1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (unlikely(condition)) { \
37 WARN_ON(1); \
38 set_sbi_flag(sbi, SBI_NEED_FSCK); \
39 } \
40 } while (0)
41 #endif
42
43 enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_MAX,
60 };
61
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
64
65 struct f2fs_fault_info {
66 atomic_t inject_ops;
67 unsigned int inject_rate;
68 unsigned int inject_type;
69 };
70
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74
75 /*
76 * For mount options
77 */
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
79 #define F2FS_MOUNT_DISCARD 0x00000004
80 #define F2FS_MOUNT_NOHEAP 0x00000008
81 #define F2FS_MOUNT_XATTR_USER 0x00000010
82 #define F2FS_MOUNT_POSIX_ACL 0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
85 #define F2FS_MOUNT_INLINE_DATA 0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
88 #define F2FS_MOUNT_NOBARRIER 0x00000800
89 #define F2FS_MOUNT_FASTBOOT 0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
91 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
93 #define F2FS_MOUNT_USRQUOTA 0x00080000
94 #define F2FS_MOUNT_GRPQUOTA 0x00100000
95 #define F2FS_MOUNT_PRJQUOTA 0x00200000
96 #define F2FS_MOUNT_QUOTA 0x00400000
97 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
98 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
99 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
100 #define F2FS_MOUNT_NORECOVERY 0x04000000
101 #define F2FS_MOUNT_ATGC 0x08000000
102 #define F2FS_MOUNT_GC_MERGE 0x20000000
103
104 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
105 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108
109 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
110 typecheck(unsigned long long, b) && \
111 ((long long)((a) - (b)) > 0))
112
113 typedef u32 block_t; /*
114 * should not change u32, since it is the on-disk block
115 * address format, __le32.
116 */
117 typedef u32 nid_t;
118
119 #define COMPRESS_EXT_NUM 16
120
121 struct f2fs_mount_info {
122 unsigned int opt;
123 int write_io_size_bits; /* Write IO size bits */
124 block_t root_reserved_blocks; /* root reserved blocks */
125 kuid_t s_resuid; /* reserved blocks for uid */
126 kgid_t s_resgid; /* reserved blocks for gid */
127 int active_logs; /* # of active logs */
128 int inline_xattr_size; /* inline xattr size */
129 #ifdef CONFIG_F2FS_FAULT_INJECTION
130 struct f2fs_fault_info fault_info; /* For fault injection */
131 #endif
132 #ifdef CONFIG_QUOTA
133 /* Names of quota files with journalled quota */
134 char *s_qf_names[MAXQUOTAS];
135 int s_jquota_fmt; /* Format of quota to use */
136 #endif
137 /* For which write hints are passed down to block layer */
138 int whint_mode;
139 int alloc_mode; /* segment allocation policy */
140 int fsync_mode; /* fsync policy */
141 int fs_mode; /* fs mode: LFS or ADAPTIVE */
142 int bggc_mode; /* bggc mode: off, on or sync */
143 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
144 block_t unusable_cap_perc; /* percentage for cap */
145 block_t unusable_cap; /* Amount of space allowed to be
146 * unusable when disabling checkpoint
147 */
148
149 /* For compression */
150 unsigned char compress_algorithm; /* algorithm type */
151 unsigned compress_log_size; /* cluster log size */
152 unsigned char compress_ext_cnt; /* extension count */
153 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
154 };
155
156 #define F2FS_FEATURE_ENCRYPT 0x0001
157 #define F2FS_FEATURE_BLKZONED 0x0002
158 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
159 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
160 #define F2FS_FEATURE_PRJQUOTA 0x0010
161 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
162 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
163 #define F2FS_FEATURE_QUOTA_INO 0x0080
164 #define F2FS_FEATURE_INODE_CRTIME 0x0100
165 #define F2FS_FEATURE_LOST_FOUND 0x0200
166 #define F2FS_FEATURE_VERITY 0x0400
167 #define F2FS_FEATURE_SB_CHKSUM 0x0800
168 #define F2FS_FEATURE_CASEFOLD 0x1000
169 #define F2FS_FEATURE_COMPRESSION 0x2000
170
171 #define __F2FS_HAS_FEATURE(raw_super, mask) \
172 ((raw_super->feature & cpu_to_le32(mask)) != 0)
173 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
174 #define F2FS_SET_FEATURE(sbi, mask) \
175 (sbi->raw_super->feature |= cpu_to_le32(mask))
176 #define F2FS_CLEAR_FEATURE(sbi, mask) \
177 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
178
179 /*
180 * Default values for user and/or group using reserved blocks
181 */
182 #define F2FS_DEF_RESUID 0
183 #define F2FS_DEF_RESGID 0
184
185 /*
186 * For checkpoint manager
187 */
188 enum {
189 NAT_BITMAP,
190 SIT_BITMAP
191 };
192
193 #define CP_UMOUNT 0x00000001
194 #define CP_FASTBOOT 0x00000002
195 #define CP_SYNC 0x00000004
196 #define CP_RECOVERY 0x00000008
197 #define CP_DISCARD 0x00000010
198 #define CP_TRIMMED 0x00000020
199 #define CP_PAUSE 0x00000040
200 #define CP_RESIZE 0x00000080
201
202 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
203 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
204 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
205 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
206 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
207 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
208 #define DEF_CP_INTERVAL 60 /* 60 secs */
209 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
210 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
211 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
212 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
213
214 struct cp_control {
215 int reason;
216 __u64 trim_start;
217 __u64 trim_end;
218 __u64 trim_minlen;
219 };
220
221 /*
222 * indicate meta/data type
223 */
224 enum {
225 META_CP,
226 META_NAT,
227 META_SIT,
228 META_SSA,
229 META_MAX,
230 META_POR,
231 DATA_GENERIC, /* check range only */
232 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
233 DATA_GENERIC_ENHANCE_READ, /*
234 * strong check on range and segment
235 * bitmap but no warning due to race
236 * condition of read on truncated area
237 * by extent_cache
238 */
239 META_GENERIC,
240 };
241
242 /* for the list of ino */
243 enum {
244 ORPHAN_INO, /* for orphan ino list */
245 APPEND_INO, /* for append ino list */
246 UPDATE_INO, /* for update ino list */
247 TRANS_DIR_INO, /* for trasactions dir ino list */
248 FLUSH_INO, /* for multiple device flushing */
249 MAX_INO_ENTRY, /* max. list */
250 };
251
252 struct ino_entry {
253 struct list_head list; /* list head */
254 nid_t ino; /* inode number */
255 unsigned int dirty_device; /* dirty device bitmap */
256 };
257
258 /* for the list of inodes to be GCed */
259 struct inode_entry {
260 struct list_head list; /* list head */
261 struct inode *inode; /* vfs inode pointer */
262 };
263
264 struct fsync_node_entry {
265 struct list_head list; /* list head */
266 struct page *page; /* warm node page pointer */
267 unsigned int seq_id; /* sequence id */
268 };
269
270 /* for the bitmap indicate blocks to be discarded */
271 struct discard_entry {
272 struct list_head list; /* list head */
273 block_t start_blkaddr; /* start blockaddr of current segment */
274 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
275 };
276
277 /* default discard granularity of inner discard thread, unit: block count */
278 #define DEFAULT_DISCARD_GRANULARITY 16
279 #define DISCARD_GRAN_BL 16
280 #define DISCARD_GRAN_BG 512
281 #define DISCARD_GRAN_FORCE 1
282
283 /* max discard pend list number */
284 #define MAX_PLIST_NUM 512
285 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
286 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
287 #define FS_FREE_SPACE_PERCENT 20
288 #define DEVICE_FREE_SPACE_PERCENT 10
289 #define HUNDRED_PERCENT 100
290
291 enum {
292 D_PREP, /* initial */
293 D_PARTIAL, /* partially submitted */
294 D_SUBMIT, /* all submitted */
295 D_DONE, /* finished */
296 };
297
298 struct discard_info {
299 block_t lstart; /* logical start address */
300 block_t len; /* length */
301 block_t start; /* actual start address in dev */
302 };
303
304 struct discard_cmd {
305 struct rb_node rb_node; /* rb node located in rb-tree */
306 union {
307 struct {
308 block_t lstart; /* logical start address */
309 block_t len; /* length */
310 block_t start; /* actual start address in dev */
311 };
312 struct discard_info di; /* discard info */
313
314 };
315 struct list_head list; /* command list */
316 struct completion wait; /* compleation */
317 struct block_device *bdev; /* bdev */
318 unsigned short ref; /* reference count */
319 unsigned char state; /* state */
320 unsigned char queued; /* queued discard */
321 int error; /* bio error */
322 spinlock_t lock; /* for state/bio_ref updating */
323 unsigned short bio_ref; /* bio reference count */
324 };
325
326 enum {
327 DPOLICY_BG,
328 DPOLICY_BALANCE,
329 DPOLICY_FORCE,
330 DPOLICY_FSTRIM,
331 DPOLICY_UMOUNT,
332 MAX_DPOLICY,
333 };
334
335 enum {
336 SUB_POLICY_BIG,
337 SUB_POLICY_MID,
338 SUB_POLICY_SMALL,
339 NR_SUB_POLICY,
340 };
341
342 struct discard_sub_policy {
343 unsigned int max_requests;
344 int interval;
345 };
346
347 struct discard_policy {
348 int type; /* type of discard */
349 unsigned int min_interval; /* used for candidates exist */
350 unsigned int mid_interval; /* used for device busy */
351 unsigned int max_interval; /* used for candidates not exist */
352 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
353 bool io_aware; /* issue discard in idle time */
354 bool sync; /* submit discard with REQ_SYNC flag */
355 bool ordered; /* issue discard by lba order */
356 bool timeout; /* discard timeout for put_super */
357 unsigned int granularity; /* discard granularity */
358 struct discard_sub_policy sub_policy[NR_SUB_POLICY];
359 };
360
361 struct discard_cmd_control {
362 struct task_struct *f2fs_issue_discard; /* discard thread */
363 struct list_head entry_list; /* 4KB discard entry list */
364 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
365 struct list_head wait_list; /* store on-flushing entries */
366 struct list_head fstrim_list; /* in-flight discard from fstrim */
367 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
368 unsigned int discard_wake; /* to wake up discard thread */
369 struct mutex cmd_lock;
370 unsigned int nr_discards; /* # of discards in the list */
371 unsigned int max_discards; /* max. discards to be issued */
372 unsigned int discard_granularity; /* discard granularity */
373 unsigned int undiscard_blks; /* # of undiscard blocks */
374 unsigned int next_pos; /* next discard position */
375 atomic_t issued_discard; /* # of issued discard */
376 atomic_t queued_discard; /* # of queued discard */
377 atomic_t discard_cmd_cnt; /* # of cached cmd count */
378 struct rb_root_cached root; /* root of discard rb-tree */
379 bool rbtree_check; /* config for consistence check */
380 int discard_type; /* discard type */
381 };
382
383 /* for the list of fsync inodes, used only during recovery */
384 struct fsync_inode_entry {
385 struct list_head list; /* list head */
386 struct inode *inode; /* vfs inode pointer */
387 block_t blkaddr; /* block address locating the last fsync */
388 block_t last_dentry; /* block address locating the last dentry */
389 };
390
391 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
392 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
393
394 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
395 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
396 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
397 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
398
399 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
400 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
401
update_nats_in_cursum(struct f2fs_journal * journal,int i)402 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
403 {
404 int before = nats_in_cursum(journal);
405
406 journal->n_nats = cpu_to_le16(before + i);
407 return before;
408 }
409
update_sits_in_cursum(struct f2fs_journal * journal,int i)410 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
411 {
412 int before = sits_in_cursum(journal);
413
414 journal->n_sits = cpu_to_le16(before + i);
415 return before;
416 }
417
__has_cursum_space(struct f2fs_journal * journal,int size,int type)418 static inline bool __has_cursum_space(struct f2fs_journal *journal,
419 int size, int type)
420 {
421 if (type == NAT_JOURNAL)
422 return size <= MAX_NAT_JENTRIES(journal);
423 return size <= MAX_SIT_JENTRIES(journal);
424 }
425
426 /* for inline stuff */
427 #define DEF_INLINE_RESERVED_SIZE 1
428 static inline int get_extra_isize(struct inode *inode);
429 static inline int get_inline_xattr_addrs(struct inode *inode);
430 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
431 (CUR_ADDRS_PER_INODE(inode) - \
432 get_inline_xattr_addrs(inode) - \
433 DEF_INLINE_RESERVED_SIZE))
434
435 /* for inline dir */
436 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
437 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
438 BITS_PER_BYTE + 1))
439 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
440 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
441 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
442 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
443 NR_INLINE_DENTRY(inode) + \
444 INLINE_DENTRY_BITMAP_SIZE(inode)))
445
446 /*
447 * For INODE and NODE manager
448 */
449 /* for directory operations */
450
451 struct f2fs_filename {
452 /*
453 * The filename the user specified. This is NULL for some
454 * filesystem-internal operations, e.g. converting an inline directory
455 * to a non-inline one, or roll-forward recovering an encrypted dentry.
456 */
457 const struct qstr *usr_fname;
458
459 /*
460 * The on-disk filename. For encrypted directories, this is encrypted.
461 * This may be NULL for lookups in an encrypted dir without the key.
462 */
463 struct fscrypt_str disk_name;
464
465 /* The dirhash of this filename */
466 f2fs_hash_t hash;
467
468 #ifdef CONFIG_FS_ENCRYPTION
469 /*
470 * For lookups in encrypted directories: either the buffer backing
471 * disk_name, or a buffer that holds the decoded no-key name.
472 */
473 struct fscrypt_str crypto_buf;
474 #endif
475 #ifdef CONFIG_UNICODE
476 /*
477 * For casefolded directories: the casefolded name, but it's left NULL
478 * if the original name is not valid Unicode or if the filesystem is
479 * doing an internal operation where usr_fname is also NULL. In these
480 * cases we fall back to treating the name as an opaque byte sequence.
481 */
482 struct fscrypt_str cf_name;
483 #endif
484 };
485
486 struct f2fs_dentry_ptr {
487 struct inode *inode;
488 void *bitmap;
489 struct f2fs_dir_entry *dentry;
490 __u8 (*filename)[F2FS_SLOT_LEN];
491 int max;
492 int nr_bitmap;
493 };
494
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)495 static inline void make_dentry_ptr_block(struct inode *inode,
496 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
497 {
498 d->inode = inode;
499 d->max = NR_DENTRY_IN_BLOCK;
500 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
501 d->bitmap = t->dentry_bitmap;
502 d->dentry = t->dentry;
503 d->filename = t->filename;
504 }
505
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)506 static inline void make_dentry_ptr_inline(struct inode *inode,
507 struct f2fs_dentry_ptr *d, void *t)
508 {
509 int entry_cnt = NR_INLINE_DENTRY(inode);
510 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
511 int reserved_size = INLINE_RESERVED_SIZE(inode);
512
513 d->inode = inode;
514 d->max = entry_cnt;
515 d->nr_bitmap = bitmap_size;
516 d->bitmap = t;
517 d->dentry = t + bitmap_size + reserved_size;
518 d->filename = t + bitmap_size + reserved_size +
519 SIZE_OF_DIR_ENTRY * entry_cnt;
520 }
521
522 /*
523 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
524 * as its node offset to distinguish from index node blocks.
525 * But some bits are used to mark the node block.
526 */
527 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
528 >> OFFSET_BIT_SHIFT)
529 enum {
530 ALLOC_NODE, /* allocate a new node page if needed */
531 LOOKUP_NODE, /* look up a node without readahead */
532 LOOKUP_NODE_RA, /*
533 * look up a node with readahead called
534 * by get_data_block.
535 */
536 };
537
538 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
539
540 /* congestion wait timeout value, default: 20ms */
541 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
542
543 /* maximum retry quota flush count */
544 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
545
546 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
547
548 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
549
550 /* for in-memory extent cache entry */
551 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
552
553 /* number of extent info in extent cache we try to shrink */
554 #define EXTENT_CACHE_SHRINK_NUMBER 128
555
556 struct rb_entry {
557 struct rb_node rb_node; /* rb node located in rb-tree */
558 union {
559 struct {
560 unsigned int ofs; /* start offset of the entry */
561 unsigned int len; /* length of the entry */
562 };
563 unsigned long long key; /* 64-bits key */
564 } __packed;
565 };
566
567 struct extent_info {
568 unsigned int fofs; /* start offset in a file */
569 unsigned int len; /* length of the extent */
570 u32 blk; /* start block address of the extent */
571 };
572
573 struct extent_node {
574 struct rb_node rb_node; /* rb node located in rb-tree */
575 struct extent_info ei; /* extent info */
576 struct list_head list; /* node in global extent list of sbi */
577 struct extent_tree *et; /* extent tree pointer */
578 };
579
580 struct extent_tree {
581 nid_t ino; /* inode number */
582 struct rb_root_cached root; /* root of extent info rb-tree */
583 struct extent_node *cached_en; /* recently accessed extent node */
584 struct extent_info largest; /* largested extent info */
585 struct list_head list; /* to be used by sbi->zombie_list */
586 rwlock_t lock; /* protect extent info rb-tree */
587 atomic_t node_cnt; /* # of extent node in rb-tree*/
588 bool largest_updated; /* largest extent updated */
589 };
590
591 /*
592 * This structure is taken from ext4_map_blocks.
593 *
594 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
595 */
596 #define F2FS_MAP_NEW (1 << BH_New)
597 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
598 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
599 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
600 F2FS_MAP_UNWRITTEN)
601
602 struct f2fs_map_blocks {
603 block_t m_pblk;
604 block_t m_lblk;
605 unsigned int m_len;
606 unsigned int m_flags;
607 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
608 pgoff_t *m_next_extent; /* point to next possible extent */
609 int m_seg_type;
610 bool m_may_create; /* indicate it is from write path */
611 };
612
613 /* for flag in get_data_block */
614 enum {
615 F2FS_GET_BLOCK_DEFAULT,
616 F2FS_GET_BLOCK_FIEMAP,
617 F2FS_GET_BLOCK_BMAP,
618 F2FS_GET_BLOCK_DIO,
619 F2FS_GET_BLOCK_PRE_DIO,
620 F2FS_GET_BLOCK_PRE_AIO,
621 F2FS_GET_BLOCK_PRECACHE,
622 };
623
624 /*
625 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
626 */
627 #define FADVISE_COLD_BIT 0x01
628 #define FADVISE_LOST_PINO_BIT 0x02
629 #define FADVISE_ENCRYPT_BIT 0x04
630 #define FADVISE_ENC_NAME_BIT 0x08
631 #define FADVISE_KEEP_SIZE_BIT 0x10
632 #define FADVISE_HOT_BIT 0x20
633 #define FADVISE_VERITY_BIT 0x40
634
635 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
636
637 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
638 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
639 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
640 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
641 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
642 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
643 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
644 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
645 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
646 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
647 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
648 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
649 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
650 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
651 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
652 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
653 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
654 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
655
656 #define DEF_DIR_LEVEL 0
657
658 enum {
659 GC_FAILURE_PIN,
660 GC_FAILURE_ATOMIC,
661 MAX_GC_FAILURE
662 };
663
664 /* used for f2fs_inode_info->flags */
665 enum {
666 FI_NEW_INODE, /* indicate newly allocated inode */
667 FI_DIRTY_INODE, /* indicate inode is dirty or not */
668 FI_AUTO_RECOVER, /* indicate inode is recoverable */
669 FI_DIRTY_DIR, /* indicate directory has dirty pages */
670 FI_INC_LINK, /* need to increment i_nlink */
671 FI_ACL_MODE, /* indicate acl mode */
672 FI_NO_ALLOC, /* should not allocate any blocks */
673 FI_FREE_NID, /* free allocated nide */
674 FI_NO_EXTENT, /* not to use the extent cache */
675 FI_INLINE_XATTR, /* used for inline xattr */
676 FI_INLINE_DATA, /* used for inline data*/
677 FI_INLINE_DENTRY, /* used for inline dentry */
678 FI_APPEND_WRITE, /* inode has appended data */
679 FI_UPDATE_WRITE, /* inode has in-place-update data */
680 FI_NEED_IPU, /* used for ipu per file */
681 FI_ATOMIC_FILE, /* indicate atomic file */
682 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
683 FI_VOLATILE_FILE, /* indicate volatile file */
684 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
685 FI_DROP_CACHE, /* drop dirty page cache */
686 FI_DATA_EXIST, /* indicate data exists */
687 FI_INLINE_DOTS, /* indicate inline dot dentries */
688 FI_DO_DEFRAG, /* indicate defragment is running */
689 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
690 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
691 FI_HOT_DATA, /* indicate file is hot */
692 FI_EXTRA_ATTR, /* indicate file has extra attribute */
693 FI_PROJ_INHERIT, /* indicate file inherits projectid */
694 FI_PIN_FILE, /* indicate file should not be gced */
695 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
696 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
697 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
698 FI_MMAP_FILE, /* indicate file was mmapped */
699 FI_MAX, /* max flag, never be used */
700 };
701
702 struct f2fs_inode_info {
703 struct inode vfs_inode; /* serve a vfs inode */
704 unsigned long i_flags; /* keep an inode flags for ioctl */
705 unsigned char i_advise; /* use to give file attribute hints */
706 unsigned char i_dir_level; /* use for dentry level for large dir */
707 unsigned int i_current_depth; /* only for directory depth */
708 /* for gc failure statistic */
709 unsigned int i_gc_failures[MAX_GC_FAILURE];
710 unsigned int i_pino; /* parent inode number */
711 umode_t i_acl_mode; /* keep file acl mode temporarily */
712
713 /* Use below internally in f2fs*/
714 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
715 struct rw_semaphore i_sem; /* protect fi info */
716 atomic_t dirty_pages; /* # of dirty pages */
717 f2fs_hash_t chash; /* hash value of given file name */
718 unsigned int clevel; /* maximum level of given file name */
719 struct task_struct *task; /* lookup and create consistency */
720 struct task_struct *cp_task; /* separate cp/wb IO stats*/
721 nid_t i_xattr_nid; /* node id that contains xattrs */
722 loff_t last_disk_size; /* lastly written file size */
723 spinlock_t i_size_lock; /* protect last_disk_size */
724
725 #ifdef CONFIG_QUOTA
726 struct dquot *i_dquot[MAXQUOTAS];
727
728 /* quota space reservation, managed internally by quota code */
729 qsize_t i_reserved_quota;
730 #endif
731 struct list_head dirty_list; /* dirty list for dirs and files */
732 struct list_head gdirty_list; /* linked in global dirty list */
733 struct list_head inmem_ilist; /* list for inmem inodes */
734 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
735 struct task_struct *inmem_task; /* store inmemory task */
736 struct mutex inmem_lock; /* lock for inmemory pages */
737 pgoff_t ra_offset; /* ongoing readahead offset */
738 struct extent_tree *extent_tree; /* cached extent_tree entry */
739
740 /* avoid racing between foreground op and gc */
741 struct rw_semaphore i_gc_rwsem[2];
742 struct rw_semaphore i_mmap_sem;
743 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
744
745 int i_extra_isize; /* size of extra space located in i_addr */
746 kprojid_t i_projid; /* id for project quota */
747 int i_inline_xattr_size; /* inline xattr size */
748 struct timespec64 i_crtime; /* inode creation time */
749 struct timespec64 i_disk_time[4];/* inode disk times */
750
751 /* for file compress */
752 atomic_t i_compr_blocks; /* # of compressed blocks */
753 unsigned char i_compress_algorithm; /* algorithm type */
754 unsigned char i_log_cluster_size; /* log of cluster size */
755 unsigned int i_cluster_size; /* cluster size */
756 };
757
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)758 static inline void get_extent_info(struct extent_info *ext,
759 struct f2fs_extent *i_ext)
760 {
761 ext->fofs = le32_to_cpu(i_ext->fofs);
762 ext->blk = le32_to_cpu(i_ext->blk);
763 ext->len = le32_to_cpu(i_ext->len);
764 }
765
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)766 static inline void set_raw_extent(struct extent_info *ext,
767 struct f2fs_extent *i_ext)
768 {
769 i_ext->fofs = cpu_to_le32(ext->fofs);
770 i_ext->blk = cpu_to_le32(ext->blk);
771 i_ext->len = cpu_to_le32(ext->len);
772 }
773
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)774 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
775 u32 blk, unsigned int len)
776 {
777 ei->fofs = fofs;
778 ei->blk = blk;
779 ei->len = len;
780 }
781
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)782 static inline bool __is_discard_mergeable(struct discard_info *back,
783 struct discard_info *front, unsigned int max_len)
784 {
785 return (back->lstart + back->len == front->lstart) &&
786 (back->len + front->len <= max_len);
787 }
788
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)789 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
790 struct discard_info *back, unsigned int max_len)
791 {
792 return __is_discard_mergeable(back, cur, max_len);
793 }
794
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)795 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
796 struct discard_info *front, unsigned int max_len)
797 {
798 return __is_discard_mergeable(cur, front, max_len);
799 }
800
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)801 static inline bool __is_extent_mergeable(struct extent_info *back,
802 struct extent_info *front)
803 {
804 return (back->fofs + back->len == front->fofs &&
805 back->blk + back->len == front->blk);
806 }
807
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)808 static inline bool __is_back_mergeable(struct extent_info *cur,
809 struct extent_info *back)
810 {
811 return __is_extent_mergeable(back, cur);
812 }
813
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)814 static inline bool __is_front_mergeable(struct extent_info *cur,
815 struct extent_info *front)
816 {
817 return __is_extent_mergeable(cur, front);
818 }
819
820 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)821 static inline void __try_update_largest_extent(struct extent_tree *et,
822 struct extent_node *en)
823 {
824 if (en->ei.len > et->largest.len) {
825 et->largest = en->ei;
826 et->largest_updated = true;
827 }
828 }
829
830 /*
831 * For free nid management
832 */
833 enum nid_state {
834 FREE_NID, /* newly added to free nid list */
835 PREALLOC_NID, /* it is preallocated */
836 MAX_NID_STATE,
837 };
838
839 enum nat_state {
840 TOTAL_NAT,
841 DIRTY_NAT,
842 RECLAIMABLE_NAT,
843 MAX_NAT_STATE,
844 };
845
846 struct f2fs_nm_info {
847 block_t nat_blkaddr; /* base disk address of NAT */
848 nid_t max_nid; /* maximum possible node ids */
849 nid_t available_nids; /* # of available node ids */
850 nid_t next_scan_nid; /* the next nid to be scanned */
851 unsigned int ram_thresh; /* control the memory footprint */
852 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
853 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
854
855 /* NAT cache management */
856 struct radix_tree_root nat_root;/* root of the nat entry cache */
857 struct radix_tree_root nat_set_root;/* root of the nat set cache */
858 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
859 struct list_head nat_entries; /* cached nat entry list (clean) */
860 spinlock_t nat_list_lock; /* protect clean nat entry list */
861 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
862 unsigned int nat_blocks; /* # of nat blocks */
863
864 /* free node ids management */
865 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
866 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
867 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
868 spinlock_t nid_list_lock; /* protect nid lists ops */
869 struct mutex build_lock; /* lock for build free nids */
870 unsigned char **free_nid_bitmap;
871 unsigned char *nat_block_bitmap;
872 unsigned short *free_nid_count; /* free nid count of NAT block */
873
874 /* for checkpoint */
875 char *nat_bitmap; /* NAT bitmap pointer */
876
877 unsigned int nat_bits_blocks; /* # of nat bits blocks */
878 unsigned char *nat_bits; /* NAT bits blocks */
879 unsigned char *full_nat_bits; /* full NAT pages */
880 unsigned char *empty_nat_bits; /* empty NAT pages */
881 #ifdef CONFIG_F2FS_CHECK_FS
882 char *nat_bitmap_mir; /* NAT bitmap mirror */
883 #endif
884 int bitmap_size; /* bitmap size */
885 };
886
887 /*
888 * this structure is used as one of function parameters.
889 * all the information are dedicated to a given direct node block determined
890 * by the data offset in a file.
891 */
892 struct dnode_of_data {
893 struct inode *inode; /* vfs inode pointer */
894 struct page *inode_page; /* its inode page, NULL is possible */
895 struct page *node_page; /* cached direct node page */
896 nid_t nid; /* node id of the direct node block */
897 unsigned int ofs_in_node; /* data offset in the node page */
898 bool inode_page_locked; /* inode page is locked or not */
899 bool node_changed; /* is node block changed */
900 char cur_level; /* level of hole node page */
901 char max_level; /* level of current page located */
902 block_t data_blkaddr; /* block address of the node block */
903 };
904
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)905 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
906 struct page *ipage, struct page *npage, nid_t nid)
907 {
908 memset(dn, 0, sizeof(*dn));
909 dn->inode = inode;
910 dn->inode_page = ipage;
911 dn->node_page = npage;
912 dn->nid = nid;
913 }
914
915 /*
916 * For SIT manager
917 *
918 * By default, there are 6 active log areas across the whole main area.
919 * When considering hot and cold data separation to reduce cleaning overhead,
920 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
921 * respectively.
922 * In the current design, you should not change the numbers intentionally.
923 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
924 * logs individually according to the underlying devices. (default: 6)
925 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
926 * data and 8 for node logs.
927 */
928 #define NR_CURSEG_DATA_TYPE (3)
929 #define NR_CURSEG_NODE_TYPE (3)
930 #define NR_CURSEG_INMEM_TYPE (2)
931 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
932 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
933
934 enum {
935 CURSEG_HOT_DATA = 0, /* directory entry blocks */
936 CURSEG_WARM_DATA, /* data blocks */
937 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
938 CURSEG_HOT_NODE, /* direct node blocks of directory files */
939 CURSEG_WARM_NODE, /* direct node blocks of normal files */
940 CURSEG_COLD_NODE, /* indirect node blocks */
941 NR_PERSISTENT_LOG, /* number of persistent log */
942 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
943 /* pinned file that needs consecutive block address */
944 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
945 NO_CHECK_TYPE, /* number of persistent & inmem log */
946 };
947
948 struct flush_cmd {
949 struct completion wait;
950 struct llist_node llnode;
951 nid_t ino;
952 int ret;
953 };
954
955 struct flush_cmd_control {
956 struct task_struct *f2fs_issue_flush; /* flush thread */
957 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
958 atomic_t issued_flush; /* # of issued flushes */
959 atomic_t queued_flush; /* # of queued flushes */
960 struct llist_head issue_list; /* list for command issue */
961 struct llist_node *dispatch_list; /* list for command dispatch */
962 };
963
964 struct f2fs_sm_info {
965 struct sit_info *sit_info; /* whole segment information */
966 struct free_segmap_info *free_info; /* free segment information */
967 struct dirty_seglist_info *dirty_info; /* dirty segment information */
968 struct curseg_info *curseg_array; /* active segment information */
969
970 struct rw_semaphore curseg_lock; /* for preventing curseg change */
971
972 block_t seg0_blkaddr; /* block address of 0'th segment */
973 block_t main_blkaddr; /* start block address of main area */
974 block_t ssa_blkaddr; /* start block address of SSA area */
975
976 unsigned int segment_count; /* total # of segments */
977 unsigned int main_segments; /* # of segments in main area */
978 unsigned int reserved_segments; /* # of reserved segments */
979 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
980 unsigned int ovp_segments; /* # of overprovision segments */
981
982 /* a threshold to reclaim prefree segments */
983 unsigned int rec_prefree_segments;
984
985 /* for batched trimming */
986 unsigned int trim_sections; /* # of sections to trim */
987
988 struct list_head sit_entry_set; /* sit entry set list */
989
990 unsigned int ipu_policy; /* in-place-update policy */
991 unsigned int min_ipu_util; /* in-place-update threshold */
992 unsigned int min_fsync_blocks; /* threshold for fsync */
993 unsigned int min_seq_blocks; /* threshold for sequential blocks */
994 unsigned int min_hot_blocks; /* threshold for hot block allocation */
995 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
996
997 /* for flush command control */
998 struct flush_cmd_control *fcc_info;
999
1000 /* for discard command control */
1001 struct discard_cmd_control *dcc_info;
1002 };
1003
1004 /*
1005 * For superblock
1006 */
1007 /*
1008 * COUNT_TYPE for monitoring
1009 *
1010 * f2fs monitors the number of several block types such as on-writeback,
1011 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1012 */
1013 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1014 enum count_type {
1015 F2FS_DIRTY_DENTS,
1016 F2FS_DIRTY_DATA,
1017 F2FS_DIRTY_QDATA,
1018 F2FS_DIRTY_NODES,
1019 F2FS_DIRTY_META,
1020 F2FS_INMEM_PAGES,
1021 F2FS_DIRTY_IMETA,
1022 F2FS_WB_CP_DATA,
1023 F2FS_WB_DATA,
1024 F2FS_RD_DATA,
1025 F2FS_RD_NODE,
1026 F2FS_RD_META,
1027 F2FS_DIO_WRITE,
1028 F2FS_DIO_READ,
1029 NR_COUNT_TYPE,
1030 };
1031
1032 /*
1033 * The below are the page types of bios used in submit_bio().
1034 * The available types are:
1035 * DATA User data pages. It operates as async mode.
1036 * NODE Node pages. It operates as async mode.
1037 * META FS metadata pages such as SIT, NAT, CP.
1038 * NR_PAGE_TYPE The number of page types.
1039 * META_FLUSH Make sure the previous pages are written
1040 * with waiting the bio's completion
1041 * ... Only can be used with META.
1042 */
1043 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1044 enum page_type {
1045 DATA,
1046 NODE,
1047 META,
1048 NR_PAGE_TYPE,
1049 META_FLUSH,
1050 INMEM, /* the below types are used by tracepoints only. */
1051 INMEM_DROP,
1052 INMEM_INVALIDATE,
1053 INMEM_REVOKE,
1054 IPU,
1055 OPU,
1056 };
1057
1058 enum temp_type {
1059 HOT = 0, /* must be zero for meta bio */
1060 WARM,
1061 COLD,
1062 NR_TEMP_TYPE,
1063 };
1064
1065 enum need_lock_type {
1066 LOCK_REQ = 0,
1067 LOCK_DONE,
1068 LOCK_RETRY,
1069 };
1070
1071 enum cp_reason_type {
1072 CP_NO_NEEDED,
1073 CP_NON_REGULAR,
1074 CP_COMPRESSED,
1075 CP_HARDLINK,
1076 CP_SB_NEED_CP,
1077 CP_WRONG_PINO,
1078 CP_NO_SPC_ROLL,
1079 CP_NODE_NEED_CP,
1080 CP_FASTBOOT_MODE,
1081 CP_SPEC_LOG_NUM,
1082 CP_RECOVER_DIR,
1083 };
1084
1085 enum iostat_type {
1086 /* WRITE IO */
1087 APP_DIRECT_IO, /* app direct write IOs */
1088 APP_BUFFERED_IO, /* app buffered write IOs */
1089 APP_WRITE_IO, /* app write IOs */
1090 APP_MAPPED_IO, /* app mapped IOs */
1091 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1092 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1093 FS_META_IO, /* meta IOs from kworker/reclaimer */
1094 FS_GC_DATA_IO, /* data IOs from forground gc */
1095 FS_GC_NODE_IO, /* node IOs from forground gc */
1096 FS_CP_DATA_IO, /* data IOs from checkpoint */
1097 FS_CP_NODE_IO, /* node IOs from checkpoint */
1098 FS_CP_META_IO, /* meta IOs from checkpoint */
1099
1100 /* READ IO */
1101 APP_DIRECT_READ_IO, /* app direct read IOs */
1102 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1103 APP_READ_IO, /* app read IOs */
1104 APP_MAPPED_READ_IO, /* app mapped read IOs */
1105 FS_DATA_READ_IO, /* data read IOs */
1106 FS_GDATA_READ_IO, /* data read IOs from background gc */
1107 FS_CDATA_READ_IO, /* compressed data read IOs */
1108 FS_NODE_READ_IO, /* node read IOs */
1109 FS_META_READ_IO, /* meta read IOs */
1110
1111 /* other */
1112 FS_DISCARD, /* discard */
1113 NR_IO_TYPE,
1114 };
1115
1116 struct f2fs_io_info {
1117 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1118 nid_t ino; /* inode number */
1119 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1120 enum temp_type temp; /* contains HOT/WARM/COLD */
1121 int op; /* contains REQ_OP_ */
1122 int op_flags; /* req_flag_bits */
1123 block_t new_blkaddr; /* new block address to be written */
1124 block_t old_blkaddr; /* old block address before Cow */
1125 struct page *page; /* page to be written */
1126 struct page *encrypted_page; /* encrypted page */
1127 struct page *compressed_page; /* compressed page */
1128 struct list_head list; /* serialize IOs */
1129 bool submitted; /* indicate IO submission */
1130 int need_lock; /* indicate we need to lock cp_rwsem */
1131 bool in_list; /* indicate fio is in io_list */
1132 bool is_por; /* indicate IO is from recovery or not */
1133 bool retry; /* need to reallocate block address */
1134 int compr_blocks; /* # of compressed block addresses */
1135 bool encrypted; /* indicate file is encrypted */
1136 enum iostat_type io_type; /* io type */
1137 struct writeback_control *io_wbc; /* writeback control */
1138 struct bio **bio; /* bio for ipu */
1139 sector_t *last_block; /* last block number in bio */
1140 unsigned char version; /* version of the node */
1141 };
1142
1143 struct bio_entry {
1144 struct bio *bio;
1145 struct list_head list;
1146 };
1147
1148 #define is_read_io(rw) ((rw) == READ)
1149 struct f2fs_bio_info {
1150 struct f2fs_sb_info *sbi; /* f2fs superblock */
1151 struct bio *bio; /* bios to merge */
1152 sector_t last_block_in_bio; /* last block number */
1153 struct f2fs_io_info fio; /* store buffered io info. */
1154 struct rw_semaphore io_rwsem; /* blocking op for bio */
1155 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1156 struct list_head io_list; /* track fios */
1157 struct list_head bio_list; /* bio entry list head */
1158 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */
1159 };
1160
1161 #define FDEV(i) (sbi->devs[i])
1162 #define RDEV(i) (raw_super->devs[i])
1163 struct f2fs_dev_info {
1164 struct block_device *bdev;
1165 char path[MAX_PATH_LEN];
1166 unsigned int total_segments;
1167 block_t start_blk;
1168 block_t end_blk;
1169 #ifdef CONFIG_BLK_DEV_ZONED
1170 unsigned int nr_blkz; /* Total number of zones */
1171 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1172 block_t *zone_capacity_blocks; /* Array of zone capacity in blks */
1173 #endif
1174 };
1175
1176 enum inode_type {
1177 DIR_INODE, /* for dirty dir inode */
1178 FILE_INODE, /* for dirty regular/symlink inode */
1179 DIRTY_META, /* for all dirtied inode metadata */
1180 ATOMIC_FILE, /* for all atomic files */
1181 NR_INODE_TYPE,
1182 };
1183
1184 /* for inner inode cache management */
1185 struct inode_management {
1186 struct radix_tree_root ino_root; /* ino entry array */
1187 spinlock_t ino_lock; /* for ino entry lock */
1188 struct list_head ino_list; /* inode list head */
1189 unsigned long ino_num; /* number of entries */
1190 };
1191
1192 /* for GC_AT */
1193 struct atgc_management {
1194 bool atgc_enabled; /* ATGC is enabled or not */
1195 struct rb_root_cached root; /* root of victim rb-tree */
1196 struct list_head victim_list; /* linked with all victim entries */
1197 unsigned int victim_count; /* victim count in rb-tree */
1198 unsigned int candidate_ratio; /* candidate ratio */
1199 unsigned int max_candidate_count; /* max candidate count */
1200 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1201 unsigned long long age_threshold; /* age threshold */
1202 };
1203
1204 /* For s_flag in struct f2fs_sb_info */
1205 enum {
1206 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1207 SBI_IS_CLOSE, /* specify unmounting */
1208 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1209 SBI_POR_DOING, /* recovery is doing or not */
1210 SBI_NEED_SB_WRITE, /* need to recover superblock */
1211 SBI_NEED_CP, /* need to checkpoint */
1212 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1213 SBI_IS_RECOVERED, /* recovered orphan/data */
1214 SBI_CP_DISABLED, /* CP was disabled last mount */
1215 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1216 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1217 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1218 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1219 SBI_IS_RESIZEFS, /* resizefs is in process */
1220 };
1221
1222 enum {
1223 CP_TIME,
1224 REQ_TIME,
1225 DISCARD_TIME,
1226 GC_TIME,
1227 DISABLE_TIME,
1228 UMOUNT_DISCARD_TIMEOUT,
1229 MAX_TIME,
1230 };
1231
1232 enum {
1233 GC_NORMAL,
1234 GC_IDLE_CB,
1235 GC_IDLE_GREEDY,
1236 GC_IDLE_AT,
1237 GC_URGENT_HIGH,
1238 GC_URGENT_LOW,
1239 };
1240
1241 enum {
1242 BGGC_MODE_ON, /* background gc is on */
1243 BGGC_MODE_OFF, /* background gc is off */
1244 BGGC_MODE_SYNC, /*
1245 * background gc is on, migrating blocks
1246 * like foreground gc
1247 */
1248 };
1249
1250 enum {
1251 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1252 FS_MODE_LFS, /* use lfs allocation only */
1253 };
1254
1255 enum {
1256 WHINT_MODE_OFF, /* not pass down write hints */
1257 WHINT_MODE_USER, /* try to pass down hints given by users */
1258 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1259 };
1260
1261 enum {
1262 ALLOC_MODE_DEFAULT, /* stay default */
1263 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1264 };
1265
1266 enum fsync_mode {
1267 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1268 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1269 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1270 };
1271
1272 /*
1273 * this value is set in page as a private data which indicate that
1274 * the page is atomically written, and it is in inmem_pages list.
1275 */
1276 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
1277 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
1278
1279 #define IS_ATOMIC_WRITTEN_PAGE(page) \
1280 (page_private(page) == ATOMIC_WRITTEN_PAGE)
1281 #define IS_DUMMY_WRITTEN_PAGE(page) \
1282 (page_private(page) == DUMMY_WRITTEN_PAGE)
1283
1284 #ifdef CONFIG_F2FS_IO_TRACE
1285 #define IS_IO_TRACED_PAGE(page) \
1286 (page_private(page) > 0 && \
1287 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1288 #else
1289 #define IS_IO_TRACED_PAGE(page) (0)
1290 #endif
1291
1292 /* For compression */
1293 enum compress_algorithm_type {
1294 COMPRESS_LZO,
1295 COMPRESS_LZ4,
1296 COMPRESS_ZSTD,
1297 COMPRESS_LZORLE,
1298 COMPRESS_MAX,
1299 };
1300
1301 #define COMPRESS_DATA_RESERVED_SIZE 5
1302 struct compress_data {
1303 __le32 clen; /* compressed data size */
1304 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1305 u8 cdata[]; /* compressed data */
1306 };
1307
1308 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1309
1310 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1311
1312 /* compress context */
1313 struct compress_ctx {
1314 struct inode *inode; /* inode the context belong to */
1315 pgoff_t cluster_idx; /* cluster index number */
1316 unsigned int cluster_size; /* page count in cluster */
1317 unsigned int log_cluster_size; /* log of cluster size */
1318 struct page **rpages; /* pages store raw data in cluster */
1319 unsigned int nr_rpages; /* total page number in rpages */
1320 struct page **cpages; /* pages store compressed data in cluster */
1321 unsigned int nr_cpages; /* total page number in cpages */
1322 void *rbuf; /* virtual mapped address on rpages */
1323 struct compress_data *cbuf; /* virtual mapped address on cpages */
1324 size_t rlen; /* valid data length in rbuf */
1325 size_t clen; /* valid data length in cbuf */
1326 void *private; /* payload buffer for specified compression algorithm */
1327 void *private2; /* extra payload buffer */
1328 };
1329
1330 /* compress context for write IO path */
1331 struct compress_io_ctx {
1332 u32 magic; /* magic number to indicate page is compressed */
1333 struct inode *inode; /* inode the context belong to */
1334 struct page **rpages; /* pages store raw data in cluster */
1335 unsigned int nr_rpages; /* total page number in rpages */
1336 atomic_t pending_pages; /* in-flight compressed page count */
1337 };
1338
1339 /* decompress io context for read IO path */
1340 struct decompress_io_ctx {
1341 u32 magic; /* magic number to indicate page is compressed */
1342 struct inode *inode; /* inode the context belong to */
1343 pgoff_t cluster_idx; /* cluster index number */
1344 unsigned int cluster_size; /* page count in cluster */
1345 unsigned int log_cluster_size; /* log of cluster size */
1346 struct page **rpages; /* pages store raw data in cluster */
1347 unsigned int nr_rpages; /* total page number in rpages */
1348 struct page **cpages; /* pages store compressed data in cluster */
1349 unsigned int nr_cpages; /* total page number in cpages */
1350 struct page **tpages; /* temp pages to pad holes in cluster */
1351 void *rbuf; /* virtual mapped address on rpages */
1352 struct compress_data *cbuf; /* virtual mapped address on cpages */
1353 size_t rlen; /* valid data length in rbuf */
1354 size_t clen; /* valid data length in cbuf */
1355 atomic_t pending_pages; /* in-flight compressed page count */
1356 atomic_t verity_pages; /* in-flight page count for verity */
1357 bool failed; /* indicate IO error during decompression */
1358 void *private; /* payload buffer for specified decompression algorithm */
1359 void *private2; /* extra payload buffer */
1360 };
1361
1362 #define NULL_CLUSTER ((unsigned int)(~0))
1363 #define MIN_COMPRESS_LOG_SIZE 2
1364 #define MAX_COMPRESS_LOG_SIZE 8
1365 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1366
1367 #ifdef CONFIG_F2FS_GRADING_SSR
1368 struct f2fs_hot_cold_params {
1369 unsigned int enable;
1370 unsigned int hot_data_lower_limit;
1371 unsigned int hot_data_waterline;
1372 unsigned int warm_data_lower_limit;
1373 unsigned int warm_data_waterline;
1374 unsigned int hot_node_lower_limit;
1375 unsigned int hot_node_waterline;
1376 unsigned int warm_node_lower_limit;
1377 unsigned int warm_node_waterline;
1378 };
1379 #endif
1380
1381 struct f2fs_sb_info {
1382 struct super_block *sb; /* pointer to VFS super block */
1383 struct proc_dir_entry *s_proc; /* proc entry */
1384 struct f2fs_super_block *raw_super; /* raw super block pointer */
1385 struct rw_semaphore sb_lock; /* lock for raw super block */
1386 int valid_super_block; /* valid super block no */
1387 unsigned long s_flag; /* flags for sbi */
1388 struct mutex writepages; /* mutex for writepages() */
1389
1390 #ifdef CONFIG_BLK_DEV_ZONED
1391 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1392 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1393 #endif
1394
1395 /* for node-related operations */
1396 struct f2fs_nm_info *nm_info; /* node manager */
1397 struct inode *node_inode; /* cache node blocks */
1398
1399 /* for segment-related operations */
1400 struct f2fs_sm_info *sm_info; /* segment manager */
1401
1402 /* for bio operations */
1403 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1404 /* keep migration IO order for LFS mode */
1405 struct rw_semaphore io_order_lock;
1406 mempool_t *write_io_dummy; /* Dummy pages */
1407
1408 /* for checkpoint */
1409 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1410 int cur_cp_pack; /* remain current cp pack */
1411 spinlock_t cp_lock; /* for flag in ckpt */
1412 struct inode *meta_inode; /* cache meta blocks */
1413 struct mutex cp_mutex; /* checkpoint procedure lock */
1414 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1415 struct rw_semaphore node_write; /* locking node writes */
1416 struct rw_semaphore node_change; /* locking node change */
1417 wait_queue_head_t cp_wait;
1418 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1419 long interval_time[MAX_TIME]; /* to store thresholds */
1420
1421 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1422
1423 spinlock_t fsync_node_lock; /* for node entry lock */
1424 struct list_head fsync_node_list; /* node list head */
1425 unsigned int fsync_seg_id; /* sequence id */
1426 unsigned int fsync_node_num; /* number of node entries */
1427
1428 /* for orphan inode, use 0'th array */
1429 unsigned int max_orphans; /* max orphan inodes */
1430
1431 /* for inode management */
1432 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1433 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1434 struct mutex flush_lock; /* for flush exclusion */
1435
1436 /* for extent tree cache */
1437 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1438 struct mutex extent_tree_lock; /* locking extent radix tree */
1439 struct list_head extent_list; /* lru list for shrinker */
1440 spinlock_t extent_lock; /* locking extent lru list */
1441 atomic_t total_ext_tree; /* extent tree count */
1442 struct list_head zombie_list; /* extent zombie tree list */
1443 atomic_t total_zombie_tree; /* extent zombie tree count */
1444 atomic_t total_ext_node; /* extent info count */
1445
1446 /* basic filesystem units */
1447 unsigned int log_sectors_per_block; /* log2 sectors per block */
1448 unsigned int log_blocksize; /* log2 block size */
1449 unsigned int blocksize; /* block size */
1450 unsigned int root_ino_num; /* root inode number*/
1451 unsigned int node_ino_num; /* node inode number*/
1452 unsigned int meta_ino_num; /* meta inode number*/
1453 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1454 unsigned int blocks_per_seg; /* blocks per segment */
1455 unsigned int segs_per_sec; /* segments per section */
1456 unsigned int secs_per_zone; /* sections per zone */
1457 unsigned int total_sections; /* total section count */
1458 unsigned int total_node_count; /* total node block count */
1459 unsigned int total_valid_node_count; /* valid node block count */
1460 loff_t max_file_blocks; /* max block index of file */
1461 int dir_level; /* directory level */
1462 int readdir_ra; /* readahead inode in readdir */
1463
1464 block_t user_block_count; /* # of user blocks */
1465 block_t total_valid_block_count; /* # of valid blocks */
1466 block_t discard_blks; /* discard command candidats */
1467 block_t last_valid_block_count; /* for recovery */
1468 block_t reserved_blocks; /* configurable reserved blocks */
1469 block_t current_reserved_blocks; /* current reserved blocks */
1470
1471 /* Additional tracking for no checkpoint mode */
1472 block_t unusable_block_count; /* # of blocks saved by last cp */
1473
1474 unsigned int nquota_files; /* # of quota sysfile */
1475 struct rw_semaphore quota_sem; /* blocking cp for flags */
1476
1477 /* # of pages, see count_type */
1478 atomic_t nr_pages[NR_COUNT_TYPE];
1479 /* # of allocated blocks */
1480 struct percpu_counter alloc_valid_block_count;
1481
1482 /* writeback control */
1483 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1484
1485 /* valid inode count */
1486 struct percpu_counter total_valid_inode_count;
1487
1488 struct f2fs_mount_info mount_opt; /* mount options */
1489
1490 /* for cleaning operations */
1491 struct rw_semaphore gc_lock; /*
1492 * semaphore for GC, avoid
1493 * race between GC and GC or CP
1494 */
1495 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1496 struct atgc_management am; /* atgc management */
1497 unsigned int cur_victim_sec; /* current victim section num */
1498 unsigned int gc_mode; /* current GC state */
1499 unsigned int next_victim_seg[2]; /* next segment in victim section */
1500
1501 /* for skip statistic */
1502 unsigned int atomic_files; /* # of opened atomic file */
1503 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1504 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1505
1506 /* threshold for gc trials on pinned files */
1507 u64 gc_pin_file_threshold;
1508 struct rw_semaphore pin_sem;
1509
1510 /* maximum # of trials to find a victim segment for SSR and GC */
1511 unsigned int max_victim_search;
1512 /* migration granularity of garbage collection, unit: segment */
1513 unsigned int migration_granularity;
1514
1515 /*
1516 * for stat information.
1517 * one is for the LFS mode, and the other is for the SSR mode.
1518 */
1519 #ifdef CONFIG_F2FS_STAT_FS
1520 struct f2fs_stat_info *stat_info; /* FS status information */
1521 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1522 unsigned int segment_count[2]; /* # of allocated segments */
1523 unsigned int block_count[2]; /* # of allocated blocks */
1524 atomic_t inplace_count; /* # of inplace update */
1525 atomic64_t total_hit_ext; /* # of lookup extent cache */
1526 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1527 atomic64_t read_hit_largest; /* # of hit largest extent node */
1528 atomic64_t read_hit_cached; /* # of hit cached extent node */
1529 atomic_t inline_xattr; /* # of inline_xattr inodes */
1530 atomic_t inline_inode; /* # of inline_data inodes */
1531 atomic_t inline_dir; /* # of inline_dentry inodes */
1532 atomic_t compr_inode; /* # of compressed inodes */
1533 atomic64_t compr_blocks; /* # of compressed blocks */
1534 atomic_t vw_cnt; /* # of volatile writes */
1535 atomic_t max_aw_cnt; /* max # of atomic writes */
1536 atomic_t max_vw_cnt; /* max # of volatile writes */
1537 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1538 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1539 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1540 #endif
1541 spinlock_t stat_lock; /* lock for stat operations */
1542
1543 /* For app/fs IO statistics */
1544 spinlock_t iostat_lock;
1545 unsigned long long rw_iostat[NR_IO_TYPE];
1546 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1547 bool iostat_enable;
1548 unsigned long iostat_next_period;
1549 unsigned int iostat_period_ms;
1550
1551 /* to attach REQ_META|REQ_FUA flags */
1552 unsigned int data_io_flag;
1553 unsigned int node_io_flag;
1554
1555 /* For sysfs suppport */
1556 struct kobject s_kobj;
1557 struct completion s_kobj_unregister;
1558
1559 /* For shrinker support */
1560 struct list_head s_list;
1561 int s_ndevs; /* number of devices */
1562 struct f2fs_dev_info *devs; /* for device list */
1563 unsigned int dirty_device; /* for checkpoint data flush */
1564 spinlock_t dev_lock; /* protect dirty_device */
1565 struct mutex umount_mutex;
1566 unsigned int shrinker_run_no;
1567
1568 /* For write statistics */
1569 u64 sectors_written_start;
1570 u64 kbytes_written;
1571
1572 /* Reference to checksum algorithm driver via cryptoapi */
1573 struct crypto_shash *s_chksum_driver;
1574
1575 /* Precomputed FS UUID checksum for seeding other checksums */
1576 __u32 s_chksum_seed;
1577
1578 struct workqueue_struct *post_read_wq; /* post read workqueue */
1579
1580 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1581 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1582
1583 #ifdef CONFIG_F2FS_FS_COMPRESSION
1584 struct kmem_cache *page_array_slab; /* page array entry */
1585 unsigned int page_array_slab_size; /* default page array slab size */
1586 #endif
1587
1588 #ifdef CONFIG_F2FS_GRADING_SSR
1589 struct f2fs_hot_cold_params hot_cold_params;
1590 #endif
1591 };
1592
1593 struct f2fs_private_dio {
1594 struct inode *inode;
1595 void *orig_private;
1596 bio_end_io_t *orig_end_io;
1597 bool write;
1598 };
1599
1600 #ifdef CONFIG_F2FS_FAULT_INJECTION
1601 #define f2fs_show_injection_info(sbi, type) \
1602 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1603 KERN_INFO, sbi->sb->s_id, \
1604 f2fs_fault_name[type], \
1605 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1606 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1607 {
1608 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1609
1610 if (!ffi->inject_rate)
1611 return false;
1612
1613 if (!IS_FAULT_SET(ffi, type))
1614 return false;
1615
1616 atomic_inc(&ffi->inject_ops);
1617 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1618 atomic_set(&ffi->inject_ops, 0);
1619 return true;
1620 }
1621 return false;
1622 }
1623 #else
1624 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1625 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1626 {
1627 return false;
1628 }
1629 #endif
1630
1631 /*
1632 * Test if the mounted volume is a multi-device volume.
1633 * - For a single regular disk volume, sbi->s_ndevs is 0.
1634 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1635 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1636 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1637 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1638 {
1639 return sbi->s_ndevs > 1;
1640 }
1641
1642 /* For write statistics. Suppose sector size is 512 bytes,
1643 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1644 */
1645 #define BD_PART_WRITTEN(s) \
1646 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1647 (s)->sectors_written_start) >> 1)
1648
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1649 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1650 {
1651 unsigned long now = jiffies;
1652
1653 sbi->last_time[type] = now;
1654
1655 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1656 if (type == REQ_TIME) {
1657 sbi->last_time[DISCARD_TIME] = now;
1658 sbi->last_time[GC_TIME] = now;
1659 }
1660 }
1661
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1662 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1663 {
1664 unsigned long interval = sbi->interval_time[type] * HZ;
1665
1666 return time_after(jiffies, sbi->last_time[type] + interval);
1667 }
1668
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1669 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1670 int type)
1671 {
1672 unsigned long interval = sbi->interval_time[type] * HZ;
1673 unsigned int wait_ms = 0;
1674 long delta;
1675
1676 delta = (sbi->last_time[type] + interval) - jiffies;
1677 if (delta > 0)
1678 wait_ms = jiffies_to_msecs(delta);
1679
1680 return wait_ms;
1681 }
1682
1683 /*
1684 * Inline functions
1685 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1686 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1687 const void *address, unsigned int length)
1688 {
1689 struct {
1690 struct shash_desc shash;
1691 char ctx[4];
1692 } desc;
1693 int err;
1694
1695 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1696
1697 desc.shash.tfm = sbi->s_chksum_driver;
1698 *(u32 *)desc.ctx = crc;
1699
1700 err = crypto_shash_update(&desc.shash, address, length);
1701 BUG_ON(err);
1702
1703 return *(u32 *)desc.ctx;
1704 }
1705
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1706 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1707 unsigned int length)
1708 {
1709 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1710 }
1711
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1712 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1713 void *buf, size_t buf_size)
1714 {
1715 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1716 }
1717
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1718 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1719 const void *address, unsigned int length)
1720 {
1721 return __f2fs_crc32(sbi, crc, address, length);
1722 }
1723
F2FS_I(struct inode * inode)1724 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1725 {
1726 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1727 }
1728
F2FS_SB(struct super_block * sb)1729 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1730 {
1731 return sb->s_fs_info;
1732 }
1733
F2FS_I_SB(struct inode * inode)1734 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1735 {
1736 return F2FS_SB(inode->i_sb);
1737 }
1738
F2FS_M_SB(struct address_space * mapping)1739 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1740 {
1741 return F2FS_I_SB(mapping->host);
1742 }
1743
F2FS_P_SB(struct page * page)1744 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1745 {
1746 return F2FS_M_SB(page_file_mapping(page));
1747 }
1748
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1749 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1750 {
1751 return (struct f2fs_super_block *)(sbi->raw_super);
1752 }
1753
F2FS_CKPT(struct f2fs_sb_info * sbi)1754 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1755 {
1756 return (struct f2fs_checkpoint *)(sbi->ckpt);
1757 }
1758
F2FS_NODE(struct page * page)1759 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1760 {
1761 return (struct f2fs_node *)page_address(page);
1762 }
1763
F2FS_INODE(struct page * page)1764 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1765 {
1766 return &((struct f2fs_node *)page_address(page))->i;
1767 }
1768
NM_I(struct f2fs_sb_info * sbi)1769 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1770 {
1771 return (struct f2fs_nm_info *)(sbi->nm_info);
1772 }
1773
SM_I(struct f2fs_sb_info * sbi)1774 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1775 {
1776 return (struct f2fs_sm_info *)(sbi->sm_info);
1777 }
1778
SIT_I(struct f2fs_sb_info * sbi)1779 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1780 {
1781 return (struct sit_info *)(SM_I(sbi)->sit_info);
1782 }
1783
FREE_I(struct f2fs_sb_info * sbi)1784 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1785 {
1786 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1787 }
1788
DIRTY_I(struct f2fs_sb_info * sbi)1789 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1790 {
1791 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1792 }
1793
META_MAPPING(struct f2fs_sb_info * sbi)1794 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1795 {
1796 return sbi->meta_inode->i_mapping;
1797 }
1798
NODE_MAPPING(struct f2fs_sb_info * sbi)1799 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1800 {
1801 return sbi->node_inode->i_mapping;
1802 }
1803
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1804 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1805 {
1806 return test_bit(type, &sbi->s_flag);
1807 }
1808
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1809 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1810 {
1811 set_bit(type, &sbi->s_flag);
1812 }
1813
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1814 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1815 {
1816 clear_bit(type, &sbi->s_flag);
1817 }
1818
cur_cp_version(struct f2fs_checkpoint * cp)1819 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1820 {
1821 return le64_to_cpu(cp->checkpoint_ver);
1822 }
1823
f2fs_qf_ino(struct super_block * sb,int type)1824 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1825 {
1826 if (type < F2FS_MAX_QUOTAS)
1827 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1828 return 0;
1829 }
1830
cur_cp_crc(struct f2fs_checkpoint * cp)1831 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1832 {
1833 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1834 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1835 }
1836
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1837 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1838 {
1839 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1840
1841 return ckpt_flags & f;
1842 }
1843
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1844 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1845 {
1846 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1847 }
1848
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1849 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1850 {
1851 unsigned int ckpt_flags;
1852
1853 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1854 ckpt_flags |= f;
1855 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1856 }
1857
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1858 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1859 {
1860 unsigned long flags;
1861
1862 spin_lock_irqsave(&sbi->cp_lock, flags);
1863 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1864 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1865 }
1866
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1867 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1868 {
1869 unsigned int ckpt_flags;
1870
1871 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1872 ckpt_flags &= (~f);
1873 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1874 }
1875
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1876 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1877 {
1878 unsigned long flags;
1879
1880 spin_lock_irqsave(&sbi->cp_lock, flags);
1881 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1882 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1883 }
1884
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1885 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1886 {
1887 unsigned long flags;
1888 unsigned char *nat_bits;
1889
1890 /*
1891 * In order to re-enable nat_bits we need to call fsck.f2fs by
1892 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1893 * so let's rely on regular fsck or unclean shutdown.
1894 */
1895
1896 if (lock)
1897 spin_lock_irqsave(&sbi->cp_lock, flags);
1898 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1899 nat_bits = NM_I(sbi)->nat_bits;
1900 NM_I(sbi)->nat_bits = NULL;
1901 if (lock)
1902 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1903
1904 kvfree(nat_bits);
1905 }
1906
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1907 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1908 struct cp_control *cpc)
1909 {
1910 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1911
1912 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1913 }
1914
f2fs_lock_op(struct f2fs_sb_info * sbi)1915 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1916 {
1917 down_read(&sbi->cp_rwsem);
1918 }
1919
f2fs_trylock_op(struct f2fs_sb_info * sbi)1920 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1921 {
1922 return down_read_trylock(&sbi->cp_rwsem);
1923 }
1924
f2fs_unlock_op(struct f2fs_sb_info * sbi)1925 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1926 {
1927 up_read(&sbi->cp_rwsem);
1928 }
1929
f2fs_lock_all(struct f2fs_sb_info * sbi)1930 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1931 {
1932 down_write(&sbi->cp_rwsem);
1933 }
1934
f2fs_unlock_all(struct f2fs_sb_info * sbi)1935 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1936 {
1937 up_write(&sbi->cp_rwsem);
1938 }
1939
__get_cp_reason(struct f2fs_sb_info * sbi)1940 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1941 {
1942 int reason = CP_SYNC;
1943
1944 if (test_opt(sbi, FASTBOOT))
1945 reason = CP_FASTBOOT;
1946 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1947 reason = CP_UMOUNT;
1948 return reason;
1949 }
1950
__remain_node_summaries(int reason)1951 static inline bool __remain_node_summaries(int reason)
1952 {
1953 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1954 }
1955
__exist_node_summaries(struct f2fs_sb_info * sbi)1956 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1957 {
1958 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1959 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1960 }
1961
1962 /*
1963 * Check whether the inode has blocks or not
1964 */
F2FS_HAS_BLOCKS(struct inode * inode)1965 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1966 {
1967 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1968
1969 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1970 }
1971
f2fs_has_xattr_block(unsigned int ofs)1972 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1973 {
1974 return ofs == XATTR_NODE_OFFSET;
1975 }
1976
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1977 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1978 struct inode *inode, bool cap)
1979 {
1980 if (!inode)
1981 return true;
1982 if (!test_opt(sbi, RESERVE_ROOT))
1983 return false;
1984 if (IS_NOQUOTA(inode))
1985 return true;
1986 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1987 return true;
1988 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1989 in_group_p(F2FS_OPTION(sbi).s_resgid))
1990 return true;
1991 if (cap && capable(CAP_SYS_RESOURCE))
1992 return true;
1993 return false;
1994 }
1995
1996 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)1997 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1998 struct inode *inode, blkcnt_t *count)
1999 {
2000 blkcnt_t diff = 0, release = 0;
2001 block_t avail_user_block_count;
2002 int ret;
2003
2004 ret = dquot_reserve_block(inode, *count);
2005 if (ret)
2006 return ret;
2007
2008 if (time_to_inject(sbi, FAULT_BLOCK)) {
2009 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2010 release = *count;
2011 goto release_quota;
2012 }
2013
2014 /*
2015 * let's increase this in prior to actual block count change in order
2016 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2017 */
2018 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2019
2020 spin_lock(&sbi->stat_lock);
2021 sbi->total_valid_block_count += (block_t)(*count);
2022 avail_user_block_count = sbi->user_block_count -
2023 sbi->current_reserved_blocks;
2024
2025 if (!__allow_reserved_blocks(sbi, inode, true))
2026 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2027
2028 if (F2FS_IO_ALIGNED(sbi))
2029 avail_user_block_count -= sbi->blocks_per_seg *
2030 SM_I(sbi)->additional_reserved_segments;
2031
2032 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2033 if (avail_user_block_count > sbi->unusable_block_count)
2034 avail_user_block_count -= sbi->unusable_block_count;
2035 else
2036 avail_user_block_count = 0;
2037 }
2038 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2039 diff = sbi->total_valid_block_count - avail_user_block_count;
2040 if (diff > *count)
2041 diff = *count;
2042 *count -= diff;
2043 release = diff;
2044 sbi->total_valid_block_count -= diff;
2045 if (!*count) {
2046 spin_unlock(&sbi->stat_lock);
2047 goto enospc;
2048 }
2049 }
2050 spin_unlock(&sbi->stat_lock);
2051
2052 if (unlikely(release)) {
2053 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2054 dquot_release_reservation_block(inode, release);
2055 }
2056 f2fs_i_blocks_write(inode, *count, true, true);
2057 return 0;
2058
2059 enospc:
2060 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2061 release_quota:
2062 dquot_release_reservation_block(inode, release);
2063 return -ENOSPC;
2064 }
2065
2066 __printf(2, 3)
2067 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2068
2069 #define f2fs_err(sbi, fmt, ...) \
2070 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2071 #define f2fs_warn(sbi, fmt, ...) \
2072 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2073 #define f2fs_notice(sbi, fmt, ...) \
2074 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2075 #define f2fs_info(sbi, fmt, ...) \
2076 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2077 #define f2fs_debug(sbi, fmt, ...) \
2078 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2079
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2080 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2081 struct inode *inode,
2082 block_t count)
2083 {
2084 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2085
2086 spin_lock(&sbi->stat_lock);
2087 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2088 sbi->total_valid_block_count -= (block_t)count;
2089 if (sbi->reserved_blocks &&
2090 sbi->current_reserved_blocks < sbi->reserved_blocks)
2091 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2092 sbi->current_reserved_blocks + count);
2093 spin_unlock(&sbi->stat_lock);
2094 if (unlikely(inode->i_blocks < sectors)) {
2095 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2096 inode->i_ino,
2097 (unsigned long long)inode->i_blocks,
2098 (unsigned long long)sectors);
2099 set_sbi_flag(sbi, SBI_NEED_FSCK);
2100 return;
2101 }
2102 f2fs_i_blocks_write(inode, count, false, true);
2103 }
2104
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2105 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2106 {
2107 atomic_inc(&sbi->nr_pages[count_type]);
2108
2109 if (count_type == F2FS_DIRTY_DENTS ||
2110 count_type == F2FS_DIRTY_NODES ||
2111 count_type == F2FS_DIRTY_META ||
2112 count_type == F2FS_DIRTY_QDATA ||
2113 count_type == F2FS_DIRTY_IMETA)
2114 set_sbi_flag(sbi, SBI_IS_DIRTY);
2115 }
2116
inode_inc_dirty_pages(struct inode * inode)2117 static inline void inode_inc_dirty_pages(struct inode *inode)
2118 {
2119 atomic_inc(&F2FS_I(inode)->dirty_pages);
2120 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2121 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2122 if (IS_NOQUOTA(inode))
2123 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2124 }
2125
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2126 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2127 {
2128 atomic_dec(&sbi->nr_pages[count_type]);
2129 }
2130
inode_dec_dirty_pages(struct inode * inode)2131 static inline void inode_dec_dirty_pages(struct inode *inode)
2132 {
2133 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2134 !S_ISLNK(inode->i_mode))
2135 return;
2136
2137 atomic_dec(&F2FS_I(inode)->dirty_pages);
2138 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2139 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2140 if (IS_NOQUOTA(inode))
2141 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2142 }
2143
get_pages(struct f2fs_sb_info * sbi,int count_type)2144 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2145 {
2146 return atomic_read(&sbi->nr_pages[count_type]);
2147 }
2148
get_dirty_pages(struct inode * inode)2149 static inline int get_dirty_pages(struct inode *inode)
2150 {
2151 return atomic_read(&F2FS_I(inode)->dirty_pages);
2152 }
2153
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2154 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2155 {
2156 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2157 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2158 sbi->log_blocks_per_seg;
2159
2160 return segs / sbi->segs_per_sec;
2161 }
2162
valid_user_blocks(struct f2fs_sb_info * sbi)2163 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2164 {
2165 return sbi->total_valid_block_count;
2166 }
2167
discard_blocks(struct f2fs_sb_info * sbi)2168 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2169 {
2170 return sbi->discard_blks;
2171 }
2172
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2173 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2174 {
2175 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2176
2177 /* return NAT or SIT bitmap */
2178 if (flag == NAT_BITMAP)
2179 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2180 else if (flag == SIT_BITMAP)
2181 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2182
2183 return 0;
2184 }
2185
__cp_payload(struct f2fs_sb_info * sbi)2186 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2187 {
2188 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2189 }
2190
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2191 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2192 {
2193 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2194 int offset;
2195
2196 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2197 offset = (flag == SIT_BITMAP) ?
2198 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2199 /*
2200 * if large_nat_bitmap feature is enabled, leave checksum
2201 * protection for all nat/sit bitmaps.
2202 */
2203 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2204 }
2205
2206 if (__cp_payload(sbi) > 0) {
2207 if (flag == NAT_BITMAP)
2208 return &ckpt->sit_nat_version_bitmap;
2209 else
2210 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2211 } else {
2212 offset = (flag == NAT_BITMAP) ?
2213 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2214 return &ckpt->sit_nat_version_bitmap + offset;
2215 }
2216 }
2217
__start_cp_addr(struct f2fs_sb_info * sbi)2218 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2219 {
2220 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2221
2222 if (sbi->cur_cp_pack == 2)
2223 start_addr += sbi->blocks_per_seg;
2224 return start_addr;
2225 }
2226
__start_cp_next_addr(struct f2fs_sb_info * sbi)2227 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2228 {
2229 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2230
2231 if (sbi->cur_cp_pack == 1)
2232 start_addr += sbi->blocks_per_seg;
2233 return start_addr;
2234 }
2235
__set_cp_next_pack(struct f2fs_sb_info * sbi)2236 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2237 {
2238 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2239 }
2240
__start_sum_addr(struct f2fs_sb_info * sbi)2241 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2242 {
2243 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2244 }
2245
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2246 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2247 struct inode *inode, bool is_inode)
2248 {
2249 block_t valid_block_count;
2250 unsigned int valid_node_count, user_block_count;
2251 int err;
2252
2253 if (is_inode) {
2254 if (inode) {
2255 err = dquot_alloc_inode(inode);
2256 if (err)
2257 return err;
2258 }
2259 } else {
2260 err = dquot_reserve_block(inode, 1);
2261 if (err)
2262 return err;
2263 }
2264
2265 if (time_to_inject(sbi, FAULT_BLOCK)) {
2266 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2267 goto enospc;
2268 }
2269
2270 spin_lock(&sbi->stat_lock);
2271
2272 valid_block_count = sbi->total_valid_block_count +
2273 sbi->current_reserved_blocks + 1;
2274
2275 if (!__allow_reserved_blocks(sbi, inode, false))
2276 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2277
2278 if (F2FS_IO_ALIGNED(sbi))
2279 valid_block_count += sbi->blocks_per_seg *
2280 SM_I(sbi)->additional_reserved_segments;
2281
2282 user_block_count = sbi->user_block_count;
2283 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2284 user_block_count -= sbi->unusable_block_count;
2285
2286 if (unlikely(valid_block_count > user_block_count)) {
2287 spin_unlock(&sbi->stat_lock);
2288 goto enospc;
2289 }
2290
2291 valid_node_count = sbi->total_valid_node_count + 1;
2292 if (unlikely(valid_node_count > sbi->total_node_count)) {
2293 spin_unlock(&sbi->stat_lock);
2294 goto enospc;
2295 }
2296
2297 sbi->total_valid_node_count++;
2298 sbi->total_valid_block_count++;
2299 spin_unlock(&sbi->stat_lock);
2300
2301 if (inode) {
2302 if (is_inode)
2303 f2fs_mark_inode_dirty_sync(inode, true);
2304 else
2305 f2fs_i_blocks_write(inode, 1, true, true);
2306 }
2307
2308 percpu_counter_inc(&sbi->alloc_valid_block_count);
2309 return 0;
2310
2311 enospc:
2312 if (is_inode) {
2313 if (inode)
2314 dquot_free_inode(inode);
2315 } else {
2316 dquot_release_reservation_block(inode, 1);
2317 }
2318 return -ENOSPC;
2319 }
2320
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2321 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2322 struct inode *inode, bool is_inode)
2323 {
2324 spin_lock(&sbi->stat_lock);
2325
2326 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2327 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2328
2329 sbi->total_valid_node_count--;
2330 sbi->total_valid_block_count--;
2331 if (sbi->reserved_blocks &&
2332 sbi->current_reserved_blocks < sbi->reserved_blocks)
2333 sbi->current_reserved_blocks++;
2334
2335 spin_unlock(&sbi->stat_lock);
2336
2337 if (is_inode) {
2338 dquot_free_inode(inode);
2339 } else {
2340 if (unlikely(inode->i_blocks == 0)) {
2341 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2342 inode->i_ino,
2343 (unsigned long long)inode->i_blocks);
2344 set_sbi_flag(sbi, SBI_NEED_FSCK);
2345 return;
2346 }
2347 f2fs_i_blocks_write(inode, 1, false, true);
2348 }
2349 }
2350
valid_node_count(struct f2fs_sb_info * sbi)2351 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2352 {
2353 return sbi->total_valid_node_count;
2354 }
2355
inc_valid_inode_count(struct f2fs_sb_info * sbi)2356 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2357 {
2358 percpu_counter_inc(&sbi->total_valid_inode_count);
2359 }
2360
dec_valid_inode_count(struct f2fs_sb_info * sbi)2361 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2362 {
2363 percpu_counter_dec(&sbi->total_valid_inode_count);
2364 }
2365
valid_inode_count(struct f2fs_sb_info * sbi)2366 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2367 {
2368 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2369 }
2370
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2371 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2372 pgoff_t index, bool for_write)
2373 {
2374 struct page *page;
2375
2376 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2377 if (!for_write)
2378 page = find_get_page_flags(mapping, index,
2379 FGP_LOCK | FGP_ACCESSED);
2380 else
2381 page = find_lock_page(mapping, index);
2382 if (page)
2383 return page;
2384
2385 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2386 f2fs_show_injection_info(F2FS_M_SB(mapping),
2387 FAULT_PAGE_ALLOC);
2388 return NULL;
2389 }
2390 }
2391
2392 if (!for_write)
2393 return grab_cache_page(mapping, index);
2394 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2395 }
2396
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2397 static inline struct page *f2fs_pagecache_get_page(
2398 struct address_space *mapping, pgoff_t index,
2399 int fgp_flags, gfp_t gfp_mask)
2400 {
2401 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2402 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2403 return NULL;
2404 }
2405
2406 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2407 }
2408
f2fs_copy_page(struct page * src,struct page * dst)2409 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2410 {
2411 char *src_kaddr = kmap(src);
2412 char *dst_kaddr = kmap(dst);
2413
2414 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2415 kunmap(dst);
2416 kunmap(src);
2417 }
2418
f2fs_put_page(struct page * page,int unlock)2419 static inline void f2fs_put_page(struct page *page, int unlock)
2420 {
2421 if (!page)
2422 return;
2423
2424 if (unlock) {
2425 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2426 unlock_page(page);
2427 }
2428 put_page(page);
2429 }
2430
f2fs_put_dnode(struct dnode_of_data * dn)2431 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2432 {
2433 if (dn->node_page)
2434 f2fs_put_page(dn->node_page, 1);
2435 if (dn->inode_page && dn->node_page != dn->inode_page)
2436 f2fs_put_page(dn->inode_page, 0);
2437 dn->node_page = NULL;
2438 dn->inode_page = NULL;
2439 }
2440
f2fs_kmem_cache_create(const char * name,size_t size)2441 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2442 size_t size)
2443 {
2444 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2445 }
2446
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2447 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2448 gfp_t flags)
2449 {
2450 void *entry;
2451
2452 entry = kmem_cache_alloc(cachep, flags);
2453 if (!entry)
2454 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2455 return entry;
2456 }
2457
is_idle(struct f2fs_sb_info * sbi,int type)2458 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2459 {
2460 if (sbi->gc_mode == GC_URGENT_HIGH)
2461 return true;
2462
2463 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2464 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2465 get_pages(sbi, F2FS_WB_CP_DATA) ||
2466 get_pages(sbi, F2FS_DIO_READ) ||
2467 get_pages(sbi, F2FS_DIO_WRITE))
2468 return false;
2469
2470 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2471 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2472 return false;
2473
2474 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2475 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2476 return false;
2477
2478 if (sbi->gc_mode == GC_URGENT_LOW &&
2479 (type == DISCARD_TIME || type == GC_TIME))
2480 return true;
2481
2482 return f2fs_time_over(sbi, type);
2483 }
2484
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2485 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2486 unsigned long index, void *item)
2487 {
2488 while (radix_tree_insert(root, index, item))
2489 cond_resched();
2490 }
2491
2492 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2493
IS_INODE(struct page * page)2494 static inline bool IS_INODE(struct page *page)
2495 {
2496 struct f2fs_node *p = F2FS_NODE(page);
2497
2498 return RAW_IS_INODE(p);
2499 }
2500
offset_in_addr(struct f2fs_inode * i)2501 static inline int offset_in_addr(struct f2fs_inode *i)
2502 {
2503 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2504 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2505 }
2506
blkaddr_in_node(struct f2fs_node * node)2507 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2508 {
2509 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2510 }
2511
2512 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2513 static inline block_t data_blkaddr(struct inode *inode,
2514 struct page *node_page, unsigned int offset)
2515 {
2516 struct f2fs_node *raw_node;
2517 __le32 *addr_array;
2518 int base = 0;
2519 bool is_inode = IS_INODE(node_page);
2520
2521 raw_node = F2FS_NODE(node_page);
2522
2523 if (is_inode) {
2524 if (!inode)
2525 /* from GC path only */
2526 base = offset_in_addr(&raw_node->i);
2527 else if (f2fs_has_extra_attr(inode))
2528 base = get_extra_isize(inode);
2529 }
2530
2531 addr_array = blkaddr_in_node(raw_node);
2532 return le32_to_cpu(addr_array[base + offset]);
2533 }
2534
f2fs_data_blkaddr(struct dnode_of_data * dn)2535 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2536 {
2537 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2538 }
2539
f2fs_test_bit(unsigned int nr,char * addr)2540 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2541 {
2542 int mask;
2543
2544 addr += (nr >> 3);
2545 mask = 1 << (7 - (nr & 0x07));
2546 return mask & *addr;
2547 }
2548
f2fs_set_bit(unsigned int nr,char * addr)2549 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2550 {
2551 int mask;
2552
2553 addr += (nr >> 3);
2554 mask = 1 << (7 - (nr & 0x07));
2555 *addr |= mask;
2556 }
2557
f2fs_clear_bit(unsigned int nr,char * addr)2558 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2559 {
2560 int mask;
2561
2562 addr += (nr >> 3);
2563 mask = 1 << (7 - (nr & 0x07));
2564 *addr &= ~mask;
2565 }
2566
f2fs_test_and_set_bit(unsigned int nr,char * addr)2567 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2568 {
2569 int mask;
2570 int ret;
2571
2572 addr += (nr >> 3);
2573 mask = 1 << (7 - (nr & 0x07));
2574 ret = mask & *addr;
2575 *addr |= mask;
2576 return ret;
2577 }
2578
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2579 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2580 {
2581 int mask;
2582 int ret;
2583
2584 addr += (nr >> 3);
2585 mask = 1 << (7 - (nr & 0x07));
2586 ret = mask & *addr;
2587 *addr &= ~mask;
2588 return ret;
2589 }
2590
f2fs_change_bit(unsigned int nr,char * addr)2591 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2592 {
2593 int mask;
2594
2595 addr += (nr >> 3);
2596 mask = 1 << (7 - (nr & 0x07));
2597 *addr ^= mask;
2598 }
2599
2600 /*
2601 * On-disk inode flags (f2fs_inode::i_flags)
2602 */
2603 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2604 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2605 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2606 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2607 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2608 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2609 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2610 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2611 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2612 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2613 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2614
2615 /* Flags that should be inherited by new inodes from their parent. */
2616 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2617 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2618 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2619
2620 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2621 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2622 F2FS_CASEFOLD_FL))
2623
2624 /* Flags that are appropriate for non-directories/regular files. */
2625 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2626
f2fs_mask_flags(umode_t mode,__u32 flags)2627 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2628 {
2629 if (S_ISDIR(mode))
2630 return flags;
2631 else if (S_ISREG(mode))
2632 return flags & F2FS_REG_FLMASK;
2633 else
2634 return flags & F2FS_OTHER_FLMASK;
2635 }
2636
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2637 static inline void __mark_inode_dirty_flag(struct inode *inode,
2638 int flag, bool set)
2639 {
2640 switch (flag) {
2641 case FI_INLINE_XATTR:
2642 case FI_INLINE_DATA:
2643 case FI_INLINE_DENTRY:
2644 case FI_NEW_INODE:
2645 if (set)
2646 return;
2647 fallthrough;
2648 case FI_DATA_EXIST:
2649 case FI_INLINE_DOTS:
2650 case FI_PIN_FILE:
2651 f2fs_mark_inode_dirty_sync(inode, true);
2652 }
2653 }
2654
set_inode_flag(struct inode * inode,int flag)2655 static inline void set_inode_flag(struct inode *inode, int flag)
2656 {
2657 set_bit(flag, F2FS_I(inode)->flags);
2658 __mark_inode_dirty_flag(inode, flag, true);
2659 }
2660
is_inode_flag_set(struct inode * inode,int flag)2661 static inline int is_inode_flag_set(struct inode *inode, int flag)
2662 {
2663 return test_bit(flag, F2FS_I(inode)->flags);
2664 }
2665
clear_inode_flag(struct inode * inode,int flag)2666 static inline void clear_inode_flag(struct inode *inode, int flag)
2667 {
2668 clear_bit(flag, F2FS_I(inode)->flags);
2669 __mark_inode_dirty_flag(inode, flag, false);
2670 }
2671
f2fs_verity_in_progress(struct inode * inode)2672 static inline bool f2fs_verity_in_progress(struct inode *inode)
2673 {
2674 return IS_ENABLED(CONFIG_FS_VERITY) &&
2675 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2676 }
2677
set_acl_inode(struct inode * inode,umode_t mode)2678 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2679 {
2680 F2FS_I(inode)->i_acl_mode = mode;
2681 set_inode_flag(inode, FI_ACL_MODE);
2682 f2fs_mark_inode_dirty_sync(inode, false);
2683 }
2684
f2fs_i_links_write(struct inode * inode,bool inc)2685 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2686 {
2687 if (inc)
2688 inc_nlink(inode);
2689 else
2690 drop_nlink(inode);
2691 f2fs_mark_inode_dirty_sync(inode, true);
2692 }
2693
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2694 static inline void f2fs_i_blocks_write(struct inode *inode,
2695 block_t diff, bool add, bool claim)
2696 {
2697 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2698 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2699
2700 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2701 if (add) {
2702 if (claim)
2703 dquot_claim_block(inode, diff);
2704 else
2705 dquot_alloc_block_nofail(inode, diff);
2706 } else {
2707 dquot_free_block(inode, diff);
2708 }
2709
2710 f2fs_mark_inode_dirty_sync(inode, true);
2711 if (clean || recover)
2712 set_inode_flag(inode, FI_AUTO_RECOVER);
2713 }
2714
f2fs_i_size_write(struct inode * inode,loff_t i_size)2715 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2716 {
2717 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2718 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2719
2720 if (i_size_read(inode) == i_size)
2721 return;
2722
2723 i_size_write(inode, i_size);
2724 f2fs_mark_inode_dirty_sync(inode, true);
2725 if (clean || recover)
2726 set_inode_flag(inode, FI_AUTO_RECOVER);
2727 }
2728
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2729 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2730 {
2731 F2FS_I(inode)->i_current_depth = depth;
2732 f2fs_mark_inode_dirty_sync(inode, true);
2733 }
2734
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2735 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2736 unsigned int count)
2737 {
2738 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2739 f2fs_mark_inode_dirty_sync(inode, true);
2740 }
2741
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2742 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2743 {
2744 F2FS_I(inode)->i_xattr_nid = xnid;
2745 f2fs_mark_inode_dirty_sync(inode, true);
2746 }
2747
f2fs_i_pino_write(struct inode * inode,nid_t pino)2748 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2749 {
2750 F2FS_I(inode)->i_pino = pino;
2751 f2fs_mark_inode_dirty_sync(inode, true);
2752 }
2753
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2754 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2755 {
2756 struct f2fs_inode_info *fi = F2FS_I(inode);
2757
2758 if (ri->i_inline & F2FS_INLINE_XATTR)
2759 set_bit(FI_INLINE_XATTR, fi->flags);
2760 if (ri->i_inline & F2FS_INLINE_DATA)
2761 set_bit(FI_INLINE_DATA, fi->flags);
2762 if (ri->i_inline & F2FS_INLINE_DENTRY)
2763 set_bit(FI_INLINE_DENTRY, fi->flags);
2764 if (ri->i_inline & F2FS_DATA_EXIST)
2765 set_bit(FI_DATA_EXIST, fi->flags);
2766 if (ri->i_inline & F2FS_INLINE_DOTS)
2767 set_bit(FI_INLINE_DOTS, fi->flags);
2768 if (ri->i_inline & F2FS_EXTRA_ATTR)
2769 set_bit(FI_EXTRA_ATTR, fi->flags);
2770 if (ri->i_inline & F2FS_PIN_FILE)
2771 set_bit(FI_PIN_FILE, fi->flags);
2772 }
2773
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2774 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2775 {
2776 ri->i_inline = 0;
2777
2778 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2779 ri->i_inline |= F2FS_INLINE_XATTR;
2780 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2781 ri->i_inline |= F2FS_INLINE_DATA;
2782 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2783 ri->i_inline |= F2FS_INLINE_DENTRY;
2784 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2785 ri->i_inline |= F2FS_DATA_EXIST;
2786 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2787 ri->i_inline |= F2FS_INLINE_DOTS;
2788 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2789 ri->i_inline |= F2FS_EXTRA_ATTR;
2790 if (is_inode_flag_set(inode, FI_PIN_FILE))
2791 ri->i_inline |= F2FS_PIN_FILE;
2792 }
2793
f2fs_has_extra_attr(struct inode * inode)2794 static inline int f2fs_has_extra_attr(struct inode *inode)
2795 {
2796 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2797 }
2798
f2fs_has_inline_xattr(struct inode * inode)2799 static inline int f2fs_has_inline_xattr(struct inode *inode)
2800 {
2801 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2802 }
2803
f2fs_compressed_file(struct inode * inode)2804 static inline int f2fs_compressed_file(struct inode *inode)
2805 {
2806 return S_ISREG(inode->i_mode) &&
2807 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2808 }
2809
addrs_per_inode(struct inode * inode)2810 static inline unsigned int addrs_per_inode(struct inode *inode)
2811 {
2812 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2813 get_inline_xattr_addrs(inode);
2814
2815 if (!f2fs_compressed_file(inode))
2816 return addrs;
2817 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2818 }
2819
addrs_per_block(struct inode * inode)2820 static inline unsigned int addrs_per_block(struct inode *inode)
2821 {
2822 if (!f2fs_compressed_file(inode))
2823 return DEF_ADDRS_PER_BLOCK;
2824 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2825 }
2826
inline_xattr_addr(struct inode * inode,struct page * page)2827 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2828 {
2829 struct f2fs_inode *ri = F2FS_INODE(page);
2830
2831 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2832 get_inline_xattr_addrs(inode)]);
2833 }
2834
inline_xattr_size(struct inode * inode)2835 static inline int inline_xattr_size(struct inode *inode)
2836 {
2837 if (f2fs_has_inline_xattr(inode))
2838 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2839 return 0;
2840 }
2841
f2fs_has_inline_data(struct inode * inode)2842 static inline int f2fs_has_inline_data(struct inode *inode)
2843 {
2844 return is_inode_flag_set(inode, FI_INLINE_DATA);
2845 }
2846
f2fs_exist_data(struct inode * inode)2847 static inline int f2fs_exist_data(struct inode *inode)
2848 {
2849 return is_inode_flag_set(inode, FI_DATA_EXIST);
2850 }
2851
f2fs_has_inline_dots(struct inode * inode)2852 static inline int f2fs_has_inline_dots(struct inode *inode)
2853 {
2854 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2855 }
2856
f2fs_is_mmap_file(struct inode * inode)2857 static inline int f2fs_is_mmap_file(struct inode *inode)
2858 {
2859 return is_inode_flag_set(inode, FI_MMAP_FILE);
2860 }
2861
f2fs_is_pinned_file(struct inode * inode)2862 static inline bool f2fs_is_pinned_file(struct inode *inode)
2863 {
2864 return is_inode_flag_set(inode, FI_PIN_FILE);
2865 }
2866
f2fs_is_atomic_file(struct inode * inode)2867 static inline bool f2fs_is_atomic_file(struct inode *inode)
2868 {
2869 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2870 }
2871
f2fs_is_commit_atomic_write(struct inode * inode)2872 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2873 {
2874 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2875 }
2876
f2fs_is_volatile_file(struct inode * inode)2877 static inline bool f2fs_is_volatile_file(struct inode *inode)
2878 {
2879 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2880 }
2881
f2fs_is_first_block_written(struct inode * inode)2882 static inline bool f2fs_is_first_block_written(struct inode *inode)
2883 {
2884 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2885 }
2886
f2fs_is_drop_cache(struct inode * inode)2887 static inline bool f2fs_is_drop_cache(struct inode *inode)
2888 {
2889 return is_inode_flag_set(inode, FI_DROP_CACHE);
2890 }
2891
inline_data_addr(struct inode * inode,struct page * page)2892 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2893 {
2894 struct f2fs_inode *ri = F2FS_INODE(page);
2895 int extra_size = get_extra_isize(inode);
2896
2897 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2898 }
2899
f2fs_has_inline_dentry(struct inode * inode)2900 static inline int f2fs_has_inline_dentry(struct inode *inode)
2901 {
2902 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2903 }
2904
is_file(struct inode * inode,int type)2905 static inline int is_file(struct inode *inode, int type)
2906 {
2907 return F2FS_I(inode)->i_advise & type;
2908 }
2909
set_file(struct inode * inode,int type)2910 static inline void set_file(struct inode *inode, int type)
2911 {
2912 F2FS_I(inode)->i_advise |= type;
2913 f2fs_mark_inode_dirty_sync(inode, true);
2914 }
2915
clear_file(struct inode * inode,int type)2916 static inline void clear_file(struct inode *inode, int type)
2917 {
2918 F2FS_I(inode)->i_advise &= ~type;
2919 f2fs_mark_inode_dirty_sync(inode, true);
2920 }
2921
f2fs_is_time_consistent(struct inode * inode)2922 static inline bool f2fs_is_time_consistent(struct inode *inode)
2923 {
2924 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2925 return false;
2926 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2927 return false;
2928 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2929 return false;
2930 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2931 &F2FS_I(inode)->i_crtime))
2932 return false;
2933 return true;
2934 }
2935
f2fs_skip_inode_update(struct inode * inode,int dsync)2936 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2937 {
2938 bool ret;
2939
2940 if (dsync) {
2941 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2942
2943 spin_lock(&sbi->inode_lock[DIRTY_META]);
2944 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2945 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2946 return ret;
2947 }
2948 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2949 file_keep_isize(inode) ||
2950 i_size_read(inode) & ~PAGE_MASK)
2951 return false;
2952
2953 if (!f2fs_is_time_consistent(inode))
2954 return false;
2955
2956 spin_lock(&F2FS_I(inode)->i_size_lock);
2957 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2958 spin_unlock(&F2FS_I(inode)->i_size_lock);
2959
2960 return ret;
2961 }
2962
f2fs_readonly(struct super_block * sb)2963 static inline bool f2fs_readonly(struct super_block *sb)
2964 {
2965 return sb_rdonly(sb);
2966 }
2967
f2fs_cp_error(struct f2fs_sb_info * sbi)2968 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2969 {
2970 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2971 }
2972
is_dot_dotdot(const u8 * name,size_t len)2973 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2974 {
2975 if (len == 1 && name[0] == '.')
2976 return true;
2977
2978 if (len == 2 && name[0] == '.' && name[1] == '.')
2979 return true;
2980
2981 return false;
2982 }
2983
f2fs_may_extent_tree(struct inode * inode)2984 static inline bool f2fs_may_extent_tree(struct inode *inode)
2985 {
2986 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2987
2988 if (!test_opt(sbi, EXTENT_CACHE) ||
2989 is_inode_flag_set(inode, FI_NO_EXTENT) ||
2990 is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2991 return false;
2992
2993 /*
2994 * for recovered files during mount do not create extents
2995 * if shrinker is not registered.
2996 */
2997 if (list_empty(&sbi->s_list))
2998 return false;
2999
3000 return S_ISREG(inode->i_mode);
3001 }
3002
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3003 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3004 size_t size, gfp_t flags)
3005 {
3006 if (time_to_inject(sbi, FAULT_KMALLOC)) {
3007 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3008 return NULL;
3009 }
3010
3011 return kmalloc(size, flags);
3012 }
3013
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3014 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3015 size_t size, gfp_t flags)
3016 {
3017 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3018 }
3019
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3020 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3021 size_t size, gfp_t flags)
3022 {
3023 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3024 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3025 return NULL;
3026 }
3027
3028 return kvmalloc(size, flags);
3029 }
3030
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3031 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3032 size_t size, gfp_t flags)
3033 {
3034 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3035 }
3036
get_extra_isize(struct inode * inode)3037 static inline int get_extra_isize(struct inode *inode)
3038 {
3039 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3040 }
3041
get_inline_xattr_addrs(struct inode * inode)3042 static inline int get_inline_xattr_addrs(struct inode *inode)
3043 {
3044 return F2FS_I(inode)->i_inline_xattr_size;
3045 }
3046
3047 #define f2fs_get_inode_mode(i) \
3048 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3049 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3050
3051 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3052 (offsetof(struct f2fs_inode, i_extra_end) - \
3053 offsetof(struct f2fs_inode, i_extra_isize)) \
3054
3055 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3056 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3057 ((offsetof(typeof(*(f2fs_inode)), field) + \
3058 sizeof((f2fs_inode)->field)) \
3059 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3060
3061 #define DEFAULT_IOSTAT_PERIOD_MS 3000
3062 #define MIN_IOSTAT_PERIOD_MS 100
3063 /* maximum period of iostat tracing is 1 day */
3064 #define MAX_IOSTAT_PERIOD_MS 8640000
3065
f2fs_reset_iostat(struct f2fs_sb_info * sbi)3066 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3067 {
3068 int i;
3069
3070 spin_lock(&sbi->iostat_lock);
3071 for (i = 0; i < NR_IO_TYPE; i++) {
3072 sbi->rw_iostat[i] = 0;
3073 sbi->prev_rw_iostat[i] = 0;
3074 }
3075 spin_unlock(&sbi->iostat_lock);
3076 }
3077
3078 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3079
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)3080 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3081 enum iostat_type type, unsigned long long io_bytes)
3082 {
3083 if (!sbi->iostat_enable)
3084 return;
3085 spin_lock(&sbi->iostat_lock);
3086 sbi->rw_iostat[type] += io_bytes;
3087
3088 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3089 sbi->rw_iostat[APP_BUFFERED_IO] =
3090 sbi->rw_iostat[APP_WRITE_IO] -
3091 sbi->rw_iostat[APP_DIRECT_IO];
3092
3093 if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3094 sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3095 sbi->rw_iostat[APP_READ_IO] -
3096 sbi->rw_iostat[APP_DIRECT_READ_IO];
3097 spin_unlock(&sbi->iostat_lock);
3098
3099 f2fs_record_iostat(sbi);
3100 }
3101
fs_free_space_threshold(struct f2fs_sb_info * sbi)3102 static inline block_t fs_free_space_threshold(struct f2fs_sb_info *sbi)
3103 {
3104 return (block_t)(SM_I(sbi)->main_segments * sbi->blocks_per_seg *
3105 FS_FREE_SPACE_PERCENT) / HUNDRED_PERCENT;
3106 }
3107
device_free_space_threshold(struct f2fs_sb_info * sbi)3108 static inline block_t device_free_space_threshold(struct f2fs_sb_info *sbi)
3109 {
3110 return (block_t)(SM_I(sbi)->main_segments * sbi->blocks_per_seg *
3111 DEVICE_FREE_SPACE_PERCENT) / HUNDRED_PERCENT;
3112 }
3113
3114 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3115
3116 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3117
3118 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3119 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3120 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3121 block_t blkaddr, int type)
3122 {
3123 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3124 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3125 blkaddr, type);
3126 f2fs_bug_on(sbi, 1);
3127 }
3128 }
3129
__is_valid_data_blkaddr(block_t blkaddr)3130 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3131 {
3132 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3133 blkaddr == COMPRESS_ADDR)
3134 return false;
3135 return true;
3136 }
3137
f2fs_set_page_private(struct page * page,unsigned long data)3138 static inline void f2fs_set_page_private(struct page *page,
3139 unsigned long data)
3140 {
3141 if (PagePrivate(page))
3142 return;
3143
3144 attach_page_private(page, (void *)data);
3145 }
3146
f2fs_clear_page_private(struct page * page)3147 static inline void f2fs_clear_page_private(struct page *page)
3148 {
3149 detach_page_private(page);
3150 }
3151
3152 /*
3153 * file.c
3154 */
3155 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3156 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3157 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3158 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3159 int f2fs_truncate(struct inode *inode);
3160 int f2fs_getattr(const struct path *path, struct kstat *stat,
3161 u32 request_mask, unsigned int flags);
3162 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3163 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3164 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3165 int f2fs_precache_extents(struct inode *inode);
3166 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3167 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3168 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3169 int f2fs_pin_file_control(struct inode *inode, bool inc);
3170
3171 /*
3172 * inode.c
3173 */
3174 void f2fs_set_inode_flags(struct inode *inode);
3175 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3176 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3177 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3178 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3179 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3180 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3181 void f2fs_update_inode_page(struct inode *inode);
3182 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3183 void f2fs_evict_inode(struct inode *inode);
3184 void f2fs_handle_failed_inode(struct inode *inode);
3185
3186 /*
3187 * namei.c
3188 */
3189 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3190 bool hot, bool set);
3191 struct dentry *f2fs_get_parent(struct dentry *child);
3192
3193 /*
3194 * dir.c
3195 */
3196 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3197 int f2fs_init_casefolded_name(const struct inode *dir,
3198 struct f2fs_filename *fname);
3199 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3200 int lookup, struct f2fs_filename *fname);
3201 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3202 struct f2fs_filename *fname);
3203 void f2fs_free_filename(struct f2fs_filename *fname);
3204 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3205 const struct f2fs_filename *fname, int *max_slots);
3206 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3207 unsigned int start_pos, struct fscrypt_str *fstr);
3208 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3209 struct f2fs_dentry_ptr *d);
3210 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3211 const struct f2fs_filename *fname, struct page *dpage);
3212 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3213 unsigned int current_depth);
3214 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3215 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3216 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3217 const struct f2fs_filename *fname,
3218 struct page **res_page);
3219 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3220 const struct qstr *child, struct page **res_page);
3221 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3222 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3223 struct page **page);
3224 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3225 struct page *page, struct inode *inode);
3226 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3227 const struct f2fs_filename *fname);
3228 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3229 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3230 unsigned int bit_pos);
3231 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3232 struct inode *inode, nid_t ino, umode_t mode);
3233 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3234 struct inode *inode, nid_t ino, umode_t mode);
3235 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3236 struct inode *inode, nid_t ino, umode_t mode);
3237 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3238 struct inode *dir, struct inode *inode);
3239 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3240 bool f2fs_empty_dir(struct inode *dir);
3241
f2fs_add_link(struct dentry * dentry,struct inode * inode)3242 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3243 {
3244 if (fscrypt_is_nokey_name(dentry))
3245 return -ENOKEY;
3246 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3247 inode, inode->i_ino, inode->i_mode);
3248 }
3249
3250 /*
3251 * super.c
3252 */
3253 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3254 void f2fs_inode_synced(struct inode *inode);
3255 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3256 int f2fs_quota_sync(struct super_block *sb, int type);
3257 void f2fs_quota_off_umount(struct super_block *sb);
3258 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3259 int f2fs_sync_fs(struct super_block *sb, int sync);
3260 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3261
3262 /*
3263 * hash.c
3264 */
3265 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3266
3267 /*
3268 * node.c
3269 */
3270 struct dnode_of_data;
3271 struct node_info;
3272
3273 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3274 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3275 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3276 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3277 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3278 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3279 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3280 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3281 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3282 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3283 struct node_info *ni);
3284 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3285 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3286 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3287 int f2fs_truncate_xattr_node(struct inode *inode);
3288 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3289 unsigned int seq_id);
3290 int f2fs_remove_inode_page(struct inode *inode);
3291 struct page *f2fs_new_inode_page(struct inode *inode);
3292 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3293 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3294 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3295 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3296 int f2fs_move_node_page(struct page *node_page, int gc_type);
3297 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3298 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3299 struct writeback_control *wbc, bool atomic,
3300 unsigned int *seq_id);
3301 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3302 struct writeback_control *wbc,
3303 bool do_balance, enum iostat_type io_type);
3304 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3305 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3306 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3307 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3308 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3309 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3310 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3311 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3312 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3313 unsigned int segno, struct f2fs_summary_block *sum);
3314 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3315 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3316 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3317 int __init f2fs_create_node_manager_caches(void);
3318 void f2fs_destroy_node_manager_caches(void);
3319
3320 /*
3321 * segment.c
3322 */
3323 unsigned long find_rev_next_bit(const unsigned long *addr,
3324 unsigned long size, unsigned long offset);
3325 unsigned long find_rev_next_zero_bit(const unsigned long *addr,
3326 unsigned long size, unsigned long offset);
3327 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3328 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3329 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3330 void f2fs_drop_inmem_pages(struct inode *inode);
3331 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3332 int f2fs_commit_inmem_pages(struct inode *inode);
3333 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3334 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3335 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3336 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3337 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3338 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3339 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3340 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3341 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3342 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3343 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3344 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3345 struct cp_control *cpc);
3346 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3347 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3348 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3349 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3350 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3351 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3352 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3353 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3354 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3355 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3356 unsigned int *newseg, bool new_sec, int dir);
3357 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3358 unsigned int start, unsigned int end);
3359 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type);
3360 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3361 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3362 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3363 struct cp_control *cpc);
3364 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3365 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3366 block_t blk_addr);
3367 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3368 enum iostat_type io_type);
3369 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3370 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3371 struct f2fs_io_info *fio);
3372 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3373 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3374 block_t old_blkaddr, block_t new_blkaddr,
3375 bool recover_curseg, bool recover_newaddr,
3376 bool from_gc);
3377 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3378 block_t old_addr, block_t new_addr,
3379 unsigned char version, bool recover_curseg,
3380 bool recover_newaddr);
3381 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3382 block_t old_blkaddr, block_t *new_blkaddr,
3383 struct f2fs_summary *sum, int type,
3384 struct f2fs_io_info *fio, int contig_level);
3385 void f2fs_wait_on_page_writeback(struct page *page,
3386 enum page_type type, bool ordered, bool locked);
3387 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3388 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3389 block_t len);
3390 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3391 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3392 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3393 unsigned int val, int alloc);
3394 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3395 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3396 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3397 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3398 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3399 int __init f2fs_create_segment_manager_caches(void);
3400 void f2fs_destroy_segment_manager_caches(void);
3401 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3402 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3403 enum page_type type, enum temp_type temp);
3404 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3405 unsigned int segno);
3406 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3407 unsigned int segno);
3408
3409 /*
3410 * checkpoint.c
3411 */
3412 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3413 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3414 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3415 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3416 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3417 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3418 block_t blkaddr, int type);
3419 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3420 int type, bool sync);
3421 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3422 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3423 long nr_to_write, enum iostat_type io_type);
3424 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3425 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3426 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3427 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3428 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3429 unsigned int devidx, int type);
3430 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3431 unsigned int devidx, int type);
3432 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3433 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3434 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3435 void f2fs_add_orphan_inode(struct inode *inode);
3436 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3437 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3438 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3439 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3440 void f2fs_remove_dirty_inode(struct inode *inode);
3441 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3442 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3443 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3444 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3445 int __init f2fs_create_checkpoint_caches(void);
3446 void f2fs_destroy_checkpoint_caches(void);
3447
3448 /*
3449 * data.c
3450 */
3451 int __init f2fs_init_bioset(void);
3452 void f2fs_destroy_bioset(void);
3453 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3454 int f2fs_init_bio_entry_cache(void);
3455 void f2fs_destroy_bio_entry_cache(void);
3456 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3457 struct bio *bio, enum page_type type);
3458 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3459 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3460 struct inode *inode, struct page *page,
3461 nid_t ino, enum page_type type);
3462 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3463 struct bio **bio, struct page *page);
3464 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3465 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3466 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3467 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3468 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3469 block_t blk_addr, struct bio *bio);
3470 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3471 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3472 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3473 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3474 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3475 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3476 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3477 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3478 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3479 int op_flags, bool for_write);
3480 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3481 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3482 bool for_write);
3483 struct page *f2fs_get_new_data_page(struct inode *inode,
3484 struct page *ipage, pgoff_t index, bool new_i_size);
3485 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3486 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3487 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3488 int create, int flag);
3489 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3490 u64 start, u64 len);
3491 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3492 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3493 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3494 int f2fs_write_single_data_page(struct page *page, int *submitted,
3495 struct bio **bio, sector_t *last_block,
3496 struct writeback_control *wbc,
3497 enum iostat_type io_type,
3498 int compr_blocks, bool allow_balance);
3499 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3500 unsigned int length);
3501 int f2fs_release_page(struct page *page, gfp_t wait);
3502 #ifdef CONFIG_MIGRATION
3503 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3504 struct page *page, enum migrate_mode mode);
3505 #endif
3506 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3507 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3508 int f2fs_init_post_read_processing(void);
3509 void f2fs_destroy_post_read_processing(void);
3510 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3511 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3512
3513 /*
3514 * gc.c
3515 */
3516 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3517 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3518 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3519 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3520 unsigned int segno);
3521 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3522 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3523 int __init f2fs_create_garbage_collection_cache(void);
3524 void f2fs_destroy_garbage_collection_cache(void);
3525
3526 /*
3527 * recovery.c
3528 */
3529 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3530 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3531 int __init f2fs_create_recovery_cache(void);
3532 void f2fs_destroy_recovery_cache(void);
3533
3534 /*
3535 * debug.c
3536 */
3537 #ifdef CONFIG_F2FS_STAT_FS
3538 struct f2fs_stat_info {
3539 struct list_head stat_list;
3540 struct f2fs_sb_info *sbi;
3541 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3542 int main_area_segs, main_area_sections, main_area_zones;
3543 unsigned long long hit_largest, hit_cached, hit_rbtree;
3544 unsigned long long hit_total, total_ext;
3545 int ext_tree, zombie_tree, ext_node;
3546 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3547 int ndirty_data, ndirty_qdata;
3548 int inmem_pages;
3549 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3550 int nats, dirty_nats, sits, dirty_sits;
3551 int free_nids, avail_nids, alloc_nids;
3552 int total_count, utilization;
3553 int bg_gc, nr_wb_cp_data, nr_wb_data;
3554 int nr_rd_data, nr_rd_node, nr_rd_meta;
3555 int nr_dio_read, nr_dio_write;
3556 unsigned int io_skip_bggc, other_skip_bggc;
3557 int nr_flushing, nr_flushed, flush_list_empty;
3558 int nr_discarding, nr_discarded;
3559 int nr_discard_cmd;
3560 unsigned int undiscard_blks;
3561 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3562 int compr_inode;
3563 unsigned long long compr_blocks;
3564 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3565 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3566 unsigned int bimodal, avg_vblocks;
3567 int util_free, util_valid, util_invalid;
3568 int rsvd_segs, overp_segs;
3569 int dirty_count, node_pages, meta_pages;
3570 int prefree_count, call_count, cp_count, bg_cp_count;
3571 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3572 int bg_node_segs, bg_data_segs;
3573 int tot_blks, data_blks, node_blks;
3574 int bg_data_blks, bg_node_blks;
3575 unsigned long long skipped_atomic_files[2];
3576 int curseg[NR_CURSEG_TYPE];
3577 int cursec[NR_CURSEG_TYPE];
3578 int curzone[NR_CURSEG_TYPE];
3579 unsigned int dirty_seg[NR_CURSEG_TYPE];
3580 unsigned int full_seg[NR_CURSEG_TYPE];
3581 unsigned int valid_blks[NR_CURSEG_TYPE];
3582
3583 unsigned int meta_count[META_MAX];
3584 unsigned int segment_count[2];
3585 unsigned int block_count[2];
3586 unsigned int inplace_count;
3587 unsigned long long base_mem, cache_mem, page_mem;
3588 };
3589
F2FS_STAT(struct f2fs_sb_info * sbi)3590 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3591 {
3592 return (struct f2fs_stat_info *)sbi->stat_info;
3593 }
3594
3595 #define stat_inc_cp_count(si) ((si)->cp_count++)
3596 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3597 #define stat_inc_call_count(si) ((si)->call_count++)
3598 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3599 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3600 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3601 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3602 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3603 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3604 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3605 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3606 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3607 #define stat_inc_inline_xattr(inode) \
3608 do { \
3609 if (f2fs_has_inline_xattr(inode)) \
3610 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3611 } while (0)
3612 #define stat_dec_inline_xattr(inode) \
3613 do { \
3614 if (f2fs_has_inline_xattr(inode)) \
3615 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3616 } while (0)
3617 #define stat_inc_inline_inode(inode) \
3618 do { \
3619 if (f2fs_has_inline_data(inode)) \
3620 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3621 } while (0)
3622 #define stat_dec_inline_inode(inode) \
3623 do { \
3624 if (f2fs_has_inline_data(inode)) \
3625 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3626 } while (0)
3627 #define stat_inc_inline_dir(inode) \
3628 do { \
3629 if (f2fs_has_inline_dentry(inode)) \
3630 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3631 } while (0)
3632 #define stat_dec_inline_dir(inode) \
3633 do { \
3634 if (f2fs_has_inline_dentry(inode)) \
3635 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3636 } while (0)
3637 #define stat_inc_compr_inode(inode) \
3638 do { \
3639 if (f2fs_compressed_file(inode)) \
3640 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3641 } while (0)
3642 #define stat_dec_compr_inode(inode) \
3643 do { \
3644 if (f2fs_compressed_file(inode)) \
3645 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3646 } while (0)
3647 #define stat_add_compr_blocks(inode, blocks) \
3648 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3649 #define stat_sub_compr_blocks(inode, blocks) \
3650 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3651 #define stat_inc_meta_count(sbi, blkaddr) \
3652 do { \
3653 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3654 atomic_inc(&(sbi)->meta_count[META_CP]); \
3655 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3656 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3657 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3658 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3659 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3660 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3661 } while (0)
3662 #define stat_inc_seg_type(sbi, curseg) \
3663 ((sbi)->segment_count[(curseg)->alloc_type]++)
3664 #define stat_inc_block_count(sbi, curseg) \
3665 ((sbi)->block_count[(curseg)->alloc_type]++)
3666 #define stat_inc_inplace_blocks(sbi) \
3667 (atomic_inc(&(sbi)->inplace_count))
3668 #define stat_update_max_atomic_write(inode) \
3669 do { \
3670 int cur = F2FS_I_SB(inode)->atomic_files; \
3671 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3672 if (cur > max) \
3673 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3674 } while (0)
3675 #define stat_inc_volatile_write(inode) \
3676 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3677 #define stat_dec_volatile_write(inode) \
3678 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3679 #define stat_update_max_volatile_write(inode) \
3680 do { \
3681 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3682 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3683 if (cur > max) \
3684 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3685 } while (0)
3686 #define stat_inc_seg_count(sbi, type, gc_type) \
3687 do { \
3688 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3689 si->tot_segs++; \
3690 if ((type) == SUM_TYPE_DATA) { \
3691 si->data_segs++; \
3692 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3693 } else { \
3694 si->node_segs++; \
3695 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3696 } \
3697 } while (0)
3698
3699 #define stat_inc_tot_blk_count(si, blks) \
3700 ((si)->tot_blks += (blks))
3701
3702 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3703 do { \
3704 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3705 stat_inc_tot_blk_count(si, blks); \
3706 si->data_blks += (blks); \
3707 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3708 } while (0)
3709
3710 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3711 do { \
3712 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3713 stat_inc_tot_blk_count(si, blks); \
3714 si->node_blks += (blks); \
3715 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3716 } while (0)
3717
3718 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3719 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3720 void __init f2fs_create_root_stats(void);
3721 void f2fs_destroy_root_stats(void);
3722 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3723 #else
3724 #define stat_inc_cp_count(si) do { } while (0)
3725 #define stat_inc_bg_cp_count(si) do { } while (0)
3726 #define stat_inc_call_count(si) do { } while (0)
3727 #define stat_inc_bggc_count(si) do { } while (0)
3728 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3729 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3730 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3731 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3732 #define stat_inc_total_hit(sbi) do { } while (0)
3733 #define stat_inc_rbtree_node_hit(sbi) do { } while (0)
3734 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3735 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3736 #define stat_inc_inline_xattr(inode) do { } while (0)
3737 #define stat_dec_inline_xattr(inode) do { } while (0)
3738 #define stat_inc_inline_inode(inode) do { } while (0)
3739 #define stat_dec_inline_inode(inode) do { } while (0)
3740 #define stat_inc_inline_dir(inode) do { } while (0)
3741 #define stat_dec_inline_dir(inode) do { } while (0)
3742 #define stat_inc_compr_inode(inode) do { } while (0)
3743 #define stat_dec_compr_inode(inode) do { } while (0)
3744 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
3745 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
3746 #define stat_inc_atomic_write(inode) do { } while (0)
3747 #define stat_dec_atomic_write(inode) do { } while (0)
3748 #define stat_update_max_atomic_write(inode) do { } while (0)
3749 #define stat_inc_volatile_write(inode) do { } while (0)
3750 #define stat_dec_volatile_write(inode) do { } while (0)
3751 #define stat_update_max_volatile_write(inode) do { } while (0)
3752 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3753 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3754 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3755 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3756 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3757 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3758 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3759 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3760
f2fs_build_stats(struct f2fs_sb_info * sbi)3761 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3762 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3763 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3764 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)3765 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3766 #endif
3767
3768 extern const struct file_operations f2fs_dir_operations;
3769 #ifdef CONFIG_UNICODE
3770 extern const struct dentry_operations f2fs_dentry_ops;
3771 #endif
3772 extern const struct file_operations f2fs_file_operations;
3773 extern const struct inode_operations f2fs_file_inode_operations;
3774 extern const struct address_space_operations f2fs_dblock_aops;
3775 extern const struct address_space_operations f2fs_node_aops;
3776 extern const struct address_space_operations f2fs_meta_aops;
3777 extern const struct inode_operations f2fs_dir_inode_operations;
3778 extern const struct inode_operations f2fs_symlink_inode_operations;
3779 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3780 extern const struct inode_operations f2fs_special_inode_operations;
3781 extern struct kmem_cache *f2fs_inode_entry_slab;
3782
3783 /*
3784 * inline.c
3785 */
3786 bool f2fs_may_inline_data(struct inode *inode);
3787 bool f2fs_may_inline_dentry(struct inode *inode);
3788 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3789 void f2fs_truncate_inline_inode(struct inode *inode,
3790 struct page *ipage, u64 from);
3791 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3792 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3793 int f2fs_convert_inline_inode(struct inode *inode);
3794 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3795 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3796 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3797 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3798 const struct f2fs_filename *fname,
3799 struct page **res_page);
3800 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3801 struct page *ipage);
3802 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3803 struct inode *inode, nid_t ino, umode_t mode);
3804 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3805 struct page *page, struct inode *dir,
3806 struct inode *inode);
3807 bool f2fs_empty_inline_dir(struct inode *dir);
3808 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3809 struct fscrypt_str *fstr);
3810 int f2fs_inline_data_fiemap(struct inode *inode,
3811 struct fiemap_extent_info *fieinfo,
3812 __u64 start, __u64 len);
3813
3814 /*
3815 * shrinker.c
3816 */
3817 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3818 struct shrink_control *sc);
3819 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3820 struct shrink_control *sc);
3821 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3822 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3823
3824 /*
3825 * extent_cache.c
3826 */
3827 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3828 struct rb_entry *cached_re, unsigned int ofs);
3829 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3830 struct rb_root_cached *root,
3831 struct rb_node **parent,
3832 unsigned long long key, bool *left_most);
3833 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3834 struct rb_root_cached *root,
3835 struct rb_node **parent,
3836 unsigned int ofs, bool *leftmost);
3837 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3838 struct rb_entry *cached_re, unsigned int ofs,
3839 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3840 struct rb_node ***insert_p, struct rb_node **insert_parent,
3841 bool force, bool *leftmost);
3842 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3843 struct rb_root_cached *root, bool check_key);
3844 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3845 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3846 void f2fs_drop_extent_tree(struct inode *inode);
3847 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3848 void f2fs_destroy_extent_tree(struct inode *inode);
3849 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3850 struct extent_info *ei);
3851 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3852 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3853 pgoff_t fofs, block_t blkaddr, unsigned int len);
3854 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3855 int __init f2fs_create_extent_cache(void);
3856 void f2fs_destroy_extent_cache(void);
3857
3858 /*
3859 * sysfs.c
3860 */
3861 int __init f2fs_init_sysfs(void);
3862 void f2fs_exit_sysfs(void);
3863 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3864 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3865
3866 /* verity.c */
3867 extern const struct fsverity_operations f2fs_verityops;
3868
3869 /*
3870 * crypto support
3871 */
f2fs_encrypted_file(struct inode * inode)3872 static inline bool f2fs_encrypted_file(struct inode *inode)
3873 {
3874 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3875 }
3876
f2fs_set_encrypted_inode(struct inode * inode)3877 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3878 {
3879 #ifdef CONFIG_FS_ENCRYPTION
3880 file_set_encrypt(inode);
3881 f2fs_set_inode_flags(inode);
3882 #endif
3883 }
3884
3885 /*
3886 * Returns true if the reads of the inode's data need to undergo some
3887 * postprocessing step, like decryption or authenticity verification.
3888 */
f2fs_post_read_required(struct inode * inode)3889 static inline bool f2fs_post_read_required(struct inode *inode)
3890 {
3891 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3892 f2fs_compressed_file(inode);
3893 }
3894
3895 /*
3896 * compress.c
3897 */
3898 #ifdef CONFIG_F2FS_FS_COMPRESSION
3899 bool f2fs_is_compressed_page(struct page *page);
3900 struct page *f2fs_compress_control_page(struct page *page);
3901 int f2fs_prepare_compress_overwrite(struct inode *inode,
3902 struct page **pagep, pgoff_t index, void **fsdata);
3903 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3904 pgoff_t index, unsigned copied);
3905 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3906 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3907 bool f2fs_is_compress_backend_ready(struct inode *inode);
3908 int f2fs_init_compress_mempool(void);
3909 void f2fs_destroy_compress_mempool(void);
3910 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3911 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3912 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3913 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3914 int f2fs_write_multi_pages(struct compress_ctx *cc,
3915 int *submitted,
3916 struct writeback_control *wbc,
3917 enum iostat_type io_type);
3918 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3919 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3920 unsigned nr_pages, sector_t *last_block_in_bio,
3921 bool is_readahead, bool for_write);
3922 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3923 void f2fs_free_dic(struct decompress_io_ctx *dic);
3924 void f2fs_decompress_end_io(struct page **rpages,
3925 unsigned int cluster_size, bool err, bool verity);
3926 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3927 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
3928 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3929 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3930 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3931 int __init f2fs_init_compress_cache(void);
3932 void f2fs_destroy_compress_cache(void);
3933 #else
f2fs_is_compressed_page(struct page * page)3934 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)3935 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3936 {
3937 if (!f2fs_compressed_file(inode))
3938 return true;
3939 /* not support compression */
3940 return false;
3941 }
f2fs_compress_control_page(struct page * page)3942 static inline struct page *f2fs_compress_control_page(struct page *page)
3943 {
3944 WARN_ON_ONCE(1);
3945 return ERR_PTR(-EINVAL);
3946 }
f2fs_init_compress_mempool(void)3947 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)3948 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)3949 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)3950 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)3951 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)3952 static inline void f2fs_destroy_compress_cache(void) { }
3953 #endif
3954
set_compress_context(struct inode * inode)3955 static inline void set_compress_context(struct inode *inode)
3956 {
3957 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3958
3959 F2FS_I(inode)->i_compress_algorithm =
3960 F2FS_OPTION(sbi).compress_algorithm;
3961 F2FS_I(inode)->i_log_cluster_size =
3962 F2FS_OPTION(sbi).compress_log_size;
3963 F2FS_I(inode)->i_cluster_size =
3964 1 << F2FS_I(inode)->i_log_cluster_size;
3965 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3966 set_inode_flag(inode, FI_COMPRESSED_FILE);
3967 stat_inc_compr_inode(inode);
3968 f2fs_mark_inode_dirty_sync(inode, true);
3969 }
3970
f2fs_disable_compressed_file(struct inode * inode)3971 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3972 {
3973 struct f2fs_inode_info *fi = F2FS_I(inode);
3974
3975 if (!f2fs_compressed_file(inode))
3976 return true;
3977 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
3978 return false;
3979
3980 fi->i_flags &= ~F2FS_COMPR_FL;
3981 stat_dec_compr_inode(inode);
3982 clear_inode_flag(inode, FI_COMPRESSED_FILE);
3983 f2fs_mark_inode_dirty_sync(inode, true);
3984 return true;
3985 }
3986
3987 #define F2FS_FEATURE_FUNCS(name, flagname) \
3988 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3989 { \
3990 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3991 }
3992
3993 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3994 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3995 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3996 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3997 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3998 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3999 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4000 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4001 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4002 F2FS_FEATURE_FUNCS(verity, VERITY);
4003 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4004 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4005 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4006
4007 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4008 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4009 block_t blkaddr)
4010 {
4011 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4012
4013 return test_bit(zno, FDEV(devi).blkz_seq);
4014 }
4015 #endif
4016
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4017 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4018 {
4019 return f2fs_sb_has_blkzoned(sbi);
4020 }
4021
f2fs_bdev_support_discard(struct block_device * bdev)4022 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4023 {
4024 return blk_queue_discard(bdev_get_queue(bdev)) ||
4025 bdev_is_zoned(bdev);
4026 }
4027
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4028 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4029 {
4030 int i;
4031
4032 if (!f2fs_is_multi_device(sbi))
4033 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4034
4035 for (i = 0; i < sbi->s_ndevs; i++)
4036 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4037 return true;
4038 return false;
4039 }
4040
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4041 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4042 {
4043 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4044 f2fs_hw_should_discard(sbi);
4045 }
4046
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4047 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4048 {
4049 int i;
4050
4051 if (!f2fs_is_multi_device(sbi))
4052 return bdev_read_only(sbi->sb->s_bdev);
4053
4054 for (i = 0; i < sbi->s_ndevs; i++)
4055 if (bdev_read_only(FDEV(i).bdev))
4056 return true;
4057 return false;
4058 }
4059
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4060 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4061 {
4062 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4063 }
4064
f2fs_may_compress(struct inode * inode)4065 static inline bool f2fs_may_compress(struct inode *inode)
4066 {
4067 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4068 f2fs_is_atomic_file(inode) ||
4069 f2fs_is_volatile_file(inode))
4070 return false;
4071 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4072 }
4073
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4074 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4075 u64 blocks, bool add)
4076 {
4077 int diff = F2FS_I(inode)->i_cluster_size - blocks;
4078 struct f2fs_inode_info *fi = F2FS_I(inode);
4079
4080 /* don't update i_compr_blocks if saved blocks were released */
4081 if (!add && !atomic_read(&fi->i_compr_blocks))
4082 return;
4083
4084 if (add) {
4085 atomic_add(diff, &fi->i_compr_blocks);
4086 stat_add_compr_blocks(inode, diff);
4087 } else {
4088 atomic_sub(diff, &fi->i_compr_blocks);
4089 stat_sub_compr_blocks(inode, diff);
4090 }
4091 f2fs_mark_inode_dirty_sync(inode, true);
4092 }
4093
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4094 static inline int block_unaligned_IO(struct inode *inode,
4095 struct kiocb *iocb, struct iov_iter *iter)
4096 {
4097 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4098 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4099 loff_t offset = iocb->ki_pos;
4100 unsigned long align = offset | iov_iter_alignment(iter);
4101
4102 return align & blocksize_mask;
4103 }
4104
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4105 static inline int allow_outplace_dio(struct inode *inode,
4106 struct kiocb *iocb, struct iov_iter *iter)
4107 {
4108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4109 int rw = iov_iter_rw(iter);
4110
4111 return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4112 !block_unaligned_IO(inode, iocb, iter));
4113 }
4114
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4115 static inline bool f2fs_force_buffered_io(struct inode *inode,
4116 struct kiocb *iocb, struct iov_iter *iter)
4117 {
4118 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4119 int rw = iov_iter_rw(iter);
4120
4121 if (f2fs_post_read_required(inode))
4122 return true;
4123 if (f2fs_is_multi_device(sbi))
4124 return true;
4125 /*
4126 * for blkzoned device, fallback direct IO to buffered IO, so
4127 * all IOs can be serialized by log-structured write.
4128 */
4129 if (f2fs_sb_has_blkzoned(sbi))
4130 return true;
4131 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4132 if (block_unaligned_IO(inode, iocb, iter))
4133 return true;
4134 if (F2FS_IO_ALIGNED(sbi))
4135 return true;
4136 }
4137 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4138 !IS_SWAPFILE(inode))
4139 return true;
4140
4141 return false;
4142 }
4143
4144 #ifdef CONFIG_F2FS_FAULT_INJECTION
4145 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4146 unsigned int type);
4147 #else
4148 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4149 #endif
4150
is_journalled_quota(struct f2fs_sb_info * sbi)4151 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4152 {
4153 #ifdef CONFIG_QUOTA
4154 if (f2fs_sb_has_quota_ino(sbi))
4155 return true;
4156 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4157 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4158 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4159 return true;
4160 #endif
4161 return false;
4162 }
4163
4164 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4165 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4166
4167 #endif /* _LINUX_F2FS_H */
4168