 * inode 257 a directory, unchanged
4973 		 * inode 258 with references "a" and "a2" on inode 257
4974 		 * inode 259 with reference "zz_link" on inode 257
4975 		 * inode 261 with reference "zz" on inode 257
4976 		 *
4977 		 * When logging inode 261 the following infinite loop could
4978 		 * happen if we don't skip already logged inodes:
4979 		 *
4980 		 * - we detect inode 258 as a conflicting inode, with inode 261
4981 		 *   on reference "zz", and log it;
4982 		 *
4983 		 * - we detect inode 259 as a conflicting inode, with inode 258
4984 		 *   on reference "a", and log it;
4985 		 *
4986 		 * - we detect inode 258 as a conflicting inode, with inode 259
4987 		 *   on reference "zz_link", and log it - again! After this we
4988 		 *   repeat the above steps forever.
4989 		 */
4990 		spin_lock(&BTRFS_I(inode)->lock);
4991 		/*
4992 		 * Check the inode's logged_trans only instead of
4993 		 * btrfs_inode_in_log(). This is because the last_log_commit of
4994 		 * the inode is not updated when we only log that it exists and
4995 		 * it has the full sync bit set (see btrfs_log_inode()).
4996 		 */
4997 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
4998 			spin_unlock(&BTRFS_I(inode)->lock);
4999 			btrfs_add_delayed_iput(inode);
5000 			continue;
5001 		}
5002 		spin_unlock(&BTRFS_I(inode)->lock);
5003 		/*
5004 		 * We are safe logging the other inode without acquiring its
5005 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5006 		 * are safe against concurrent renames of the other inode as
5007 		 * well because during a rename we pin the log and update the
5008 		 * log with the new name before we unpin it.
5009 		 */
5010 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5011 				      LOG_OTHER_INODE, ctx);
5012 		if (ret) {
5013 			btrfs_add_delayed_iput(inode);
5014 			continue;
5015 		}
5016 
5017 		key.objectid = ino;
5018 		key.type = BTRFS_INODE_REF_KEY;
5019 		key.offset = 0;
5020 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5021 		if (ret < 0) {
5022 			btrfs_add_delayed_iput(inode);
5023 			continue;
5024 		}
5025 
5026 		while (true) {
5027 			struct extent_buffer *leaf = path->nodes[0];
5028 			int slot = path->slots[0];
5029 			u64 other_ino = 0;
5030 			u64 other_parent = 0;
5031 
5032 			if (slot >= btrfs_header_nritems(leaf)) {
5033 				ret = btrfs_next_leaf(root, path);
5034 				if (ret < 0) {
5035 					break;
5036 				} else if (ret > 0) {
5037 					ret = 0;
5038 					break;
5039 				}
5040 				continue;
5041 			}
5042 
5043 			btrfs_item_key_to_cpu(leaf, &key, slot);
5044 			if (key.objectid != ino ||
5045 			    (key.type != BTRFS_INODE_REF_KEY &&
5046 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5047 				ret = 0;
5048 				break;
5049 			}
5050 
5051 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5052 					BTRFS_I(inode), &other_ino,
5053 					&other_parent);
5054 			if (ret < 0)
5055 				break;
5056 			if (ret > 0) {
5057 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5058 				if (!ino_elem) {
5059 					ret = -ENOMEM;
5060 					break;
5061 				}
5062 				ino_elem->ino = other_ino;
5063 				ino_elem->parent = other_parent;
5064 				list_add_tail(&ino_elem->list, &inode_list);
5065 				ret = 0;
5066 			}
5067 			path->slots[0]++;
5068 		}
5069 		btrfs_add_delayed_iput(inode);
5070 	}
5071 
5072 	return ret;
5073 }
5074 
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const bool recursive_logging,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5075 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5076 				   struct btrfs_inode *inode,
5077 				   struct btrfs_key *min_key,
5078 				   const struct btrfs_key *max_key,
5079 				   struct btrfs_path *path,
5080 				   struct btrfs_path *dst_path,
5081 				   const u64 logged_isize,
5082 				   const bool recursive_logging,
5083 				   const int inode_only,
5084 				   struct btrfs_log_ctx *ctx,
5085 				   bool *need_log_inode_item)
5086 {
5087 	struct btrfs_root *root = inode->root;
5088 	int ins_start_slot = 0;
5089 	int ins_nr = 0;
5090 	int ret;
5091 
5092 	while (1) {
5093 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5094 		if (ret < 0)
5095 			return ret;
5096 		if (ret > 0) {
5097 			ret = 0;
5098 			break;
5099 		}
5100 again:
5101 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5102 		if (min_key->objectid != max_key->objectid)
5103 			break;
5104 		if (min_key->type > max_key->type)
5105 			break;
5106 
5107 		if (min_key->type == BTRFS_INODE_ITEM_KEY)
5108 			*need_log_inode_item = false;
5109 
5110 		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5111 		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5112 		    inode->generation == trans->transid &&
5113 		    !recursive_logging) {
5114 			u64 other_ino = 0;
5115 			u64 other_parent = 0;
5116 
5117 			ret = btrfs_check_ref_name_override(path->nodes[0],
5118 					path->slots[0], min_key, inode,
5119 					&other_ino, &other_parent);
5120 			if (ret < 0) {
5121 				return ret;
5122 			} else if (ret > 0 && ctx &&
5123 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5124 				if (ins_nr > 0) {
5125 					ins_nr++;
5126 				} else {
5127 					ins_nr = 1;
5128 					ins_start_slot = path->slots[0];
5129 				}
5130 				ret = copy_items(trans, inode, dst_path, path,
5131 						 ins_start_slot, ins_nr,
5132 						 inode_only, logged_isize);
5133 				if (ret < 0)
5134 					return ret;
5135 				ins_nr = 0;
5136 
5137 				ret = log_conflicting_inodes(trans, root, path,
5138 						ctx, other_ino, other_parent);
5139 				if (ret)
5140 					return ret;
5141 				btrfs_release_path(path);
5142 				goto next_key;
5143 			}
5144 		}
5145 
5146 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5147 		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5148 			if (ins_nr == 0)
5149 				goto next_slot;
5150 			ret = copy_items(trans, inode, dst_path, path,
5151 					 ins_start_slot,
5152 					 ins_nr, inode_only, logged_isize);
5153 			if (ret < 0)
5154 				return ret;
5155 			ins_nr = 0;
5156 			goto next_slot;
5157 		}
5158 
5159 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5160 			ins_nr++;
5161 			goto next_slot;
5162 		} else if (!ins_nr) {
5163 			ins_start_slot = path->slots[0];
5164 			ins_nr = 1;
5165 			goto next_slot;
5166 		}
5167 
5168 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5169 				 ins_nr, inode_only, logged_isize);
5170 		if (ret < 0)
5171 			return ret;
5172 		ins_nr = 1;
5173 		ins_start_slot = path->slots[0];
5174 next_slot:
5175 		path->slots[0]++;
5176 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5177 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5178 					      path->slots[0]);
5179 			goto again;
5180 		}
5181 		if (ins_nr) {
5182 			ret = copy_items(trans, inode, dst_path, path,
5183 					 ins_start_slot, ins_nr, inode_only,
5184 					 logged_isize);
5185 			if (ret < 0)
5186 				return ret;
5187 			ins_nr = 0;
5188 		}
5189 		btrfs_release_path(path);
5190 next_key:
5191 		if (min_key->offset < (u64)-1) {
5192 			min_key->offset++;
5193 		} else if (min_key->type < max_key->type) {
5194 			min_key->type++;
5195 			min_key->offset = 0;
5196 		} else {
5197 			break;
5198 		}
5199 	}
5200 	if (ins_nr)
5201 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5202 				 ins_nr, inode_only, logged_isize);
5203 
5204 	return ret;
5205 }
5206 
5207 /* log a single inode in the tree log.
5208  * At least one parent directory for this inode must exist in the tree
5209  * or be logged already.
5210  *
5211  * Any items from this inode changed by the current transaction are copied
5212  * to the log tree.  An extra reference is taken on any extents in this
5213  * file, allowing us to avoid a whole pile of corner cases around logging
5214  * blocks that have been removed from the tree.
5215  *
5216  * See LOG_INODE_ALL and related defines for a description of what inode_only
5217  * does.
5218  *
5219  * This handles both files and directories.
5220  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)5221 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5222 			   struct btrfs_root *root, struct btrfs_inode *inode,
5223 			   int inode_only,
5224 			   struct btrfs_log_ctx *ctx)
5225 {
5226 	struct btrfs_path *path;
5227 	struct btrfs_path *dst_path;
5228 	struct btrfs_key min_key;
5229 	struct btrfs_key max_key;
5230 	struct btrfs_root *log = root->log_root;
5231 	int err = 0;
5232 	int ret = 0;
5233 	bool fast_search = false;
5234 	u64 ino = btrfs_ino(inode);
5235 	struct extent_map_tree *em_tree = &inode->extent_tree;
5236 	u64 logged_isize = 0;
5237 	bool need_log_inode_item = true;
5238 	bool xattrs_logged = false;
5239 	bool recursive_logging = false;
5240 
5241 	path = btrfs_alloc_path();
5242 	if (!path)
5243 		return -ENOMEM;
5244 	dst_path = btrfs_alloc_path();
5245 	if (!dst_path) {
5246 		btrfs_free_path(path);
5247 		return -ENOMEM;
5248 	}
5249 
5250 	min_key.objectid = ino;
5251 	min_key.type = BTRFS_INODE_ITEM_KEY;
5252 	min_key.offset = 0;
5253 
5254 	max_key.objectid = ino;
5255 
5256 
5257 	/* today the code can only do partial logging of directories */
5258 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5259 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5260 		       &inode->runtime_flags) &&
5261 	     inode_only >= LOG_INODE_EXISTS))
5262 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5263 	else
5264 		max_key.type = (u8)-1;
5265 	max_key.offset = (u64)-1;
5266 
5267 	/*
5268 	 * Only run delayed items if we are a directory. We want to make sure
5269 	 * all directory indexes hit the fs/subvolume tree so we can find them
5270 	 * and figure out which index ranges have to be logged.
5271 	 *
5272 	 * Otherwise commit the delayed inode only if the full sync flag is set,
5273 	 * as we want to make sure an up to date version is in the subvolume
5274 	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5275 	 * it to the log tree. For a non full sync, we always log the inode item
5276 	 * based on the in-memory struct btrfs_inode which is always up to date.
5277 	 */
5278 	if (S_ISDIR(inode->vfs_inode.i_mode))
5279 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5280 	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5281 		ret = btrfs_commit_inode_delayed_inode(inode);
5282 
5283 	if (ret) {
5284 		btrfs_free_path(path);
5285 		btrfs_free_path(dst_path);
5286 		return ret;
5287 	}
5288 
5289 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5290 		recursive_logging = true;
5291 		if (inode_only == LOG_OTHER_INODE)
5292 			inode_only = LOG_INODE_EXISTS;
5293 		else
5294 			inode_only = LOG_INODE_ALL;
5295 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5296 	} else {
5297 		mutex_lock(&inode->log_mutex);
5298 	}
5299 
5300 	/*
5301 	 * a brute force approach to making sure we get the most uptodate
5302 	 * copies of everything.
5303 	 */
5304 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5305 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5306 
5307 		if (inode_only == LOG_INODE_EXISTS)
5308 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5309 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5310 	} else {
5311 		if (inode_only == LOG_INODE_EXISTS) {
5312 			/*
5313 			 * Make sure the new inode item we write to the log has
5314 			 * the same isize as the current one (if it exists).
5315 			 * This is necessary to prevent data loss after log
5316 			 * replay, and also to prevent doing a wrong expanding
5317 			 * truncate - for e.g. create file, write 4K into offset
5318 			 * 0, fsync, write 4K into offset 4096, add hard link,
5319 			 * fsync some other file (to sync log), power fail - if
5320 			 * we use the inode's current i_size, after log replay
5321 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5322 			 * (zeroes), as if an expanding truncate happened,
5323 			 * instead of getting a file of 4Kb only.
5324 			 */
5325 			err = logged_inode_size(log, inode, path, &logged_isize);
5326 			if (err)
5327 				goto out_unlock;
5328 		}
5329 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5330 			     &inode->runtime_flags)) {
5331 			if (inode_only == LOG_INODE_EXISTS) {
5332 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5333 				ret = drop_objectid_items(trans, log, path, ino,
5334 							  max_key.type);
5335 			} else {
5336 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5337 					  &inode->runtime_flags);
5338 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5339 					  &inode->runtime_flags);
5340 				while(1) {
5341 					ret = btrfs_truncate_inode_items(trans,
5342 						log, &inode->vfs_inode, 0, 0);
5343 					if (ret != -EAGAIN)
5344 						break;
5345 				}
5346 			}
5347 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5348 					      &inode->runtime_flags) ||
5349 			   inode_only == LOG_INODE_EXISTS) {
5350 			if (inode_only == LOG_INODE_ALL)
5351 				fast_search = true;
5352 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5353 			ret = drop_objectid_items(trans, log, path, ino,
5354 						  max_key.type);
5355 		} else {
5356 			if (inode_only == LOG_INODE_ALL)
5357 				fast_search = true;
5358 			goto log_extents;
5359 		}
5360 
5361 	}
5362 	if (ret) {
5363 		err = ret;
5364 		goto out_unlock;
5365 	}
5366 
5367 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5368 				      path, dst_path, logged_isize,
5369 				      recursive_logging, inode_only, ctx,
5370 				      &need_log_inode_item);
5371 	if (err)
5372 		goto out_unlock;
5373 
5374 	btrfs_release_path(path);
5375 	btrfs_release_path(dst_path);
5376 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5377 	if (err)
5378 		goto out_unlock;
5379 	xattrs_logged = true;
5380 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5381 		btrfs_release_path(path);
5382 		btrfs_release_path(dst_path);
5383 		err = btrfs_log_holes(trans, root, inode, path);
5384 		if (err)
5385 			goto out_unlock;
5386 	}
5387 log_extents:
5388 	btrfs_release_path(path);
5389 	btrfs_release_path(dst_path);
5390 	if (need_log_inode_item) {
5391 		err = log_inode_item(trans, log, dst_path, inode);
5392 		if (!err && !xattrs_logged) {
5393 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5394 						   dst_path);
5395 			btrfs_release_path(path);
5396 		}
5397 		if (err)
5398 			goto out_unlock;
5399 	}
5400 	if (fast_search) {
5401 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5402 						ctx);
5403 		if (ret) {
5404 			err = ret;
5405 			goto out_unlock;
5406 		}
5407 	} else if (inode_only == LOG_INODE_ALL) {
5408 		struct extent_map *em, *n;
5409 
5410 		write_lock(&em_tree->lock);
5411 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5412 			list_del_init(&em->list);
5413 		write_unlock(&em_tree->lock);
5414 	}
5415 
5416 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5417 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5418 					ctx);
5419 		if (ret) {
5420 			err = ret;
5421 			goto out_unlock;
5422 		}
5423 	}
5424 
5425 	/*
5426 	 * If we are logging that an ancestor inode exists as part of logging a
5427 	 * new name from a link or rename operation, don't mark the inode as
5428 	 * logged - otherwise if an explicit fsync is made against an ancestor,
5429 	 * the fsync considers the inode in the log and doesn't sync the log,
5430 	 * resulting in the ancestor missing after a power failure unless the
5431 	 * log was synced as part of an fsync against any other unrelated inode.
5432 	 * So keep it simple for this case and just don't flag the ancestors as
5433 	 * logged.
5434 	 */
5435 	if (!ctx ||
5436 	    !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5437 	      &inode->vfs_inode != ctx->inode)) {
5438 		spin_lock(&inode->lock);
5439 		inode->logged_trans = trans->transid;
5440 		/*
5441 		 * Don't update last_log_commit if we logged that an inode exists
5442 		 * after it was loaded to memory (full_sync bit set).
5443 		 * This is to prevent data loss when we do a write to the inode,
5444 		 * then the inode gets evicted after all delalloc was flushed,
5445 		 * then we log it exists (due to a rename for example) and then
5446 		 * fsync it. This last fsync would do nothing (not logging the
5447 		 * extents previously written).
5448 		 */
5449 		if (inode_only != LOG_INODE_EXISTS ||
5450 		    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5451 			inode->last_log_commit = inode->last_sub_trans;
5452 		spin_unlock(&inode->lock);
5453 	}
5454 out_unlock:
5455 	mutex_unlock(&inode->log_mutex);
5456 
5457 	btrfs_free_path(path);
5458 	btrfs_free_path(dst_path);
5459 	return err;
5460 }
5461 
5462 /*
5463  * Check if we must fallback to a transaction commit when logging an inode.
5464  * This must be called after logging the inode and is used only in the context
5465  * when fsyncing an inode requires the need to log some other inode - in which
5466  * case we can't lock the i_mutex of each other inode we need to log as that
5467  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5468  * log inodes up or down in the hierarchy) or rename operations for example. So
5469  * we take the log_mutex of the inode after we have logged it and then check for
5470  * its last_unlink_trans value - this is safe because any task setting
5471  * last_unlink_trans must take the log_mutex and it must do this before it does
5472  * the actual unlink operation, so if we do this check before a concurrent task
5473  * sets last_unlink_trans it means we've logged a consistent version/state of
5474  * all the inode items, otherwise we are not sure and must do a transaction
5475  * commit (the concurrent task might have only updated last_unlink_trans before
5476  * we logged the inode or it might have also done the unlink).
5477  */
btrfs_must_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5478 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5479 					  struct btrfs_inode *inode)
5480 {
5481 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5482 	bool ret = false;
5483 
5484 	mutex_lock(&inode->log_mutex);
5485 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5486 		/*
5487 		 * Make sure any commits to the log are forced to be full
5488 		 * commits.
5489 		 */
5490 		btrfs_set_log_full_commit(trans);
5491 		ret = true;
5492 	}
5493 	mutex_unlock(&inode->log_mutex);
5494 
5495 	return ret;
5496 }
5497 
5498 /*
5499  * follow the dentry parent pointers up the chain and see if any
5500  * of the directories in it require a full commit before they can
5501  * be logged.  Returns zero if nothing special needs to be done or 1 if
5502  * a full commit is required.
5503  */
check_parent_dirs_for_sync(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct super_block * sb,u64 last_committed)5504 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5505 					       struct btrfs_inode *inode,
5506 					       struct dentry *parent,
5507 					       struct super_block *sb,
5508 					       u64 last_committed)
5509 {
5510 	int ret = 0;
5511 	struct dentry *old_parent = NULL;
5512 
5513 	/*
5514 	 * for regular files, if its inode is already on disk, we don't
5515 	 * have to worry about the parents at all.  This is because
5516 	 * we can use the last_unlink_trans field to record renames
5517 	 * and other fun in this file.
5518 	 */
5519 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5520 	    inode->generation <= last_committed &&
5521 	    inode->last_unlink_trans <= last_committed)
5522 		goto out;
5523 
5524 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5525 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5526 			goto out;
5527 		inode = BTRFS_I(d_inode(parent));
5528 	}
5529 
5530 	while (1) {
5531 		if (btrfs_must_commit_transaction(trans, inode)) {
5532 			ret = 1;
5533 			break;
5534 		}
5535 
5536 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5537 			break;
5538 
5539 		if (IS_ROOT(parent)) {
5540 			inode = BTRFS_I(d_inode(parent));
5541 			if (btrfs_must_commit_transaction(trans, inode))
5542 				ret = 1;
5543 			break;
5544 		}
5545 
5546 		parent = dget_parent(parent);
5547 		dput(old_parent);
5548 		old_parent = parent;
5549 		inode = BTRFS_I(d_inode(parent));
5550 
5551 	}
5552 	dput(old_parent);
5553 out:
5554 	return ret;
5555 }
5556 
5557 struct btrfs_dir_list {
5558 	u64 ino;
5559 	struct list_head list;
5560 };
5561 
5562 /*
5563  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5564  * details about the why it is needed.
5565  * This is a recursive operation - if an existing dentry corresponds to a
5566  * directory, that directory's new entries are logged too (same behaviour as
5567  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5568  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5569  * complains about the following circular lock dependency / possible deadlock:
5570  *
5571  *        CPU0                                        CPU1
5572  *        ----                                        ----
5573  * lock(&type->i_mutex_dir_key#3/2);
5574  *                                            lock(sb_internal#2);
5575  *                                            lock(&type->i_mutex_dir_key#3/2);
5576  * lock(&sb->s_type->i_mutex_key#14);
5577  *
5578  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5579  * sb_start_intwrite() in btrfs_start_transaction().
5580  * Not locking i_mutex of the inodes is still safe because:
5581  *
5582  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5583  *    that while logging the inode new references (names) are added or removed
5584  *    from the inode, leaving the logged inode item with a link count that does
5585  *    not match the number of logged inode reference items. This is fine because
5586  *    at log replay time we compute the real number of links and correct the
5587  *    link count in the inode item (see replay_one_buffer() and
5588  *    link_to_fixup_dir());
5589  *
5590  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5591  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5592  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5593  *    has a size that doesn't match the sum of the lengths of all the logged
5594  *    names. This does not result in a problem because if a dir_item key is
5595  *    logged but its matching dir_index key is not logged, at log replay time we
5596  *    don't use it to replay the respective name (see replay_one_name()). On the
5597  *    other hand if only the dir_index key ends up being logged, the respective
5598  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5599  *    keys created (see replay_one_name()).
5600  *    The directory's inode item with a wrong i_size is not a problem as well,
5601  *    since we don't use it at log replay time to set the i_size in the inode
5602  *    item of the fs/subvol tree (see overwrite_item()).
5603  */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5604 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5605 				struct btrfs_root *root,
5606 				struct btrfs_inode *start_inode,
5607 				struct btrfs_log_ctx *ctx)
5608 {
5609 	struct btrfs_fs_info *fs_info = root->fs_info;
5610 	struct btrfs_root *log = root->log_root;
5611 	struct btrfs_path *path;
5612 	LIST_HEAD(dir_list);
5613 	struct btrfs_dir_list *dir_elem;
5614 	int ret = 0;
5615 
5616 	path = btrfs_alloc_path();
5617 	if (!path)
5618 		return -ENOMEM;
5619 
5620 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5621 	if (!dir_elem) {
5622 		btrfs_free_path(path);
5623 		return -ENOMEM;
5624 	}
5625 	dir_elem->ino = btrfs_ino(start_inode);
5626 	list_add_tail(&dir_elem->list, &dir_list);
5627 
5628 	while (!list_empty(&dir_list)) {
5629 		struct extent_buffer *leaf;
5630 		struct btrfs_key min_key;
5631 		int nritems;
5632 		int i;
5633 
5634 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5635 					    list);
5636 		if (ret)
5637 			goto next_dir_inode;
5638 
5639 		min_key.objectid = dir_elem->ino;
5640 		min_key.type = BTRFS_DIR_ITEM_KEY;
5641 		min_key.offset = 0;
5642 again:
5643 		btrfs_release_path(path);
5644 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5645 		if (ret < 0) {
5646 			goto next_dir_inode;
5647 		} else if (ret > 0) {
5648 			ret = 0;
5649 			goto next_dir_inode;
5650 		}
5651 
5652 process_leaf:
5653 		leaf = path->nodes[0];
5654 		nritems = btrfs_header_nritems(leaf);
5655 		for (i = path->slots[0]; i < nritems; i++) {
5656 			struct btrfs_dir_item *di;
5657 			struct btrfs_key di_key;
5658 			struct inode *di_inode;
5659 			struct btrfs_dir_list *new_dir_elem;
5660 			int log_mode = LOG_INODE_EXISTS;
5661 			int type;
5662 
5663 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5664 			if (min_key.objectid != dir_elem->ino ||
5665 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5666 				goto next_dir_inode;
5667 
5668 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5669 			type = btrfs_dir_type(leaf, di);
5670 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5671 			    type != BTRFS_FT_DIR)
5672 				continue;
5673 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5674 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5675 				continue;
5676 
5677 			btrfs_release_path(path);
5678 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5679 			if (IS_ERR(di_inode)) {
5680 				ret = PTR_ERR(di_inode);
5681 				goto next_dir_inode;
5682 			}
5683 
5684 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5685 				btrfs_add_delayed_iput(di_inode);
5686 				break;
5687 			}
5688 
5689 			ctx->log_new_dentries = false;
5690 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5691 				log_mode = LOG_INODE_ALL;
5692 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5693 					      log_mode, ctx);
5694 			if (!ret &&
5695 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5696 				ret = 1;
5697 			btrfs_add_delayed_iput(di_inode);
5698 			if (ret)
5699 				goto next_dir_inode;
5700 			if (ctx->log_new_dentries) {
5701 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5702 						       GFP_NOFS);
5703 				if (!new_dir_elem) {
5704 					ret = -ENOMEM;
5705 					goto next_dir_inode;
5706 				}
5707 				new_dir_elem->ino = di_key.objectid;
5708 				list_add_tail(&new_dir_elem->list, &dir_list);
5709 			}
5710 			break;
5711 		}
5712 		if (i == nritems) {
5713 			ret = btrfs_next_leaf(log, path);
5714 			if (ret < 0) {
5715 				goto next_dir_inode;
5716 			} else if (ret > 0) {
5717 				ret = 0;
5718 				goto next_dir_inode;
5719 			}
5720 			goto process_leaf;
5721 		}
5722 		if (min_key.offset < (u64)-1) {
5723 			min_key.offset++;
5724 			goto again;
5725 		}
5726 next_dir_inode:
5727 		list_del(&dir_elem->list);
5728 		kfree(dir_elem);
5729 	}
5730 
5731 	btrfs_free_path(path);
5732 	return ret;
5733 }
5734 
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)5735 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5736 				 struct btrfs_inode *inode,
5737 				 struct btrfs_log_ctx *ctx)
5738 {
5739 	struct btrfs_fs_info *fs_info = trans->fs_info;
5740 	int ret;
5741 	struct btrfs_path *path;
5742 	struct btrfs_key key;
5743 	struct btrfs_root *root = inode->root;
5744 	const u64 ino = btrfs_ino(inode);
5745 
5746 	path = btrfs_alloc_path();
5747 	if (!path)
5748 		return -ENOMEM;
5749 	path->skip_locking = 1;
5750 	path->search_commit_root = 1;
5751 
5752 	key.objectid = ino;
5753 	key.type = BTRFS_INODE_REF_KEY;
5754 	key.offset = 0;
5755 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5756 	if (ret < 0)
5757 		goto out;
5758 
5759 	while (true) {
5760 		struct extent_buffer *leaf = path->nodes[0];
5761 		int slot = path->slots[0];
5762 		u32 cur_offset = 0;
5763 		u32 item_size;
5764 		unsigned long ptr;
5765 
5766 		if (slot >= btrfs_header_nritems(leaf)) {
5767 			ret = btrfs_next_leaf(root, path);
5768 			if (ret < 0)
5769 				goto out;
5770 			else if (ret > 0)
5771 				break;
5772 			continue;
5773 		}
5774 
5775 		btrfs_item_key_to_cpu(leaf, &key, slot);
5776 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5777 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5778 			break;
5779 
5780 		item_size = btrfs_item_size_nr(leaf, slot);
5781 		ptr = btrfs_item_ptr_offset(leaf, slot);
5782 		while (cur_offset < item_size) {
5783 			struct btrfs_key inode_key;
5784 			struct inode *dir_inode;
5785 
5786 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5787 			inode_key.offset = 0;
5788 
5789 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5790 				struct btrfs_inode_extref *extref;
5791 
5792 				extref = (struct btrfs_inode_extref *)
5793 					(ptr + cur_offset);
5794 				inode_key.objectid = btrfs_inode_extref_parent(
5795 					leaf, extref);
5796 				cur_offset += sizeof(*extref);
5797 				cur_offset += btrfs_inode_extref_name_len(leaf,
5798 					extref);
5799 			} else {
5800 				inode_key.objectid = key.offset;
5801 				cur_offset = item_size;
5802 			}
5803 
5804 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5805 					       root);
5806 			/*
5807 			 * If the parent inode was deleted, return an error to
5808 			 * fallback to a transaction commit. This is to prevent
5809 			 * getting an inode that was moved from one parent A to
5810 			 * a parent B, got its former parent A deleted and then
5811 			 * it got fsync'ed, from existing at both parents after
5812 			 * a log replay (and the old parent still existing).
5813 			 * Example:
5814 			 *
5815 			 * mkdir /mnt/A
5816 			 * mkdir /mnt/B
5817 			 * touch /mnt/B/bar
5818 			 * sync
5819 			 * mv /mnt/B/bar /mnt/A/bar
5820 			 * mv -T /mnt/A /mnt/B
5821 			 * fsync /mnt/B/bar
5822 			 * <power fail>
5823 			 *
5824 			 * If we ignore the old parent B which got deleted,
5825 			 * after a log replay we would have file bar linked
5826 			 * at both parents and the old parent B would still
5827 			 * exist.
5828 			 */
5829 			if (IS_ERR(dir_inode)) {
5830 				ret = PTR_ERR(dir_inode);
5831 				goto out;
5832 			}
5833 
5834 			if (ctx)
5835 				ctx->log_new_dentries = false;
5836 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5837 					      LOG_INODE_ALL, ctx);
5838 			if (!ret &&
5839 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5840 				ret = 1;
5841 			if (!ret && ctx && ctx->log_new_dentries)
5842 				ret = log_new_dir_dentries(trans, root,
5843 						   BTRFS_I(dir_inode), ctx);
5844 			btrfs_add_delayed_iput(dir_inode);
5845 			if (ret)
5846 				goto out;
5847 		}
5848 		path->slots[0]++;
5849 	}
5850 	ret = 0;
5851 out:
5852 	btrfs_free_path(path);
5853 	return ret;
5854 }
5855 
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)5856 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5857 			     struct btrfs_root *root,
5858 			     struct btrfs_path *path,
5859 			     struct btrfs_log_ctx *ctx)
5860 {
5861 	struct btrfs_key found_key;
5862 
5863 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5864 
5865 	while (true) {
5866 		struct btrfs_fs_info *fs_info = root->fs_info;
5867 		const u64 last_committed = fs_info->last_trans_committed;
5868 		struct extent_buffer *leaf = path->nodes[0];
5869 		int slot = path->slots[0];
5870 		struct btrfs_key search_key;
5871 		struct inode *inode;
5872 		u64 ino;
5873 		int ret = 0;
5874 
5875 		btrfs_release_path(path);
5876 
5877 		ino = found_key.offset;
5878 
5879 		search_key.objectid = found_key.offset;
5880 		search_key.type = BTRFS_INODE_ITEM_KEY;
5881 		search_key.offset = 0;
5882 		inode = btrfs_iget(fs_info->sb, ino, root);
5883 		if (IS_ERR(inode))
5884 			return PTR_ERR(inode);
5885 
5886 		if (BTRFS_I(inode)->generation > last_committed)
5887 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5888 					      LOG_INODE_EXISTS, ctx);
5889 		btrfs_add_delayed_iput(inode);
5890 		if (ret)
5891 			return ret;
5892 
5893 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5894 			break;
5895 
5896 		search_key.type = BTRFS_INODE_REF_KEY;
5897 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5898 		if (ret < 0)
5899 			return ret;
5900 
5901 		leaf = path->nodes[0];
5902 		slot = path->slots[0];
5903 		if (slot >= btrfs_header_nritems(leaf)) {
5904 			ret = btrfs_next_leaf(root, path);
5905 			if (ret < 0)
5906 				return ret;
5907 			else if (ret > 0)
5908 				return -ENOENT;
5909 			leaf = path->nodes[0];
5910 			slot = path->slots[0];
5911 		}
5912 
5913 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5914 		if (found_key.objectid != search_key.objectid ||
5915 		    found_key.type != BTRFS_INODE_REF_KEY)
5916 			return -ENOENT;
5917 	}
5918 	return 0;
5919 }
5920 
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)5921 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5922 				  struct btrfs_inode *inode,
5923 				  struct dentry *parent,
5924 				  struct btrfs_log_ctx *ctx)
5925 {
5926 	struct btrfs_root *root = inode->root;
5927 	struct btrfs_fs_info *fs_info = root->fs_info;
5928 	struct dentry *old_parent = NULL;
5929 	struct super_block *sb = inode->vfs_inode.i_sb;
5930 	int ret = 0;
5931 
5932 	while (true) {
5933 		if (!parent || d_really_is_negative(parent) ||
5934 		    sb != parent->d_sb)
5935 			break;
5936 
5937 		inode = BTRFS_I(d_inode(parent));
5938 		if (root != inode->root)
5939 			break;
5940 
5941 		if (inode->generation > fs_info->last_trans_committed) {
5942 			ret = btrfs_log_inode(trans, root, inode,
5943 					      LOG_INODE_EXISTS, ctx);
5944 			if (ret)
5945 				break;
5946 		}
5947 		if (IS_ROOT(parent))
5948 			break;
5949 
5950 		parent = dget_parent(parent);
5951 		dput(old_parent);
5952 		old_parent = parent;
5953 	}
5954 	dput(old_parent);
5955 
5956 	return ret;
5957 }
5958 
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)5959 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5960 				 struct btrfs_inode *inode,
5961 				 struct dentry *parent,
5962 				 struct btrfs_log_ctx *ctx)
5963 {
5964 	struct btrfs_root *root = inode->root;
5965 	const u64 ino = btrfs_ino(inode);
5966 	struct btrfs_path *path;
5967 	struct btrfs_key search_key;
5968 	int ret;
5969 
5970 	/*
5971 	 * For a single hard link case, go through a fast path that does not
5972 	 * need to iterate the fs/subvolume tree.
5973 	 */
5974 	if (inode->vfs_inode.i_nlink < 2)
5975 		return log_new_ancestors_fast(trans, inode, parent, ctx);
5976 
5977 	path = btrfs_alloc_path();
5978 	if (!path)
5979 		return -ENOMEM;
5980 
5981 	search_key.objectid = ino;
5982 	search_key.type = BTRFS_INODE_REF_KEY;
5983 	search_key.offset = 0;
5984 again:
5985 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5986 	if (ret < 0)
5987 		goto out;
5988 	if (ret == 0)
5989 		path->slots[0]++;
5990 
5991 	while (true) {
5992 		struct extent_buffer *leaf = path->nodes[0];
5993 		int slot = path->slots[0];
5994 		struct btrfs_key found_key;
5995 
5996 		if (slot >= btrfs_header_nritems(leaf)) {
5997 			ret = btrfs_next_leaf(root, path);
5998 			if (ret < 0)
5999 				goto out;
6000 			else if (ret > 0)
6001 				break;
6002 			continue;
6003 		}
6004 
6005 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6006 		if (found_key.objectid != ino ||
6007 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6008 			break;
6009 
6010 		/*
6011 		 * Don't deal with extended references because they are rare
6012 		 * cases and too complex to deal with (we would need to keep
6013 		 * track of which subitem we are processing for each item in
6014 		 * this loop, etc). So just return some error to fallback to
6015 		 * a transaction commit.
6016 		 */
6017 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6018 			ret = -EMLINK;
6019 			goto out;
6020 		}
6021 
6022 		/*
6023 		 * Logging ancestors needs to do more searches on the fs/subvol
6024 		 * tree, so it releases the path as needed to avoid deadlocks.
6025 		 * Keep track of the last inode ref key and resume from that key
6026 		 * after logging all new ancestors for the current hard link.
6027 		 */
6028 		memcpy(&search_key, &found_key, sizeof(search_key));
6029 
6030 		ret = log_new_ancestors(trans, root, path, ctx);
6031 		if (ret)
6032 			goto out;
6033 		btrfs_release_path(path);
6034 		goto again;
6035 	}
6036 	ret = 0;
6037 out:
6038 	btrfs_free_path(path);
6039 	return ret;
6040 }
6041 
6042 /*
6043  * helper function around btrfs_log_inode to make sure newly created
6044  * parent directories also end up in the log.  A minimal inode and backref
6045  * only logging is done of any parent directories that are older than
6046  * the last committed transaction
6047  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)6048 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6049 				  struct btrfs_inode *inode,
6050 				  struct dentry *parent,
6051 				  int inode_only,
6052 				  struct btrfs_log_ctx *ctx)
6053 {
6054 	struct btrfs_root *root = inode->root;
6055 	struct btrfs_fs_info *fs_info = root->fs_info;
6056 	struct super_block *sb;
6057 	int ret = 0;
6058 	u64 last_committed = fs_info->last_trans_committed;
6059 	bool log_dentries = false;
6060 
6061 	sb = inode->vfs_inode.i_sb;
6062 
6063 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6064 		ret = 1;
6065 		goto end_no_trans;
6066 	}
6067 
6068 	/*
6069 	 * The prev transaction commit doesn't complete, we need do
6070 	 * full commit by ourselves.
6071 	 */
6072 	if (fs_info->last_trans_log_full_commit >
6073 	    fs_info->last_trans_committed) {
6074 		ret = 1;
6075 		goto end_no_trans;
6076 	}
6077 
6078 	if (btrfs_root_refs(&root->root_item) == 0) {
6079 		ret = 1;
6080 		goto end_no_trans;
6081 	}
6082 
6083 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6084 			last_committed);
6085 	if (ret)
6086 		goto end_no_trans;
6087 
6088 	/*
6089 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6090 	 * (since logging them is pointless, a link count of 0 means they
6091 	 * will never be accessible).
6092 	 */
6093 	if ((btrfs_inode_in_log(inode, trans->transid) &&
6094 	     list_empty(&ctx->ordered_extents)) ||
6095 	    inode->vfs_inode.i_nlink == 0) {
6096 		ret = BTRFS_NO_LOG_SYNC;
6097 		goto end_no_trans;
6098 	}
6099 
6100 	ret = start_log_trans(trans, root, ctx);
6101 	if (ret)
6102 		goto end_no_trans;
6103 
6104 	ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6105 	if (ret)
6106 		goto end_trans;
6107 
6108 	/*
6109 	 * for regular files, if its inode is already on disk, we don't
6110 	 * have to worry about the parents at all.  This is because
6111 	 * we can use the last_unlink_trans field to record renames
6112 	 * and other fun in this file.
6113 	 */
6114 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6115 	    inode->generation <= last_committed &&
6116 	    inode->last_unlink_trans <= last_committed) {
6117 		ret = 0;
6118 		goto end_trans;
6119 	}
6120 
6121 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6122 		log_dentries = true;
6123 
6124 	/*
6125 	 * On unlink we must make sure all our current and old parent directory
6126 	 * inodes are fully logged. This is to prevent leaving dangling
6127 	 * directory index entries in directories that were our parents but are
6128 	 * not anymore. Not doing this results in old parent directory being
6129 	 * impossible to delete after log replay (rmdir will always fail with
6130 	 * error -ENOTEMPTY).
6131 	 *
6132 	 * Example 1:
6133 	 *
6134 	 * mkdir testdir
6135 	 * touch testdir/foo
6136 	 * ln testdir/foo testdir/bar
6137 	 * sync
6138 	 * unlink testdir/bar
6139 	 * xfs_io -c fsync testdir/foo
6140 	 * <power failure>
6141 	 * mount fs, triggers log replay
6142 	 *
6143 	 * If we don't log the parent directory (testdir), after log replay the
6144 	 * directory still has an entry pointing to the file inode using the bar
6145 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6146 	 * the file inode has a link count of 1.
6147 	 *
6148 	 * Example 2:
6149 	 *
6150 	 * mkdir testdir
6151 	 * touch foo
6152 	 * ln foo testdir/foo2
6153 	 * ln foo testdir/foo3
6154 	 * sync
6155 	 * unlink testdir/foo3
6156 	 * xfs_io -c fsync foo
6157 	 * <power failure>
6158 	 * mount fs, triggers log replay
6159 	 *
6160 	 * Similar as the first example, after log replay the parent directory
6161 	 * testdir still has an entry pointing to the inode file with name foo3
6162 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6163 	 * and has a link count of 2.
6164 	 */
6165 	if (inode->last_unlink_trans > last_committed) {
6166 		ret = btrfs_log_all_parents(trans, inode, ctx);
6167 		if (ret)
6168 			goto end_trans;
6169 	}
6170 
6171 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6172 	if (ret)
6173 		goto end_trans;
6174 
6175 	if (log_dentries)
6176 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6177 	else
6178 		ret = 0;
6179 end_trans:
6180 	if (ret < 0) {
6181 		btrfs_set_log_full_commit(trans);
6182 		ret = 1;
6183 	}
6184 
6185 	if (ret)
6186 		btrfs_remove_log_ctx(root, ctx);
6187 	btrfs_end_log_trans(root);
6188 end_no_trans:
6189 	return ret;
6190 }
6191 
6192 /*
6193  * it is not safe to log dentry if the chunk root has added new
6194  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6195  * If this returns 1, you must commit the transaction to safely get your
6196  * data on disk.
6197  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)6198 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6199 			  struct dentry *dentry,
6200 			  struct btrfs_log_ctx *ctx)
6201 {
6202 	struct dentry *parent = dget_parent(dentry);
6203 	int ret;
6204 
6205 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6206 				     LOG_INODE_ALL, ctx);
6207 	dput(parent);
6208 
6209 	return ret;
6210 }
6211 
6212 /*
6213  * should be called during mount to recover any replay any log trees
6214  * from the FS
6215  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)6216 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6217 {
6218 	int ret;
6219 	struct btrfs_path *path;
6220 	struct btrfs_trans_handle *trans;
6221 	struct btrfs_key key;
6222 	struct btrfs_key found_key;
6223 	struct btrfs_root *log;
6224 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6225 	struct walk_control wc = {
6226 		.process_func = process_one_buffer,
6227 		.stage = LOG_WALK_PIN_ONLY,
6228 	};
6229 
6230 	path = btrfs_alloc_path();
6231 	if (!path)
6232 		return -ENOMEM;
6233 
6234 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6235 
6236 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6237 	if (IS_ERR(trans)) {
6238 		ret = PTR_ERR(trans);
6239 		goto error;
6240 	}
6241 
6242 	wc.trans = trans;
6243 	wc.pin = 1;
6244 
6245 	ret = walk_log_tree(trans, log_root_tree, &wc);
6246 	if (ret) {
6247 		btrfs_handle_fs_error(fs_info, ret,
6248 			"Failed to pin buffers while recovering log root tree.");
6249 		goto error;
6250 	}
6251 
6252 again:
6253 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6254 	key.offset = (u64)-1;
6255 	key.type = BTRFS_ROOT_ITEM_KEY;
6256 
6257 	while (1) {
6258 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6259 
6260 		if (ret < 0) {
6261 			btrfs_handle_fs_error(fs_info, ret,
6262 				    "Couldn't find tree log root.");
6263 			goto error;
6264 		}
6265 		if (ret > 0) {
6266 			if (path->slots[0] == 0)
6267 				break;
6268 			path->slots[0]--;
6269 		}
6270 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6271 				      path->slots[0]);
6272 		btrfs_release_path(path);
6273 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6274 			break;
6275 
6276 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6277 		if (IS_ERR(log)) {
6278 			ret = PTR_ERR(log);
6279 			btrfs_handle_fs_error(fs_info, ret,
6280 				    "Couldn't read tree log root.");
6281 			goto error;
6282 		}
6283 
6284 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6285 						   true);
6286 		if (IS_ERR(wc.replay_dest)) {
6287 			ret = PTR_ERR(wc.replay_dest);
6288 
6289 			/*
6290 			 * We didn't find the subvol, likely because it was
6291 			 * deleted.  This is ok, simply skip this log and go to
6292 			 * the next one.
6293 			 *
6294 			 * We need to exclude the root because we can't have
6295 			 * other log replays overwriting this log as we'll read
6296 			 * it back in a few more times.  This will keep our
6297 			 * block from being modified, and we'll just bail for
6298 			 * each subsequent pass.
6299 			 */
6300 			if (ret == -ENOENT)
6301 				ret = btrfs_pin_extent_for_log_replay(trans,
6302 							log->node->start,
6303 							log->node->len);
6304 			btrfs_put_root(log);
6305 
6306 			if (!ret)
6307 				goto next;
6308 			btrfs_handle_fs_error(fs_info, ret,
6309 				"Couldn't read target root for tree log recovery.");
6310 			goto error;
6311 		}
6312 
6313 		wc.replay_dest->log_root = log;
6314 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6315 		ret = walk_log_tree(trans, log, &wc);
6316 
6317 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6318 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6319 						      path);
6320 		}
6321 
6322 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6323 			struct btrfs_root *root = wc.replay_dest;
6324 
6325 			btrfs_release_path(path);
6326 
6327 			/*
6328 			 * We have just replayed everything, and the highest
6329 			 * objectid of fs roots probably has changed in case
6330 			 * some inode_item's got replayed.
6331 			 *
6332 			 * root->objectid_mutex is not acquired as log replay
6333 			 * could only happen during mount.
6334 			 */
6335 			ret = btrfs_find_highest_objectid(root,
6336 						  &root->highest_objectid);
6337 		}
6338 
6339 		wc.replay_dest->log_root = NULL;
6340 		btrfs_put_root(wc.replay_dest);
6341 		btrfs_put_root(log);
6342 
6343 		if (ret)
6344 			goto error;
6345 next:
6346 		if (found_key.offset == 0)
6347 			break;
6348 		key.offset = found_key.offset - 1;
6349 	}
6350 	btrfs_release_path(path);
6351 
6352 	/* step one is to pin it all, step two is to replay just inodes */
6353 	if (wc.pin) {
6354 		wc.pin = 0;
6355 		wc.process_func = replay_one_buffer;
6356 		wc.stage = LOG_WALK_REPLAY_INODES;
6357 		goto again;
6358 	}
6359 	/* step three is to replay everything */
6360 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6361 		wc.stage++;
6362 		goto again;
6363 	}
6364 
6365 	btrfs_free_path(path);
6366 
6367 	/* step 4: commit the transaction, which also unpins the blocks */
6368 	ret = btrfs_commit_transaction(trans);
6369 	if (ret)
6370 		return ret;
6371 
6372 	log_root_tree->log_root = NULL;
6373 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6374 	btrfs_put_root(log_root_tree);
6375 
6376 	return 0;
6377 error:
6378 	if (wc.trans)
6379 		btrfs_end_transaction(wc.trans);
6380 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6381 	btrfs_free_path(path);
6382 	return ret;
6383 }
6384 
6385 /*
6386  * there are some corner cases where we want to force a full
6387  * commit instead of allowing a directory to be logged.
6388  *
6389  * They revolve around files there were unlinked from the directory, and
6390  * this function updates the parent directory so that a full commit is
6391  * properly done if it is fsync'd later after the unlinks are done.
6392  *
6393  * Must be called before the unlink operations (updates to the subvolume tree,
6394  * inodes, etc) are done.
6395  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,int for_rename)6396 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6397 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6398 			     int for_rename)
6399 {
6400 	/*
6401 	 * when we're logging a file, if it hasn't been renamed
6402 	 * or unlinked, and its inode is fully committed on disk,
6403 	 * we don't have to worry about walking up the directory chain
6404 	 * to log its parents.
6405 	 *
6406 	 * So, we use the last_unlink_trans field to put this transid
6407 	 * into the file.  When the file is logged we check it and
6408 	 * don't log the parents if the file is fully on disk.
6409 	 */
6410 	mutex_lock(&inode->log_mutex);
6411 	inode->last_unlink_trans = trans->transid;
6412 	mutex_unlock(&inode->log_mutex);
6413 
6414 	/*
6415 	 * if this directory was already logged any new
6416 	 * names for this file/dir will get recorded
6417 	 */
6418 	if (dir->logged_trans == trans->transid)
6419 		return;
6420 
6421 	/*
6422 	 * if the inode we're about to unlink was logged,
6423 	 * the log will be properly updated for any new names
6424 	 */
6425 	if (inode->logged_trans == trans->transid)
6426 		return;
6427 
6428 	/*
6429 	 * when renaming files across directories, if the directory
6430 	 * there we're unlinking from gets fsync'd later on, there's
6431 	 * no way to find the destination directory later and fsync it
6432 	 * properly.  So, we have to be conservative and force commits
6433 	 * so the new name gets discovered.
6434 	 */
6435 	if (for_rename)
6436 		goto record;
6437 
6438 	/* we can safely do the unlink without any special recording */
6439 	return;
6440 
6441 record:
6442 	mutex_lock(&dir->log_mutex);
6443 	dir->last_unlink_trans = trans->transid;
6444 	mutex_unlock(&dir->log_mutex);
6445 }
6446 
6447 /*
6448  * Make sure that if someone attempts to fsync the parent directory of a deleted
6449  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6450  * that after replaying the log tree of the parent directory's root we will not
6451  * see the snapshot anymore and at log replay time we will not see any log tree
6452  * corresponding to the deleted snapshot's root, which could lead to replaying
6453  * it after replaying the log tree of the parent directory (which would replay
6454  * the snapshot delete operation).
6455  *
6456  * Must be called before the actual snapshot destroy operation (updates to the
6457  * parent root and tree of tree roots trees, etc) are done.
6458  */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)6459 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6460 				   struct btrfs_inode *dir)
6461 {
6462 	mutex_lock(&dir->log_mutex);
6463 	dir->last_unlink_trans = trans->transid;
6464 	mutex_unlock(&dir->log_mutex);
6465 }
6466 
6467 /*
6468  * Call this after adding a new name for a file and it will properly
6469  * update the log to reflect the new name.
6470  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_inode * old_dir,struct dentry * parent)6471 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6472 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6473 			struct dentry *parent)
6474 {
6475 	struct btrfs_log_ctx ctx;
6476 
6477 	/*
6478 	 * this will force the logging code to walk the dentry chain
6479 	 * up for the file
6480 	 */
6481 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6482 		inode->last_unlink_trans = trans->transid;
6483 
6484 	/*
6485 	 * if this inode hasn't been logged and directory we're renaming it
6486 	 * from hasn't been logged, we don't need to log it
6487 	 */
6488 	if (!inode_logged(trans, inode) &&
6489 	    (!old_dir || !inode_logged(trans, old_dir)))
6490 		return;
6491 
6492 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6493 	ctx.logging_new_name = true;
6494 	/*
6495 	 * We don't care about the return value. If we fail to log the new name
6496 	 * then we know the next attempt to sync the log will fallback to a full
6497 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6498 	 * we don't need to worry about getting a log committed that has an
6499 	 * inconsistent state after a rename operation.
6500 	 */
6501 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6502 }
6503 
6504