• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 #include <linux/fs.h>
22 
fuse_pages_alloc(unsigned int npages,gfp_t flags,struct fuse_page_desc ** desc)23 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
24 				      struct fuse_page_desc **desc)
25 {
26 	struct page **pages;
27 
28 	pages = kzalloc(npages * (sizeof(struct page *) +
29 				  sizeof(struct fuse_page_desc)), flags);
30 	*desc = (void *) (pages + npages);
31 
32 	return pages;
33 }
34 
fuse_send_open(struct fuse_mount * fm,u64 nodeid,struct file * file,int opcode,struct fuse_open_out * outargp)35 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
36 			  int opcode, struct fuse_open_out *outargp)
37 {
38 	struct fuse_open_in inarg;
39 	FUSE_ARGS(args);
40 
41 	memset(&inarg, 0, sizeof(inarg));
42 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
43 	if (!fm->fc->atomic_o_trunc)
44 		inarg.flags &= ~O_TRUNC;
45 	args.opcode = opcode;
46 	args.nodeid = nodeid;
47 	args.in_numargs = 1;
48 	args.in_args[0].size = sizeof(inarg);
49 	args.in_args[0].value = &inarg;
50 	args.out_numargs = 1;
51 	args.out_args[0].size = sizeof(*outargp);
52 	args.out_args[0].value = outargp;
53 
54 	return fuse_simple_request(fm, &args);
55 }
56 
57 struct fuse_release_args {
58 	struct fuse_args args;
59 	struct fuse_release_in inarg;
60 	struct inode *inode;
61 };
62 
fuse_file_alloc(struct fuse_mount * fm)63 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm)
64 {
65 	struct fuse_file *ff;
66 
67 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
68 	if (unlikely(!ff))
69 		return NULL;
70 
71 	ff->fm = fm;
72 	ff->release_args = kzalloc(sizeof(*ff->release_args),
73 				   GFP_KERNEL_ACCOUNT);
74 	if (!ff->release_args) {
75 		kfree(ff);
76 		return NULL;
77 	}
78 
79 	INIT_LIST_HEAD(&ff->write_entry);
80 	mutex_init(&ff->readdir.lock);
81 	refcount_set(&ff->count, 1);
82 	RB_CLEAR_NODE(&ff->polled_node);
83 	init_waitqueue_head(&ff->poll_wait);
84 
85 	ff->kh = atomic64_inc_return(&fm->fc->khctr);
86 
87 	return ff;
88 }
89 
fuse_file_free(struct fuse_file * ff)90 void fuse_file_free(struct fuse_file *ff)
91 {
92 	kfree(ff->release_args);
93 	mutex_destroy(&ff->readdir.lock);
94 	kfree(ff);
95 }
96 
fuse_file_get(struct fuse_file * ff)97 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
98 {
99 	refcount_inc(&ff->count);
100 	return ff;
101 }
102 
fuse_release_end(struct fuse_mount * fm,struct fuse_args * args,int error)103 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
104 			     int error)
105 {
106 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
107 
108 	iput(ra->inode);
109 	kfree(ra);
110 }
111 
fuse_file_put(struct fuse_file * ff,bool sync,bool isdir)112 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
113 {
114 	if (refcount_dec_and_test(&ff->count)) {
115 		struct fuse_args *args = &ff->release_args->args;
116 
117 		if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) {
118 			/* Do nothing when client does not implement 'open' */
119 			fuse_release_end(ff->fm, args, 0);
120 		} else if (sync) {
121 			fuse_simple_request(ff->fm, args);
122 			fuse_release_end(ff->fm, args, 0);
123 		} else {
124 			args->end = fuse_release_end;
125 			if (fuse_simple_background(ff->fm, args,
126 						   GFP_KERNEL | __GFP_NOFAIL))
127 				fuse_release_end(ff->fm, args, -ENOTCONN);
128 		}
129 		kfree(ff);
130 	}
131 }
132 
fuse_do_open(struct fuse_mount * fm,u64 nodeid,struct file * file,bool isdir)133 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
134 		 bool isdir)
135 {
136 	struct fuse_conn *fc = fm->fc;
137 	struct fuse_file *ff;
138 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
139 
140 	ff = fuse_file_alloc(fm);
141 	if (!ff)
142 		return -ENOMEM;
143 
144 	ff->fh = 0;
145 	/* Default for no-open */
146 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
147 	if (isdir ? !fc->no_opendir : !fc->no_open) {
148 		struct fuse_open_out outarg;
149 		int err;
150 
151 		err = fuse_send_open(fm, nodeid, file, opcode, &outarg);
152 		if (!err) {
153 			ff->fh = outarg.fh;
154 			ff->open_flags = outarg.open_flags;
155 
156 		} else if (err != -ENOSYS) {
157 			fuse_file_free(ff);
158 			return err;
159 		} else {
160 			if (isdir)
161 				fc->no_opendir = 1;
162 			else
163 				fc->no_open = 1;
164 		}
165 	}
166 
167 	if (isdir)
168 		ff->open_flags &= ~FOPEN_DIRECT_IO;
169 
170 	ff->nodeid = nodeid;
171 	file->private_data = ff;
172 
173 	return 0;
174 }
175 EXPORT_SYMBOL_GPL(fuse_do_open);
176 
fuse_link_write_file(struct file * file)177 static void fuse_link_write_file(struct file *file)
178 {
179 	struct inode *inode = file_inode(file);
180 	struct fuse_inode *fi = get_fuse_inode(inode);
181 	struct fuse_file *ff = file->private_data;
182 	/*
183 	 * file may be written through mmap, so chain it onto the
184 	 * inodes's write_file list
185 	 */
186 	spin_lock(&fi->lock);
187 	if (list_empty(&ff->write_entry))
188 		list_add(&ff->write_entry, &fi->write_files);
189 	spin_unlock(&fi->lock);
190 }
191 
fuse_finish_open(struct inode * inode,struct file * file)192 void fuse_finish_open(struct inode *inode, struct file *file)
193 {
194 	struct fuse_file *ff = file->private_data;
195 	struct fuse_conn *fc = get_fuse_conn(inode);
196 
197 	if (ff->open_flags & FOPEN_STREAM)
198 		stream_open(inode, file);
199 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 		nonseekable_open(inode, file);
201 
202 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
203 		struct fuse_inode *fi = get_fuse_inode(inode);
204 
205 		spin_lock(&fi->lock);
206 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
207 		i_size_write(inode, 0);
208 		spin_unlock(&fi->lock);
209 		truncate_pagecache(inode, 0);
210 		fuse_invalidate_attr(inode);
211 		if (fc->writeback_cache)
212 			file_update_time(file);
213 	} else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) {
214 		invalidate_inode_pages2(inode->i_mapping);
215 	}
216 
217 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
218 		fuse_link_write_file(file);
219 }
220 
fuse_open_common(struct inode * inode,struct file * file,bool isdir)221 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
222 {
223 	struct fuse_mount *fm = get_fuse_mount(inode);
224 	struct fuse_conn *fc = fm->fc;
225 	int err;
226 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
227 			  fc->atomic_o_trunc &&
228 			  fc->writeback_cache;
229 	bool dax_truncate = (file->f_flags & O_TRUNC) &&
230 			  fc->atomic_o_trunc && FUSE_IS_DAX(inode);
231 
232 	if (fuse_is_bad(inode))
233 		return -EIO;
234 
235 	err = generic_file_open(inode, file);
236 	if (err)
237 		return err;
238 
239 	if (is_wb_truncate || dax_truncate) {
240 		inode_lock(inode);
241 		fuse_set_nowrite(inode);
242 	}
243 
244 	if (dax_truncate) {
245 		down_write(&get_fuse_inode(inode)->i_mmap_sem);
246 		err = fuse_dax_break_layouts(inode, 0, 0);
247 		if (err)
248 			goto out;
249 	}
250 
251 	err = fuse_do_open(fm, get_node_id(inode), file, isdir);
252 	if (!err)
253 		fuse_finish_open(inode, file);
254 
255 out:
256 	if (dax_truncate)
257 		up_write(&get_fuse_inode(inode)->i_mmap_sem);
258 
259 	if (is_wb_truncate | dax_truncate) {
260 		fuse_release_nowrite(inode);
261 		inode_unlock(inode);
262 	}
263 
264 	return err;
265 }
266 
fuse_prepare_release(struct fuse_inode * fi,struct fuse_file * ff,int flags,int opcode)267 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
268 				 int flags, int opcode)
269 {
270 	struct fuse_conn *fc = ff->fm->fc;
271 	struct fuse_release_args *ra = ff->release_args;
272 
273 	/* Inode is NULL on error path of fuse_create_open() */
274 	if (likely(fi)) {
275 		spin_lock(&fi->lock);
276 		list_del(&ff->write_entry);
277 		spin_unlock(&fi->lock);
278 	}
279 	spin_lock(&fc->lock);
280 	if (!RB_EMPTY_NODE(&ff->polled_node))
281 		rb_erase(&ff->polled_node, &fc->polled_files);
282 	spin_unlock(&fc->lock);
283 
284 	wake_up_interruptible_all(&ff->poll_wait);
285 
286 	ra->inarg.fh = ff->fh;
287 	ra->inarg.flags = flags;
288 	ra->args.in_numargs = 1;
289 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
290 	ra->args.in_args[0].value = &ra->inarg;
291 	ra->args.opcode = opcode;
292 	ra->args.nodeid = ff->nodeid;
293 	ra->args.force = true;
294 	ra->args.nocreds = true;
295 }
296 
fuse_release_common(struct file * file,bool isdir)297 void fuse_release_common(struct file *file, bool isdir)
298 {
299 	struct fuse_inode *fi = get_fuse_inode(file_inode(file));
300 	struct fuse_file *ff = file->private_data;
301 	struct fuse_release_args *ra = ff->release_args;
302 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
303 
304 	fuse_prepare_release(fi, ff, file->f_flags, opcode);
305 
306 	if (ff->flock) {
307 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
308 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc,
309 							  (fl_owner_t) file);
310 	}
311 	/* Hold inode until release is finished */
312 	ra->inode = igrab(file_inode(file));
313 
314 	/*
315 	 * Normally this will send the RELEASE request, however if
316 	 * some asynchronous READ or WRITE requests are outstanding,
317 	 * the sending will be delayed.
318 	 *
319 	 * Make the release synchronous if this is a fuseblk mount,
320 	 * synchronous RELEASE is allowed (and desirable) in this case
321 	 * because the server can be trusted not to screw up.
322 	 */
323 	fuse_file_put(ff, ff->fm->fc->destroy, isdir);
324 }
325 
fuse_open(struct inode * inode,struct file * file)326 static int fuse_open(struct inode *inode, struct file *file)
327 {
328 	return fuse_open_common(inode, file, false);
329 }
330 
fuse_release(struct inode * inode,struct file * file)331 static int fuse_release(struct inode *inode, struct file *file)
332 {
333 	struct fuse_conn *fc = get_fuse_conn(inode);
334 
335 	/* see fuse_vma_close() for !writeback_cache case */
336 	if (fc->writeback_cache)
337 		write_inode_now(inode, 1);
338 
339 	fuse_release_common(file, false);
340 
341 	/* return value is ignored by VFS */
342 	return 0;
343 }
344 
fuse_sync_release(struct fuse_inode * fi,struct fuse_file * ff,int flags)345 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
346 {
347 	WARN_ON(refcount_read(&ff->count) > 1);
348 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
349 	/*
350 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
351 	 * synchronous, we are fine with not doing igrab() here"
352 	 */
353 	fuse_file_put(ff, true, false);
354 }
355 EXPORT_SYMBOL_GPL(fuse_sync_release);
356 
357 /*
358  * Scramble the ID space with XTEA, so that the value of the files_struct
359  * pointer is not exposed to userspace.
360  */
fuse_lock_owner_id(struct fuse_conn * fc,fl_owner_t id)361 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
362 {
363 	u32 *k = fc->scramble_key;
364 	u64 v = (unsigned long) id;
365 	u32 v0 = v;
366 	u32 v1 = v >> 32;
367 	u32 sum = 0;
368 	int i;
369 
370 	for (i = 0; i < 32; i++) {
371 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
372 		sum += 0x9E3779B9;
373 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
374 	}
375 
376 	return (u64) v0 + ((u64) v1 << 32);
377 }
378 
379 struct fuse_writepage_args {
380 	struct fuse_io_args ia;
381 	struct rb_node writepages_entry;
382 	struct list_head queue_entry;
383 	struct fuse_writepage_args *next;
384 	struct inode *inode;
385 };
386 
fuse_find_writeback(struct fuse_inode * fi,pgoff_t idx_from,pgoff_t idx_to)387 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
388 					    pgoff_t idx_from, pgoff_t idx_to)
389 {
390 	struct rb_node *n;
391 
392 	n = fi->writepages.rb_node;
393 
394 	while (n) {
395 		struct fuse_writepage_args *wpa;
396 		pgoff_t curr_index;
397 
398 		wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
399 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
400 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
401 		if (idx_from >= curr_index + wpa->ia.ap.num_pages)
402 			n = n->rb_right;
403 		else if (idx_to < curr_index)
404 			n = n->rb_left;
405 		else
406 			return wpa;
407 	}
408 	return NULL;
409 }
410 
411 /*
412  * Check if any page in a range is under writeback
413  *
414  * This is currently done by walking the list of writepage requests
415  * for the inode, which can be pretty inefficient.
416  */
fuse_range_is_writeback(struct inode * inode,pgoff_t idx_from,pgoff_t idx_to)417 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
418 				   pgoff_t idx_to)
419 {
420 	struct fuse_inode *fi = get_fuse_inode(inode);
421 	bool found;
422 
423 	spin_lock(&fi->lock);
424 	found = fuse_find_writeback(fi, idx_from, idx_to);
425 	spin_unlock(&fi->lock);
426 
427 	return found;
428 }
429 
fuse_page_is_writeback(struct inode * inode,pgoff_t index)430 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
431 {
432 	return fuse_range_is_writeback(inode, index, index);
433 }
434 
435 /*
436  * Wait for page writeback to be completed.
437  *
438  * Since fuse doesn't rely on the VM writeback tracking, this has to
439  * use some other means.
440  */
fuse_wait_on_page_writeback(struct inode * inode,pgoff_t index)441 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
442 {
443 	struct fuse_inode *fi = get_fuse_inode(inode);
444 
445 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
446 }
447 
448 /*
449  * Wait for all pending writepages on the inode to finish.
450  *
451  * This is currently done by blocking further writes with FUSE_NOWRITE
452  * and waiting for all sent writes to complete.
453  *
454  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
455  * could conflict with truncation.
456  */
fuse_sync_writes(struct inode * inode)457 static void fuse_sync_writes(struct inode *inode)
458 {
459 	fuse_set_nowrite(inode);
460 	fuse_release_nowrite(inode);
461 }
462 
fuse_flush(struct file * file,fl_owner_t id)463 static int fuse_flush(struct file *file, fl_owner_t id)
464 {
465 	struct inode *inode = file_inode(file);
466 	struct fuse_mount *fm = get_fuse_mount(inode);
467 	struct fuse_file *ff = file->private_data;
468 	struct fuse_flush_in inarg;
469 	FUSE_ARGS(args);
470 	int err;
471 
472 	if (fuse_is_bad(inode))
473 		return -EIO;
474 
475 	err = write_inode_now(inode, 1);
476 	if (err)
477 		return err;
478 
479 	inode_lock(inode);
480 	fuse_sync_writes(inode);
481 	inode_unlock(inode);
482 
483 	err = filemap_check_errors(file->f_mapping);
484 	if (err)
485 		return err;
486 
487 	err = 0;
488 	if (fm->fc->no_flush)
489 		goto inval_attr_out;
490 
491 	memset(&inarg, 0, sizeof(inarg));
492 	inarg.fh = ff->fh;
493 	inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
494 	args.opcode = FUSE_FLUSH;
495 	args.nodeid = get_node_id(inode);
496 	args.in_numargs = 1;
497 	args.in_args[0].size = sizeof(inarg);
498 	args.in_args[0].value = &inarg;
499 	args.force = true;
500 
501 	err = fuse_simple_request(fm, &args);
502 	if (err == -ENOSYS) {
503 		fm->fc->no_flush = 1;
504 		err = 0;
505 	}
506 
507 inval_attr_out:
508 	/*
509 	 * In memory i_blocks is not maintained by fuse, if writeback cache is
510 	 * enabled, i_blocks from cached attr may not be accurate.
511 	 */
512 	if (!err && fm->fc->writeback_cache)
513 		fuse_invalidate_attr(inode);
514 	return err;
515 }
516 
fuse_fsync_common(struct file * file,loff_t start,loff_t end,int datasync,int opcode)517 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
518 		      int datasync, int opcode)
519 {
520 	struct inode *inode = file->f_mapping->host;
521 	struct fuse_mount *fm = get_fuse_mount(inode);
522 	struct fuse_file *ff = file->private_data;
523 	FUSE_ARGS(args);
524 	struct fuse_fsync_in inarg;
525 
526 	memset(&inarg, 0, sizeof(inarg));
527 	inarg.fh = ff->fh;
528 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
529 	args.opcode = opcode;
530 	args.nodeid = get_node_id(inode);
531 	args.in_numargs = 1;
532 	args.in_args[0].size = sizeof(inarg);
533 	args.in_args[0].value = &inarg;
534 	return fuse_simple_request(fm, &args);
535 }
536 
fuse_fsync(struct file * file,loff_t start,loff_t end,int datasync)537 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
538 		      int datasync)
539 {
540 	struct inode *inode = file->f_mapping->host;
541 	struct fuse_conn *fc = get_fuse_conn(inode);
542 	int err;
543 
544 	if (fuse_is_bad(inode))
545 		return -EIO;
546 
547 	inode_lock(inode);
548 
549 	/*
550 	 * Start writeback against all dirty pages of the inode, then
551 	 * wait for all outstanding writes, before sending the FSYNC
552 	 * request.
553 	 */
554 	err = file_write_and_wait_range(file, start, end);
555 	if (err)
556 		goto out;
557 
558 	fuse_sync_writes(inode);
559 
560 	/*
561 	 * Due to implementation of fuse writeback
562 	 * file_write_and_wait_range() does not catch errors.
563 	 * We have to do this directly after fuse_sync_writes()
564 	 */
565 	err = file_check_and_advance_wb_err(file);
566 	if (err)
567 		goto out;
568 
569 	err = sync_inode_metadata(inode, 1);
570 	if (err)
571 		goto out;
572 
573 	if (fc->no_fsync)
574 		goto out;
575 
576 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
577 	if (err == -ENOSYS) {
578 		fc->no_fsync = 1;
579 		err = 0;
580 	}
581 out:
582 	inode_unlock(inode);
583 
584 	return err;
585 }
586 
fuse_read_args_fill(struct fuse_io_args * ia,struct file * file,loff_t pos,size_t count,int opcode)587 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
588 			 size_t count, int opcode)
589 {
590 	struct fuse_file *ff = file->private_data;
591 	struct fuse_args *args = &ia->ap.args;
592 
593 	ia->read.in.fh = ff->fh;
594 	ia->read.in.offset = pos;
595 	ia->read.in.size = count;
596 	ia->read.in.flags = file->f_flags;
597 	args->opcode = opcode;
598 	args->nodeid = ff->nodeid;
599 	args->in_numargs = 1;
600 	args->in_args[0].size = sizeof(ia->read.in);
601 	args->in_args[0].value = &ia->read.in;
602 	args->out_argvar = true;
603 	args->out_numargs = 1;
604 	args->out_args[0].size = count;
605 }
606 
fuse_release_user_pages(struct fuse_args_pages * ap,bool should_dirty)607 static void fuse_release_user_pages(struct fuse_args_pages *ap,
608 				    bool should_dirty)
609 {
610 	unsigned int i;
611 
612 	for (i = 0; i < ap->num_pages; i++) {
613 		if (should_dirty)
614 			set_page_dirty_lock(ap->pages[i]);
615 		put_page(ap->pages[i]);
616 	}
617 }
618 
fuse_io_release(struct kref * kref)619 static void fuse_io_release(struct kref *kref)
620 {
621 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
622 }
623 
fuse_get_res_by_io(struct fuse_io_priv * io)624 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
625 {
626 	if (io->err)
627 		return io->err;
628 
629 	if (io->bytes >= 0 && io->write)
630 		return -EIO;
631 
632 	return io->bytes < 0 ? io->size : io->bytes;
633 }
634 
635 /**
636  * In case of short read, the caller sets 'pos' to the position of
637  * actual end of fuse request in IO request. Otherwise, if bytes_requested
638  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
639  *
640  * An example:
641  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
642  * both submitted asynchronously. The first of them was ACKed by userspace as
643  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
644  * second request was ACKed as short, e.g. only 1K was read, resulting in
645  * pos == 33K.
646  *
647  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
648  * will be equal to the length of the longest contiguous fragment of
649  * transferred data starting from the beginning of IO request.
650  */
fuse_aio_complete(struct fuse_io_priv * io,int err,ssize_t pos)651 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
652 {
653 	int left;
654 
655 	spin_lock(&io->lock);
656 	if (err)
657 		io->err = io->err ? : err;
658 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
659 		io->bytes = pos;
660 
661 	left = --io->reqs;
662 	if (!left && io->blocking)
663 		complete(io->done);
664 	spin_unlock(&io->lock);
665 
666 	if (!left && !io->blocking) {
667 		ssize_t res = fuse_get_res_by_io(io);
668 
669 		if (res >= 0) {
670 			struct inode *inode = file_inode(io->iocb->ki_filp);
671 			struct fuse_conn *fc = get_fuse_conn(inode);
672 			struct fuse_inode *fi = get_fuse_inode(inode);
673 
674 			spin_lock(&fi->lock);
675 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
676 			spin_unlock(&fi->lock);
677 		}
678 
679 		io->iocb->ki_complete(io->iocb, res, 0);
680 	}
681 
682 	kref_put(&io->refcnt, fuse_io_release);
683 }
684 
fuse_io_alloc(struct fuse_io_priv * io,unsigned int npages)685 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
686 					  unsigned int npages)
687 {
688 	struct fuse_io_args *ia;
689 
690 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
691 	if (ia) {
692 		ia->io = io;
693 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
694 						&ia->ap.descs);
695 		if (!ia->ap.pages) {
696 			kfree(ia);
697 			ia = NULL;
698 		}
699 	}
700 	return ia;
701 }
702 
fuse_io_free(struct fuse_io_args * ia)703 static void fuse_io_free(struct fuse_io_args *ia)
704 {
705 	kfree(ia->ap.pages);
706 	kfree(ia);
707 }
708 
fuse_aio_complete_req(struct fuse_mount * fm,struct fuse_args * args,int err)709 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
710 				  int err)
711 {
712 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
713 	struct fuse_io_priv *io = ia->io;
714 	ssize_t pos = -1;
715 
716 	fuse_release_user_pages(&ia->ap, io->should_dirty);
717 
718 	if (err) {
719 		/* Nothing */
720 	} else if (io->write) {
721 		if (ia->write.out.size > ia->write.in.size) {
722 			err = -EIO;
723 		} else if (ia->write.in.size != ia->write.out.size) {
724 			pos = ia->write.in.offset - io->offset +
725 				ia->write.out.size;
726 		}
727 	} else {
728 		u32 outsize = args->out_args[0].size;
729 
730 		if (ia->read.in.size != outsize)
731 			pos = ia->read.in.offset - io->offset + outsize;
732 	}
733 
734 	fuse_aio_complete(io, err, pos);
735 	fuse_io_free(ia);
736 }
737 
fuse_async_req_send(struct fuse_mount * fm,struct fuse_io_args * ia,size_t num_bytes)738 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
739 				   struct fuse_io_args *ia, size_t num_bytes)
740 {
741 	ssize_t err;
742 	struct fuse_io_priv *io = ia->io;
743 
744 	spin_lock(&io->lock);
745 	kref_get(&io->refcnt);
746 	io->size += num_bytes;
747 	io->reqs++;
748 	spin_unlock(&io->lock);
749 
750 	ia->ap.args.end = fuse_aio_complete_req;
751 	ia->ap.args.may_block = io->should_dirty;
752 	err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
753 	if (err)
754 		fuse_aio_complete_req(fm, &ia->ap.args, err);
755 
756 	return num_bytes;
757 }
758 
fuse_send_read(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)759 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
760 			      fl_owner_t owner)
761 {
762 	struct file *file = ia->io->iocb->ki_filp;
763 	struct fuse_file *ff = file->private_data;
764 	struct fuse_mount *fm = ff->fm;
765 
766 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
767 	if (owner != NULL) {
768 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
769 		ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
770 	}
771 
772 	if (ia->io->async)
773 		return fuse_async_req_send(fm, ia, count);
774 
775 	return fuse_simple_request(fm, &ia->ap.args);
776 }
777 
fuse_read_update_size(struct inode * inode,loff_t size,u64 attr_ver)778 static void fuse_read_update_size(struct inode *inode, loff_t size,
779 				  u64 attr_ver)
780 {
781 	struct fuse_conn *fc = get_fuse_conn(inode);
782 	struct fuse_inode *fi = get_fuse_inode(inode);
783 
784 	spin_lock(&fi->lock);
785 	if (attr_ver == fi->attr_version && size < inode->i_size &&
786 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
787 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
788 		i_size_write(inode, size);
789 	}
790 	spin_unlock(&fi->lock);
791 }
792 
fuse_short_read(struct inode * inode,u64 attr_ver,size_t num_read,struct fuse_args_pages * ap)793 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
794 			    struct fuse_args_pages *ap)
795 {
796 	struct fuse_conn *fc = get_fuse_conn(inode);
797 
798 	if (fc->writeback_cache) {
799 		/*
800 		 * A hole in a file. Some data after the hole are in page cache,
801 		 * but have not reached the client fs yet. So, the hole is not
802 		 * present there.
803 		 */
804 		int i;
805 		int start_idx = num_read >> PAGE_SHIFT;
806 		size_t off = num_read & (PAGE_SIZE - 1);
807 
808 		for (i = start_idx; i < ap->num_pages; i++) {
809 			zero_user_segment(ap->pages[i], off, PAGE_SIZE);
810 			off = 0;
811 		}
812 	} else {
813 		loff_t pos = page_offset(ap->pages[0]) + num_read;
814 		fuse_read_update_size(inode, pos, attr_ver);
815 	}
816 }
817 
fuse_do_readpage(struct file * file,struct page * page)818 static int fuse_do_readpage(struct file *file, struct page *page)
819 {
820 	struct inode *inode = page->mapping->host;
821 	struct fuse_mount *fm = get_fuse_mount(inode);
822 	loff_t pos = page_offset(page);
823 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
824 	struct fuse_io_args ia = {
825 		.ap.args.page_zeroing = true,
826 		.ap.args.out_pages = true,
827 		.ap.num_pages = 1,
828 		.ap.pages = &page,
829 		.ap.descs = &desc,
830 	};
831 	ssize_t res;
832 	u64 attr_ver;
833 
834 	/*
835 	 * Page writeback can extend beyond the lifetime of the
836 	 * page-cache page, so make sure we read a properly synced
837 	 * page.
838 	 */
839 	fuse_wait_on_page_writeback(inode, page->index);
840 
841 	attr_ver = fuse_get_attr_version(fm->fc);
842 
843 	/* Don't overflow end offset */
844 	if (pos + (desc.length - 1) == LLONG_MAX)
845 		desc.length--;
846 
847 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
848 	res = fuse_simple_request(fm, &ia.ap.args);
849 	if (res < 0)
850 		return res;
851 	/*
852 	 * Short read means EOF.  If file size is larger, truncate it
853 	 */
854 	if (res < desc.length)
855 		fuse_short_read(inode, attr_ver, res, &ia.ap);
856 
857 	SetPageUptodate(page);
858 
859 	return 0;
860 }
861 
fuse_readpage(struct file * file,struct page * page)862 static int fuse_readpage(struct file *file, struct page *page)
863 {
864 	struct inode *inode = page->mapping->host;
865 	int err;
866 
867 	err = -EIO;
868 	if (fuse_is_bad(inode))
869 		goto out;
870 
871 	err = fuse_do_readpage(file, page);
872 	fuse_invalidate_atime(inode);
873  out:
874 	unlock_page(page);
875 	return err;
876 }
877 
fuse_readpages_end(struct fuse_mount * fm,struct fuse_args * args,int err)878 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
879 			       int err)
880 {
881 	int i;
882 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
883 	struct fuse_args_pages *ap = &ia->ap;
884 	size_t count = ia->read.in.size;
885 	size_t num_read = args->out_args[0].size;
886 	struct address_space *mapping = NULL;
887 
888 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
889 		mapping = ap->pages[i]->mapping;
890 
891 	if (mapping) {
892 		struct inode *inode = mapping->host;
893 
894 		/*
895 		 * Short read means EOF. If file size is larger, truncate it
896 		 */
897 		if (!err && num_read < count)
898 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
899 
900 		fuse_invalidate_atime(inode);
901 	}
902 
903 	for (i = 0; i < ap->num_pages; i++) {
904 		struct page *page = ap->pages[i];
905 
906 		if (!err)
907 			SetPageUptodate(page);
908 		else
909 			SetPageError(page);
910 		unlock_page(page);
911 		put_page(page);
912 	}
913 	if (ia->ff)
914 		fuse_file_put(ia->ff, false, false);
915 
916 	fuse_io_free(ia);
917 }
918 
fuse_send_readpages(struct fuse_io_args * ia,struct file * file)919 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
920 {
921 	struct fuse_file *ff = file->private_data;
922 	struct fuse_mount *fm = ff->fm;
923 	struct fuse_args_pages *ap = &ia->ap;
924 	loff_t pos = page_offset(ap->pages[0]);
925 	size_t count = ap->num_pages << PAGE_SHIFT;
926 	ssize_t res;
927 	int err;
928 
929 	ap->args.out_pages = true;
930 	ap->args.page_zeroing = true;
931 	ap->args.page_replace = true;
932 
933 	/* Don't overflow end offset */
934 	if (pos + (count - 1) == LLONG_MAX) {
935 		count--;
936 		ap->descs[ap->num_pages - 1].length--;
937 	}
938 	WARN_ON((loff_t) (pos + count) < 0);
939 
940 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
941 	ia->read.attr_ver = fuse_get_attr_version(fm->fc);
942 	if (fm->fc->async_read) {
943 		ia->ff = fuse_file_get(ff);
944 		ap->args.end = fuse_readpages_end;
945 		err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
946 		if (!err)
947 			return;
948 	} else {
949 		res = fuse_simple_request(fm, &ap->args);
950 		err = res < 0 ? res : 0;
951 	}
952 	fuse_readpages_end(fm, &ap->args, err);
953 }
954 
fuse_readahead(struct readahead_control * rac)955 static void fuse_readahead(struct readahead_control *rac)
956 {
957 	struct inode *inode = rac->mapping->host;
958 	struct fuse_conn *fc = get_fuse_conn(inode);
959 	unsigned int i, max_pages, nr_pages = 0;
960 
961 	if (fuse_is_bad(inode))
962 		return;
963 
964 	max_pages = min_t(unsigned int, fc->max_pages,
965 			fc->max_read / PAGE_SIZE);
966 
967 	for (;;) {
968 		struct fuse_io_args *ia;
969 		struct fuse_args_pages *ap;
970 
971 		nr_pages = readahead_count(rac) - nr_pages;
972 		if (nr_pages > max_pages)
973 			nr_pages = max_pages;
974 		if (nr_pages == 0)
975 			break;
976 		ia = fuse_io_alloc(NULL, nr_pages);
977 		if (!ia)
978 			return;
979 		ap = &ia->ap;
980 		nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
981 		for (i = 0; i < nr_pages; i++) {
982 			fuse_wait_on_page_writeback(inode,
983 						    readahead_index(rac) + i);
984 			ap->descs[i].length = PAGE_SIZE;
985 		}
986 		ap->num_pages = nr_pages;
987 		fuse_send_readpages(ia, rac->file);
988 	}
989 }
990 
fuse_cache_read_iter(struct kiocb * iocb,struct iov_iter * to)991 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
992 {
993 	struct inode *inode = iocb->ki_filp->f_mapping->host;
994 	struct fuse_conn *fc = get_fuse_conn(inode);
995 
996 	/*
997 	 * In auto invalidate mode, always update attributes on read.
998 	 * Otherwise, only update if we attempt to read past EOF (to ensure
999 	 * i_size is up to date).
1000 	 */
1001 	if (fc->auto_inval_data ||
1002 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1003 		int err;
1004 		err = fuse_update_attributes(inode, iocb->ki_filp);
1005 		if (err)
1006 			return err;
1007 	}
1008 
1009 	return generic_file_read_iter(iocb, to);
1010 }
1011 
fuse_write_args_fill(struct fuse_io_args * ia,struct fuse_file * ff,loff_t pos,size_t count)1012 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1013 				 loff_t pos, size_t count)
1014 {
1015 	struct fuse_args *args = &ia->ap.args;
1016 
1017 	ia->write.in.fh = ff->fh;
1018 	ia->write.in.offset = pos;
1019 	ia->write.in.size = count;
1020 	args->opcode = FUSE_WRITE;
1021 	args->nodeid = ff->nodeid;
1022 	args->in_numargs = 2;
1023 	if (ff->fm->fc->minor < 9)
1024 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1025 	else
1026 		args->in_args[0].size = sizeof(ia->write.in);
1027 	args->in_args[0].value = &ia->write.in;
1028 	args->in_args[1].size = count;
1029 	args->out_numargs = 1;
1030 	args->out_args[0].size = sizeof(ia->write.out);
1031 	args->out_args[0].value = &ia->write.out;
1032 }
1033 
fuse_write_flags(struct kiocb * iocb)1034 static unsigned int fuse_write_flags(struct kiocb *iocb)
1035 {
1036 	unsigned int flags = iocb->ki_filp->f_flags;
1037 
1038 	if (iocb->ki_flags & IOCB_DSYNC)
1039 		flags |= O_DSYNC;
1040 	if (iocb->ki_flags & IOCB_SYNC)
1041 		flags |= O_SYNC;
1042 
1043 	return flags;
1044 }
1045 
fuse_send_write(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)1046 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1047 			       size_t count, fl_owner_t owner)
1048 {
1049 	struct kiocb *iocb = ia->io->iocb;
1050 	struct file *file = iocb->ki_filp;
1051 	struct fuse_file *ff = file->private_data;
1052 	struct fuse_mount *fm = ff->fm;
1053 	struct fuse_write_in *inarg = &ia->write.in;
1054 	ssize_t err;
1055 
1056 	fuse_write_args_fill(ia, ff, pos, count);
1057 	inarg->flags = fuse_write_flags(iocb);
1058 	if (owner != NULL) {
1059 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1060 		inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1061 	}
1062 
1063 	if (ia->io->async)
1064 		return fuse_async_req_send(fm, ia, count);
1065 
1066 	err = fuse_simple_request(fm, &ia->ap.args);
1067 	if (!err && ia->write.out.size > count)
1068 		err = -EIO;
1069 
1070 	return err ?: ia->write.out.size;
1071 }
1072 
fuse_write_update_size(struct inode * inode,loff_t pos)1073 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1074 {
1075 	struct fuse_conn *fc = get_fuse_conn(inode);
1076 	struct fuse_inode *fi = get_fuse_inode(inode);
1077 	bool ret = false;
1078 
1079 	spin_lock(&fi->lock);
1080 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1081 	if (pos > inode->i_size) {
1082 		i_size_write(inode, pos);
1083 		ret = true;
1084 	}
1085 	spin_unlock(&fi->lock);
1086 
1087 	return ret;
1088 }
1089 
fuse_send_write_pages(struct fuse_io_args * ia,struct kiocb * iocb,struct inode * inode,loff_t pos,size_t count)1090 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1091 				     struct kiocb *iocb, struct inode *inode,
1092 				     loff_t pos, size_t count)
1093 {
1094 	struct fuse_args_pages *ap = &ia->ap;
1095 	struct file *file = iocb->ki_filp;
1096 	struct fuse_file *ff = file->private_data;
1097 	struct fuse_mount *fm = ff->fm;
1098 	unsigned int offset, i;
1099 	bool short_write;
1100 	int err;
1101 
1102 	for (i = 0; i < ap->num_pages; i++)
1103 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1104 
1105 	fuse_write_args_fill(ia, ff, pos, count);
1106 	ia->write.in.flags = fuse_write_flags(iocb);
1107 
1108 	err = fuse_simple_request(fm, &ap->args);
1109 	if (!err && ia->write.out.size > count)
1110 		err = -EIO;
1111 
1112 	short_write = ia->write.out.size < count;
1113 	offset = ap->descs[0].offset;
1114 	count = ia->write.out.size;
1115 	for (i = 0; i < ap->num_pages; i++) {
1116 		struct page *page = ap->pages[i];
1117 
1118 		if (err) {
1119 			ClearPageUptodate(page);
1120 		} else {
1121 			if (count >= PAGE_SIZE - offset)
1122 				count -= PAGE_SIZE - offset;
1123 			else {
1124 				if (short_write)
1125 					ClearPageUptodate(page);
1126 				count = 0;
1127 			}
1128 			offset = 0;
1129 		}
1130 		if (ia->write.page_locked && (i == ap->num_pages - 1))
1131 			unlock_page(page);
1132 		put_page(page);
1133 	}
1134 
1135 	return err;
1136 }
1137 
fuse_fill_write_pages(struct fuse_io_args * ia,struct address_space * mapping,struct iov_iter * ii,loff_t pos,unsigned int max_pages)1138 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1139 				     struct address_space *mapping,
1140 				     struct iov_iter *ii, loff_t pos,
1141 				     unsigned int max_pages)
1142 {
1143 	struct fuse_args_pages *ap = &ia->ap;
1144 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1145 	unsigned offset = pos & (PAGE_SIZE - 1);
1146 	size_t count = 0;
1147 	int err;
1148 
1149 	ap->args.in_pages = true;
1150 	ap->descs[0].offset = offset;
1151 
1152 	do {
1153 		size_t tmp;
1154 		struct page *page;
1155 		pgoff_t index = pos >> PAGE_SHIFT;
1156 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1157 				     iov_iter_count(ii));
1158 
1159 		bytes = min_t(size_t, bytes, fc->max_write - count);
1160 
1161  again:
1162 		err = -EFAULT;
1163 		if (iov_iter_fault_in_readable(ii, bytes))
1164 			break;
1165 
1166 		err = -ENOMEM;
1167 		page = grab_cache_page_write_begin(mapping, index, 0);
1168 		if (!page)
1169 			break;
1170 
1171 		if (mapping_writably_mapped(mapping))
1172 			flush_dcache_page(page);
1173 
1174 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1175 		flush_dcache_page(page);
1176 
1177 		iov_iter_advance(ii, tmp);
1178 		if (!tmp) {
1179 			unlock_page(page);
1180 			put_page(page);
1181 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1182 			goto again;
1183 		}
1184 
1185 		err = 0;
1186 		ap->pages[ap->num_pages] = page;
1187 		ap->descs[ap->num_pages].length = tmp;
1188 		ap->num_pages++;
1189 
1190 		count += tmp;
1191 		pos += tmp;
1192 		offset += tmp;
1193 		if (offset == PAGE_SIZE)
1194 			offset = 0;
1195 
1196 		/* If we copied full page, mark it uptodate */
1197 		if (tmp == PAGE_SIZE)
1198 			SetPageUptodate(page);
1199 
1200 		if (PageUptodate(page)) {
1201 			unlock_page(page);
1202 		} else {
1203 			ia->write.page_locked = true;
1204 			break;
1205 		}
1206 		if (!fc->big_writes)
1207 			break;
1208 	} while (iov_iter_count(ii) && count < fc->max_write &&
1209 		 ap->num_pages < max_pages && offset == 0);
1210 
1211 	return count > 0 ? count : err;
1212 }
1213 
fuse_wr_pages(loff_t pos,size_t len,unsigned int max_pages)1214 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1215 				     unsigned int max_pages)
1216 {
1217 	return min_t(unsigned int,
1218 		     ((pos + len - 1) >> PAGE_SHIFT) -
1219 		     (pos >> PAGE_SHIFT) + 1,
1220 		     max_pages);
1221 }
1222 
fuse_perform_write(struct kiocb * iocb,struct address_space * mapping,struct iov_iter * ii,loff_t pos)1223 static ssize_t fuse_perform_write(struct kiocb *iocb,
1224 				  struct address_space *mapping,
1225 				  struct iov_iter *ii, loff_t pos)
1226 {
1227 	struct inode *inode = mapping->host;
1228 	struct fuse_conn *fc = get_fuse_conn(inode);
1229 	struct fuse_inode *fi = get_fuse_inode(inode);
1230 	int err = 0;
1231 	ssize_t res = 0;
1232 
1233 	if (inode->i_size < pos + iov_iter_count(ii))
1234 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1235 
1236 	do {
1237 		ssize_t count;
1238 		struct fuse_io_args ia = {};
1239 		struct fuse_args_pages *ap = &ia.ap;
1240 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1241 						      fc->max_pages);
1242 
1243 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1244 		if (!ap->pages) {
1245 			err = -ENOMEM;
1246 			break;
1247 		}
1248 
1249 		count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1250 		if (count <= 0) {
1251 			err = count;
1252 		} else {
1253 			err = fuse_send_write_pages(&ia, iocb, inode,
1254 						    pos, count);
1255 			if (!err) {
1256 				size_t num_written = ia.write.out.size;
1257 
1258 				res += num_written;
1259 				pos += num_written;
1260 
1261 				/* break out of the loop on short write */
1262 				if (num_written != count)
1263 					err = -EIO;
1264 			}
1265 		}
1266 		kfree(ap->pages);
1267 	} while (!err && iov_iter_count(ii));
1268 
1269 	if (res > 0)
1270 		fuse_write_update_size(inode, pos);
1271 
1272 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1273 	fuse_invalidate_attr(inode);
1274 
1275 	return res > 0 ? res : err;
1276 }
1277 
fuse_cache_write_iter(struct kiocb * iocb,struct iov_iter * from)1278 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1279 {
1280 	struct file *file = iocb->ki_filp;
1281 	struct address_space *mapping = file->f_mapping;
1282 	ssize_t written = 0;
1283 	ssize_t written_buffered = 0;
1284 	struct inode *inode = mapping->host;
1285 	ssize_t err;
1286 	loff_t endbyte = 0;
1287 
1288 	if (get_fuse_conn(inode)->writeback_cache) {
1289 		/* Update size (EOF optimization) and mode (SUID clearing) */
1290 		err = fuse_update_attributes(mapping->host, file);
1291 		if (err)
1292 			return err;
1293 
1294 		return generic_file_write_iter(iocb, from);
1295 	}
1296 
1297 	inode_lock(inode);
1298 
1299 	/* We can write back this queue in page reclaim */
1300 	current->backing_dev_info = inode_to_bdi(inode);
1301 
1302 	err = generic_write_checks(iocb, from);
1303 	if (err <= 0)
1304 		goto out;
1305 
1306 	err = file_remove_privs(file);
1307 	if (err)
1308 		goto out;
1309 
1310 	err = file_update_time(file);
1311 	if (err)
1312 		goto out;
1313 
1314 	if (iocb->ki_flags & IOCB_DIRECT) {
1315 		loff_t pos = iocb->ki_pos;
1316 		written = generic_file_direct_write(iocb, from);
1317 		if (written < 0 || !iov_iter_count(from))
1318 			goto out;
1319 
1320 		pos += written;
1321 
1322 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1323 		if (written_buffered < 0) {
1324 			err = written_buffered;
1325 			goto out;
1326 		}
1327 		endbyte = pos + written_buffered - 1;
1328 
1329 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1330 						   endbyte);
1331 		if (err)
1332 			goto out;
1333 
1334 		invalidate_mapping_pages(file->f_mapping,
1335 					 pos >> PAGE_SHIFT,
1336 					 endbyte >> PAGE_SHIFT);
1337 
1338 		written += written_buffered;
1339 		iocb->ki_pos = pos + written_buffered;
1340 	} else {
1341 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1342 		if (written >= 0)
1343 			iocb->ki_pos += written;
1344 	}
1345 out:
1346 	current->backing_dev_info = NULL;
1347 	inode_unlock(inode);
1348 	if (written > 0)
1349 		written = generic_write_sync(iocb, written);
1350 
1351 	return written ? written : err;
1352 }
1353 
fuse_page_descs_length_init(struct fuse_page_desc * descs,unsigned int index,unsigned int nr_pages)1354 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1355 					       unsigned int index,
1356 					       unsigned int nr_pages)
1357 {
1358 	int i;
1359 
1360 	for (i = index; i < index + nr_pages; i++)
1361 		descs[i].length = PAGE_SIZE - descs[i].offset;
1362 }
1363 
fuse_get_user_addr(const struct iov_iter * ii)1364 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1365 {
1366 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1367 }
1368 
fuse_get_frag_size(const struct iov_iter * ii,size_t max_size)1369 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1370 					size_t max_size)
1371 {
1372 	return min(iov_iter_single_seg_count(ii), max_size);
1373 }
1374 
fuse_get_user_pages(struct fuse_args_pages * ap,struct iov_iter * ii,size_t * nbytesp,int write,unsigned int max_pages)1375 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1376 			       size_t *nbytesp, int write,
1377 			       unsigned int max_pages)
1378 {
1379 	size_t nbytes = 0;  /* # bytes already packed in req */
1380 	ssize_t ret = 0;
1381 
1382 	/* Special case for kernel I/O: can copy directly into the buffer */
1383 	if (iov_iter_is_kvec(ii)) {
1384 		unsigned long user_addr = fuse_get_user_addr(ii);
1385 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1386 
1387 		if (write)
1388 			ap->args.in_args[1].value = (void *) user_addr;
1389 		else
1390 			ap->args.out_args[0].value = (void *) user_addr;
1391 
1392 		iov_iter_advance(ii, frag_size);
1393 		*nbytesp = frag_size;
1394 		return 0;
1395 	}
1396 
1397 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1398 		unsigned npages;
1399 		size_t start;
1400 		ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1401 					*nbytesp - nbytes,
1402 					max_pages - ap->num_pages,
1403 					&start);
1404 		if (ret < 0)
1405 			break;
1406 
1407 		iov_iter_advance(ii, ret);
1408 		nbytes += ret;
1409 
1410 		ret += start;
1411 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1412 
1413 		ap->descs[ap->num_pages].offset = start;
1414 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1415 
1416 		ap->num_pages += npages;
1417 		ap->descs[ap->num_pages - 1].length -=
1418 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1419 	}
1420 
1421 	ap->args.user_pages = true;
1422 	if (write)
1423 		ap->args.in_pages = true;
1424 	else
1425 		ap->args.out_pages = true;
1426 
1427 	*nbytesp = nbytes;
1428 
1429 	return ret < 0 ? ret : 0;
1430 }
1431 
fuse_direct_io(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos,int flags)1432 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1433 		       loff_t *ppos, int flags)
1434 {
1435 	int write = flags & FUSE_DIO_WRITE;
1436 	int cuse = flags & FUSE_DIO_CUSE;
1437 	struct file *file = io->iocb->ki_filp;
1438 	struct inode *inode = file->f_mapping->host;
1439 	struct fuse_file *ff = file->private_data;
1440 	struct fuse_conn *fc = ff->fm->fc;
1441 	size_t nmax = write ? fc->max_write : fc->max_read;
1442 	loff_t pos = *ppos;
1443 	size_t count = iov_iter_count(iter);
1444 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1445 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1446 	ssize_t res = 0;
1447 	int err = 0;
1448 	struct fuse_io_args *ia;
1449 	unsigned int max_pages;
1450 
1451 	max_pages = iov_iter_npages(iter, fc->max_pages);
1452 	ia = fuse_io_alloc(io, max_pages);
1453 	if (!ia)
1454 		return -ENOMEM;
1455 
1456 	ia->io = io;
1457 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1458 		if (!write)
1459 			inode_lock(inode);
1460 		fuse_sync_writes(inode);
1461 		if (!write)
1462 			inode_unlock(inode);
1463 	}
1464 
1465 	io->should_dirty = !write && iter_is_iovec(iter);
1466 	while (count) {
1467 		ssize_t nres;
1468 		fl_owner_t owner = current->files;
1469 		size_t nbytes = min(count, nmax);
1470 
1471 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1472 					  max_pages);
1473 		if (err && !nbytes)
1474 			break;
1475 
1476 		if (write) {
1477 			if (!capable(CAP_FSETID))
1478 				ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1479 
1480 			nres = fuse_send_write(ia, pos, nbytes, owner);
1481 		} else {
1482 			nres = fuse_send_read(ia, pos, nbytes, owner);
1483 		}
1484 
1485 		if (!io->async || nres < 0) {
1486 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1487 			fuse_io_free(ia);
1488 		}
1489 		ia = NULL;
1490 		if (nres < 0) {
1491 			iov_iter_revert(iter, nbytes);
1492 			err = nres;
1493 			break;
1494 		}
1495 		WARN_ON(nres > nbytes);
1496 
1497 		count -= nres;
1498 		res += nres;
1499 		pos += nres;
1500 		if (nres != nbytes) {
1501 			iov_iter_revert(iter, nbytes - nres);
1502 			break;
1503 		}
1504 		if (count) {
1505 			max_pages = iov_iter_npages(iter, fc->max_pages);
1506 			ia = fuse_io_alloc(io, max_pages);
1507 			if (!ia)
1508 				break;
1509 		}
1510 	}
1511 	if (ia)
1512 		fuse_io_free(ia);
1513 	if (res > 0)
1514 		*ppos = pos;
1515 
1516 	return res > 0 ? res : err;
1517 }
1518 EXPORT_SYMBOL_GPL(fuse_direct_io);
1519 
__fuse_direct_read(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos)1520 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1521 				  struct iov_iter *iter,
1522 				  loff_t *ppos)
1523 {
1524 	ssize_t res;
1525 	struct inode *inode = file_inode(io->iocb->ki_filp);
1526 
1527 	res = fuse_direct_io(io, iter, ppos, 0);
1528 
1529 	fuse_invalidate_atime(inode);
1530 
1531 	return res;
1532 }
1533 
1534 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1535 
fuse_direct_read_iter(struct kiocb * iocb,struct iov_iter * to)1536 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1537 {
1538 	ssize_t res;
1539 
1540 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1541 		res = fuse_direct_IO(iocb, to);
1542 	} else {
1543 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1544 
1545 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1546 	}
1547 
1548 	return res;
1549 }
1550 
fuse_direct_write_iter(struct kiocb * iocb,struct iov_iter * from)1551 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1552 {
1553 	struct inode *inode = file_inode(iocb->ki_filp);
1554 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1555 	ssize_t res;
1556 
1557 	/* Don't allow parallel writes to the same file */
1558 	inode_lock(inode);
1559 	res = generic_write_checks(iocb, from);
1560 	if (res > 0) {
1561 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1562 			res = fuse_direct_IO(iocb, from);
1563 		} else {
1564 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1565 					     FUSE_DIO_WRITE);
1566 		}
1567 	}
1568 	fuse_invalidate_attr(inode);
1569 	if (res > 0)
1570 		fuse_write_update_size(inode, iocb->ki_pos);
1571 	inode_unlock(inode);
1572 
1573 	return res;
1574 }
1575 
fuse_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1576 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1577 {
1578 	struct file *file = iocb->ki_filp;
1579 	struct fuse_file *ff = file->private_data;
1580 	struct inode *inode = file_inode(file);
1581 
1582 	if (fuse_is_bad(inode))
1583 		return -EIO;
1584 
1585 	if (FUSE_IS_DAX(inode))
1586 		return fuse_dax_read_iter(iocb, to);
1587 
1588 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1589 		return fuse_cache_read_iter(iocb, to);
1590 	else
1591 		return fuse_direct_read_iter(iocb, to);
1592 }
1593 
fuse_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1594 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1595 {
1596 	struct file *file = iocb->ki_filp;
1597 	struct fuse_file *ff = file->private_data;
1598 	struct inode *inode = file_inode(file);
1599 
1600 	if (fuse_is_bad(inode))
1601 		return -EIO;
1602 
1603 	if (FUSE_IS_DAX(inode))
1604 		return fuse_dax_write_iter(iocb, from);
1605 
1606 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1607 		return fuse_cache_write_iter(iocb, from);
1608 	else
1609 		return fuse_direct_write_iter(iocb, from);
1610 }
1611 
fuse_writepage_free(struct fuse_writepage_args * wpa)1612 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1613 {
1614 	struct fuse_args_pages *ap = &wpa->ia.ap;
1615 	int i;
1616 
1617 	for (i = 0; i < ap->num_pages; i++)
1618 		__free_page(ap->pages[i]);
1619 
1620 	if (wpa->ia.ff)
1621 		fuse_file_put(wpa->ia.ff, false, false);
1622 
1623 	kfree(ap->pages);
1624 	kfree(wpa);
1625 }
1626 
fuse_writepage_finish(struct fuse_mount * fm,struct fuse_writepage_args * wpa)1627 static void fuse_writepage_finish(struct fuse_mount *fm,
1628 				  struct fuse_writepage_args *wpa)
1629 {
1630 	struct fuse_args_pages *ap = &wpa->ia.ap;
1631 	struct inode *inode = wpa->inode;
1632 	struct fuse_inode *fi = get_fuse_inode(inode);
1633 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1634 	int i;
1635 
1636 	for (i = 0; i < ap->num_pages; i++) {
1637 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1638 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1639 		wb_writeout_inc(&bdi->wb);
1640 	}
1641 	wake_up(&fi->page_waitq);
1642 }
1643 
1644 /* Called under fi->lock, may release and reacquire it */
fuse_send_writepage(struct fuse_mount * fm,struct fuse_writepage_args * wpa,loff_t size)1645 static void fuse_send_writepage(struct fuse_mount *fm,
1646 				struct fuse_writepage_args *wpa, loff_t size)
1647 __releases(fi->lock)
1648 __acquires(fi->lock)
1649 {
1650 	struct fuse_writepage_args *aux, *next;
1651 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1652 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1653 	struct fuse_args *args = &wpa->ia.ap.args;
1654 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1655 	int err;
1656 
1657 	fi->writectr++;
1658 	if (inarg->offset + data_size <= size) {
1659 		inarg->size = data_size;
1660 	} else if (inarg->offset < size) {
1661 		inarg->size = size - inarg->offset;
1662 	} else {
1663 		/* Got truncated off completely */
1664 		goto out_free;
1665 	}
1666 
1667 	args->in_args[1].size = inarg->size;
1668 	args->force = true;
1669 	args->nocreds = true;
1670 
1671 	err = fuse_simple_background(fm, args, GFP_ATOMIC);
1672 	if (err == -ENOMEM) {
1673 		spin_unlock(&fi->lock);
1674 		err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1675 		spin_lock(&fi->lock);
1676 	}
1677 
1678 	/* Fails on broken connection only */
1679 	if (unlikely(err))
1680 		goto out_free;
1681 
1682 	return;
1683 
1684  out_free:
1685 	fi->writectr--;
1686 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1687 	fuse_writepage_finish(fm, wpa);
1688 	spin_unlock(&fi->lock);
1689 
1690 	/* After fuse_writepage_finish() aux request list is private */
1691 	for (aux = wpa->next; aux; aux = next) {
1692 		next = aux->next;
1693 		aux->next = NULL;
1694 		fuse_writepage_free(aux);
1695 	}
1696 
1697 	fuse_writepage_free(wpa);
1698 	spin_lock(&fi->lock);
1699 }
1700 
1701 /*
1702  * If fi->writectr is positive (no truncate or fsync going on) send
1703  * all queued writepage requests.
1704  *
1705  * Called with fi->lock
1706  */
fuse_flush_writepages(struct inode * inode)1707 void fuse_flush_writepages(struct inode *inode)
1708 __releases(fi->lock)
1709 __acquires(fi->lock)
1710 {
1711 	struct fuse_mount *fm = get_fuse_mount(inode);
1712 	struct fuse_inode *fi = get_fuse_inode(inode);
1713 	loff_t crop = i_size_read(inode);
1714 	struct fuse_writepage_args *wpa;
1715 
1716 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1717 		wpa = list_entry(fi->queued_writes.next,
1718 				 struct fuse_writepage_args, queue_entry);
1719 		list_del_init(&wpa->queue_entry);
1720 		fuse_send_writepage(fm, wpa, crop);
1721 	}
1722 }
1723 
fuse_insert_writeback(struct rb_root * root,struct fuse_writepage_args * wpa)1724 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1725 						struct fuse_writepage_args *wpa)
1726 {
1727 	pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1728 	pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1729 	struct rb_node **p = &root->rb_node;
1730 	struct rb_node  *parent = NULL;
1731 
1732 	WARN_ON(!wpa->ia.ap.num_pages);
1733 	while (*p) {
1734 		struct fuse_writepage_args *curr;
1735 		pgoff_t curr_index;
1736 
1737 		parent = *p;
1738 		curr = rb_entry(parent, struct fuse_writepage_args,
1739 				writepages_entry);
1740 		WARN_ON(curr->inode != wpa->inode);
1741 		curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1742 
1743 		if (idx_from >= curr_index + curr->ia.ap.num_pages)
1744 			p = &(*p)->rb_right;
1745 		else if (idx_to < curr_index)
1746 			p = &(*p)->rb_left;
1747 		else
1748 			return curr;
1749 	}
1750 
1751 	rb_link_node(&wpa->writepages_entry, parent, p);
1752 	rb_insert_color(&wpa->writepages_entry, root);
1753 	return NULL;
1754 }
1755 
tree_insert(struct rb_root * root,struct fuse_writepage_args * wpa)1756 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1757 {
1758 	WARN_ON(fuse_insert_writeback(root, wpa));
1759 }
1760 
fuse_writepage_end(struct fuse_mount * fm,struct fuse_args * args,int error)1761 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1762 			       int error)
1763 {
1764 	struct fuse_writepage_args *wpa =
1765 		container_of(args, typeof(*wpa), ia.ap.args);
1766 	struct inode *inode = wpa->inode;
1767 	struct fuse_inode *fi = get_fuse_inode(inode);
1768 	struct fuse_conn *fc = get_fuse_conn(inode);
1769 
1770 	mapping_set_error(inode->i_mapping, error);
1771 	/*
1772 	 * A writeback finished and this might have updated mtime/ctime on
1773 	 * server making local mtime/ctime stale.  Hence invalidate attrs.
1774 	 * Do this only if writeback_cache is not enabled.  If writeback_cache
1775 	 * is enabled, we trust local ctime/mtime.
1776 	 */
1777 	if (!fc->writeback_cache)
1778 		fuse_invalidate_attr(inode);
1779 	spin_lock(&fi->lock);
1780 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1781 	while (wpa->next) {
1782 		struct fuse_mount *fm = get_fuse_mount(inode);
1783 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1784 		struct fuse_writepage_args *next = wpa->next;
1785 
1786 		wpa->next = next->next;
1787 		next->next = NULL;
1788 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1789 		tree_insert(&fi->writepages, next);
1790 
1791 		/*
1792 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1793 		 * based on primary request size.
1794 		 *
1795 		 * 1st case (trivial): there are no concurrent activities using
1796 		 * fuse_set/release_nowrite.  Then we're on safe side because
1797 		 * fuse_flush_writepages() would call fuse_send_writepage()
1798 		 * anyway.
1799 		 *
1800 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1801 		 * now for completion of all in-flight requests.  This happens
1802 		 * rarely and no more than once per page, so this should be
1803 		 * okay.
1804 		 *
1805 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1806 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1807 		 * that fuse_set_nowrite returned implies that all in-flight
1808 		 * requests were completed along with all of their secondary
1809 		 * requests.  Further primary requests are blocked by negative
1810 		 * writectr.  Hence there cannot be any in-flight requests and
1811 		 * no invocations of fuse_writepage_end() while we're in
1812 		 * fuse_set_nowrite..fuse_release_nowrite section.
1813 		 */
1814 		fuse_send_writepage(fm, next, inarg->offset + inarg->size);
1815 	}
1816 	fi->writectr--;
1817 	fuse_writepage_finish(fm, wpa);
1818 	spin_unlock(&fi->lock);
1819 	fuse_writepage_free(wpa);
1820 }
1821 
__fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1822 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1823 					       struct fuse_inode *fi)
1824 {
1825 	struct fuse_file *ff = NULL;
1826 
1827 	spin_lock(&fi->lock);
1828 	if (!list_empty(&fi->write_files)) {
1829 		ff = list_entry(fi->write_files.next, struct fuse_file,
1830 				write_entry);
1831 		fuse_file_get(ff);
1832 	}
1833 	spin_unlock(&fi->lock);
1834 
1835 	return ff;
1836 }
1837 
fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1838 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1839 					     struct fuse_inode *fi)
1840 {
1841 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1842 	WARN_ON(!ff);
1843 	return ff;
1844 }
1845 
fuse_write_inode(struct inode * inode,struct writeback_control * wbc)1846 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1847 {
1848 	struct fuse_conn *fc = get_fuse_conn(inode);
1849 	struct fuse_inode *fi = get_fuse_inode(inode);
1850 	struct fuse_file *ff;
1851 	int err;
1852 
1853 	/*
1854 	 * Inode is always written before the last reference is dropped and
1855 	 * hence this should not be reached from reclaim.
1856 	 *
1857 	 * Writing back the inode from reclaim can deadlock if the request
1858 	 * processing itself needs an allocation.  Allocations triggering
1859 	 * reclaim while serving a request can't be prevented, because it can
1860 	 * involve any number of unrelated userspace processes.
1861 	 */
1862 	WARN_ON(wbc->for_reclaim);
1863 
1864 	ff = __fuse_write_file_get(fc, fi);
1865 	err = fuse_flush_times(inode, ff);
1866 	if (ff)
1867 		fuse_file_put(ff, false, false);
1868 
1869 	return err;
1870 }
1871 
fuse_writepage_args_alloc(void)1872 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1873 {
1874 	struct fuse_writepage_args *wpa;
1875 	struct fuse_args_pages *ap;
1876 
1877 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1878 	if (wpa) {
1879 		ap = &wpa->ia.ap;
1880 		ap->num_pages = 0;
1881 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1882 		if (!ap->pages) {
1883 			kfree(wpa);
1884 			wpa = NULL;
1885 		}
1886 	}
1887 	return wpa;
1888 
1889 }
1890 
fuse_writepage_locked(struct page * page)1891 static int fuse_writepage_locked(struct page *page)
1892 {
1893 	struct address_space *mapping = page->mapping;
1894 	struct inode *inode = mapping->host;
1895 	struct fuse_conn *fc = get_fuse_conn(inode);
1896 	struct fuse_inode *fi = get_fuse_inode(inode);
1897 	struct fuse_writepage_args *wpa;
1898 	struct fuse_args_pages *ap;
1899 	struct page *tmp_page;
1900 	int error = -ENOMEM;
1901 
1902 	set_page_writeback(page);
1903 
1904 	wpa = fuse_writepage_args_alloc();
1905 	if (!wpa)
1906 		goto err;
1907 	ap = &wpa->ia.ap;
1908 
1909 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1910 	if (!tmp_page)
1911 		goto err_free;
1912 
1913 	error = -EIO;
1914 	wpa->ia.ff = fuse_write_file_get(fc, fi);
1915 	if (!wpa->ia.ff)
1916 		goto err_nofile;
1917 
1918 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1919 
1920 	copy_highpage(tmp_page, page);
1921 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1922 	wpa->next = NULL;
1923 	ap->args.in_pages = true;
1924 	ap->num_pages = 1;
1925 	ap->pages[0] = tmp_page;
1926 	ap->descs[0].offset = 0;
1927 	ap->descs[0].length = PAGE_SIZE;
1928 	ap->args.end = fuse_writepage_end;
1929 	wpa->inode = inode;
1930 
1931 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1932 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1933 
1934 	spin_lock(&fi->lock);
1935 	tree_insert(&fi->writepages, wpa);
1936 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1937 	fuse_flush_writepages(inode);
1938 	spin_unlock(&fi->lock);
1939 
1940 	end_page_writeback(page);
1941 
1942 	return 0;
1943 
1944 err_nofile:
1945 	__free_page(tmp_page);
1946 err_free:
1947 	kfree(wpa);
1948 err:
1949 	mapping_set_error(page->mapping, error);
1950 	end_page_writeback(page);
1951 	return error;
1952 }
1953 
fuse_writepage(struct page * page,struct writeback_control * wbc)1954 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1955 {
1956 	int err;
1957 
1958 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1959 		/*
1960 		 * ->writepages() should be called for sync() and friends.  We
1961 		 * should only get here on direct reclaim and then we are
1962 		 * allowed to skip a page which is already in flight
1963 		 */
1964 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1965 
1966 		redirty_page_for_writepage(wbc, page);
1967 		unlock_page(page);
1968 		return 0;
1969 	}
1970 
1971 	err = fuse_writepage_locked(page);
1972 	unlock_page(page);
1973 
1974 	return err;
1975 }
1976 
1977 struct fuse_fill_wb_data {
1978 	struct fuse_writepage_args *wpa;
1979 	struct fuse_file *ff;
1980 	struct inode *inode;
1981 	struct page **orig_pages;
1982 	unsigned int max_pages;
1983 };
1984 
fuse_pages_realloc(struct fuse_fill_wb_data * data)1985 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1986 {
1987 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
1988 	struct fuse_conn *fc = get_fuse_conn(data->inode);
1989 	struct page **pages;
1990 	struct fuse_page_desc *descs;
1991 	unsigned int npages = min_t(unsigned int,
1992 				    max_t(unsigned int, data->max_pages * 2,
1993 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1994 				    fc->max_pages);
1995 	WARN_ON(npages <= data->max_pages);
1996 
1997 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1998 	if (!pages)
1999 		return false;
2000 
2001 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
2002 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
2003 	kfree(ap->pages);
2004 	ap->pages = pages;
2005 	ap->descs = descs;
2006 	data->max_pages = npages;
2007 
2008 	return true;
2009 }
2010 
fuse_writepages_send(struct fuse_fill_wb_data * data)2011 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
2012 {
2013 	struct fuse_writepage_args *wpa = data->wpa;
2014 	struct inode *inode = data->inode;
2015 	struct fuse_inode *fi = get_fuse_inode(inode);
2016 	int num_pages = wpa->ia.ap.num_pages;
2017 	int i;
2018 
2019 	wpa->ia.ff = fuse_file_get(data->ff);
2020 	spin_lock(&fi->lock);
2021 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2022 	fuse_flush_writepages(inode);
2023 	spin_unlock(&fi->lock);
2024 
2025 	for (i = 0; i < num_pages; i++)
2026 		end_page_writeback(data->orig_pages[i]);
2027 }
2028 
2029 /*
2030  * Check under fi->lock if the page is under writeback, and insert it onto the
2031  * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2032  * one already added for a page at this offset.  If there's none, then insert
2033  * this new request onto the auxiliary list, otherwise reuse the existing one by
2034  * swapping the new temp page with the old one.
2035  */
fuse_writepage_add(struct fuse_writepage_args * new_wpa,struct page * page)2036 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2037 			       struct page *page)
2038 {
2039 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2040 	struct fuse_writepage_args *tmp;
2041 	struct fuse_writepage_args *old_wpa;
2042 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2043 
2044 	WARN_ON(new_ap->num_pages != 0);
2045 	new_ap->num_pages = 1;
2046 
2047 	spin_lock(&fi->lock);
2048 	old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2049 	if (!old_wpa) {
2050 		spin_unlock(&fi->lock);
2051 		return true;
2052 	}
2053 
2054 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2055 		pgoff_t curr_index;
2056 
2057 		WARN_ON(tmp->inode != new_wpa->inode);
2058 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2059 		if (curr_index == page->index) {
2060 			WARN_ON(tmp->ia.ap.num_pages != 1);
2061 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2062 			break;
2063 		}
2064 	}
2065 
2066 	if (!tmp) {
2067 		new_wpa->next = old_wpa->next;
2068 		old_wpa->next = new_wpa;
2069 	}
2070 
2071 	spin_unlock(&fi->lock);
2072 
2073 	if (tmp) {
2074 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2075 
2076 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2077 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2078 		wb_writeout_inc(&bdi->wb);
2079 		fuse_writepage_free(new_wpa);
2080 	}
2081 
2082 	return false;
2083 }
2084 
fuse_writepage_need_send(struct fuse_conn * fc,struct page * page,struct fuse_args_pages * ap,struct fuse_fill_wb_data * data)2085 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2086 				     struct fuse_args_pages *ap,
2087 				     struct fuse_fill_wb_data *data)
2088 {
2089 	WARN_ON(!ap->num_pages);
2090 
2091 	/*
2092 	 * Being under writeback is unlikely but possible.  For example direct
2093 	 * read to an mmaped fuse file will set the page dirty twice; once when
2094 	 * the pages are faulted with get_user_pages(), and then after the read
2095 	 * completed.
2096 	 */
2097 	if (fuse_page_is_writeback(data->inode, page->index))
2098 		return true;
2099 
2100 	/* Reached max pages */
2101 	if (ap->num_pages == fc->max_pages)
2102 		return true;
2103 
2104 	/* Reached max write bytes */
2105 	if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2106 		return true;
2107 
2108 	/* Discontinuity */
2109 	if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2110 		return true;
2111 
2112 	/* Need to grow the pages array?  If so, did the expansion fail? */
2113 	if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2114 		return true;
2115 
2116 	return false;
2117 }
2118 
fuse_writepages_fill(struct page * page,struct writeback_control * wbc,void * _data)2119 static int fuse_writepages_fill(struct page *page,
2120 		struct writeback_control *wbc, void *_data)
2121 {
2122 	struct fuse_fill_wb_data *data = _data;
2123 	struct fuse_writepage_args *wpa = data->wpa;
2124 	struct fuse_args_pages *ap = &wpa->ia.ap;
2125 	struct inode *inode = data->inode;
2126 	struct fuse_inode *fi = get_fuse_inode(inode);
2127 	struct fuse_conn *fc = get_fuse_conn(inode);
2128 	struct page *tmp_page;
2129 	int err;
2130 
2131 	if (!data->ff) {
2132 		err = -EIO;
2133 		data->ff = fuse_write_file_get(fc, fi);
2134 		if (!data->ff)
2135 			goto out_unlock;
2136 	}
2137 
2138 	if (wpa && fuse_writepage_need_send(fc, page, ap, data)) {
2139 		fuse_writepages_send(data);
2140 		data->wpa = NULL;
2141 	}
2142 
2143 	err = -ENOMEM;
2144 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2145 	if (!tmp_page)
2146 		goto out_unlock;
2147 
2148 	/*
2149 	 * The page must not be redirtied until the writeout is completed
2150 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2151 	 * there could be more than one temporary page instance for each real
2152 	 * page.
2153 	 *
2154 	 * This is ensured by holding the page lock in page_mkwrite() while
2155 	 * checking fuse_page_is_writeback().  We already hold the page lock
2156 	 * since clear_page_dirty_for_io() and keep it held until we add the
2157 	 * request to the fi->writepages list and increment ap->num_pages.
2158 	 * After this fuse_page_is_writeback() will indicate that the page is
2159 	 * under writeback, so we can release the page lock.
2160 	 */
2161 	if (data->wpa == NULL) {
2162 		err = -ENOMEM;
2163 		wpa = fuse_writepage_args_alloc();
2164 		if (!wpa) {
2165 			__free_page(tmp_page);
2166 			goto out_unlock;
2167 		}
2168 		data->max_pages = 1;
2169 
2170 		ap = &wpa->ia.ap;
2171 		fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2172 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2173 		wpa->next = NULL;
2174 		ap->args.in_pages = true;
2175 		ap->args.end = fuse_writepage_end;
2176 		ap->num_pages = 0;
2177 		wpa->inode = inode;
2178 	}
2179 	set_page_writeback(page);
2180 
2181 	copy_highpage(tmp_page, page);
2182 	ap->pages[ap->num_pages] = tmp_page;
2183 	ap->descs[ap->num_pages].offset = 0;
2184 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2185 	data->orig_pages[ap->num_pages] = page;
2186 
2187 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2188 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2189 
2190 	err = 0;
2191 	if (data->wpa) {
2192 		/*
2193 		 * Protected by fi->lock against concurrent access by
2194 		 * fuse_page_is_writeback().
2195 		 */
2196 		spin_lock(&fi->lock);
2197 		ap->num_pages++;
2198 		spin_unlock(&fi->lock);
2199 	} else if (fuse_writepage_add(wpa, page)) {
2200 		data->wpa = wpa;
2201 	} else {
2202 		end_page_writeback(page);
2203 	}
2204 out_unlock:
2205 	unlock_page(page);
2206 
2207 	return err;
2208 }
2209 
fuse_writepages(struct address_space * mapping,struct writeback_control * wbc)2210 static int fuse_writepages(struct address_space *mapping,
2211 			   struct writeback_control *wbc)
2212 {
2213 	struct inode *inode = mapping->host;
2214 	struct fuse_conn *fc = get_fuse_conn(inode);
2215 	struct fuse_fill_wb_data data;
2216 	int err;
2217 
2218 	err = -EIO;
2219 	if (fuse_is_bad(inode))
2220 		goto out;
2221 
2222 	data.inode = inode;
2223 	data.wpa = NULL;
2224 	data.ff = NULL;
2225 
2226 	err = -ENOMEM;
2227 	data.orig_pages = kcalloc(fc->max_pages,
2228 				  sizeof(struct page *),
2229 				  GFP_NOFS);
2230 	if (!data.orig_pages)
2231 		goto out;
2232 
2233 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2234 	if (data.wpa) {
2235 		WARN_ON(!data.wpa->ia.ap.num_pages);
2236 		fuse_writepages_send(&data);
2237 	}
2238 	if (data.ff)
2239 		fuse_file_put(data.ff, false, false);
2240 
2241 	kfree(data.orig_pages);
2242 out:
2243 	return err;
2244 }
2245 
2246 /*
2247  * It's worthy to make sure that space is reserved on disk for the write,
2248  * but how to implement it without killing performance need more thinking.
2249  */
fuse_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2250 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2251 		loff_t pos, unsigned len, unsigned flags,
2252 		struct page **pagep, void **fsdata)
2253 {
2254 	pgoff_t index = pos >> PAGE_SHIFT;
2255 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2256 	struct page *page;
2257 	loff_t fsize;
2258 	int err = -ENOMEM;
2259 
2260 	WARN_ON(!fc->writeback_cache);
2261 
2262 	page = grab_cache_page_write_begin(mapping, index, flags);
2263 	if (!page)
2264 		goto error;
2265 
2266 	fuse_wait_on_page_writeback(mapping->host, page->index);
2267 
2268 	if (PageUptodate(page) || len == PAGE_SIZE)
2269 		goto success;
2270 	/*
2271 	 * Check if the start this page comes after the end of file, in which
2272 	 * case the readpage can be optimized away.
2273 	 */
2274 	fsize = i_size_read(mapping->host);
2275 	if (fsize <= (pos & PAGE_MASK)) {
2276 		size_t off = pos & ~PAGE_MASK;
2277 		if (off)
2278 			zero_user_segment(page, 0, off);
2279 		goto success;
2280 	}
2281 	err = fuse_do_readpage(file, page);
2282 	if (err)
2283 		goto cleanup;
2284 success:
2285 	*pagep = page;
2286 	return 0;
2287 
2288 cleanup:
2289 	unlock_page(page);
2290 	put_page(page);
2291 error:
2292 	return err;
2293 }
2294 
fuse_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2295 static int fuse_write_end(struct file *file, struct address_space *mapping,
2296 		loff_t pos, unsigned len, unsigned copied,
2297 		struct page *page, void *fsdata)
2298 {
2299 	struct inode *inode = page->mapping->host;
2300 
2301 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2302 	if (!copied)
2303 		goto unlock;
2304 
2305 	if (!PageUptodate(page)) {
2306 		/* Zero any unwritten bytes at the end of the page */
2307 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2308 		if (endoff)
2309 			zero_user_segment(page, endoff, PAGE_SIZE);
2310 		SetPageUptodate(page);
2311 	}
2312 
2313 	fuse_write_update_size(inode, pos + copied);
2314 	set_page_dirty(page);
2315 
2316 unlock:
2317 	unlock_page(page);
2318 	put_page(page);
2319 
2320 	return copied;
2321 }
2322 
fuse_launder_page(struct page * page)2323 static int fuse_launder_page(struct page *page)
2324 {
2325 	int err = 0;
2326 	if (clear_page_dirty_for_io(page)) {
2327 		struct inode *inode = page->mapping->host;
2328 		err = fuse_writepage_locked(page);
2329 		if (!err)
2330 			fuse_wait_on_page_writeback(inode, page->index);
2331 	}
2332 	return err;
2333 }
2334 
2335 /*
2336  * Write back dirty pages now, because there may not be any suitable
2337  * open files later
2338  */
fuse_vma_close(struct vm_area_struct * vma)2339 static void fuse_vma_close(struct vm_area_struct *vma)
2340 {
2341 	filemap_write_and_wait(vma->vm_file->f_mapping);
2342 }
2343 
2344 /*
2345  * Wait for writeback against this page to complete before allowing it
2346  * to be marked dirty again, and hence written back again, possibly
2347  * before the previous writepage completed.
2348  *
2349  * Block here, instead of in ->writepage(), so that the userspace fs
2350  * can only block processes actually operating on the filesystem.
2351  *
2352  * Otherwise unprivileged userspace fs would be able to block
2353  * unrelated:
2354  *
2355  * - page migration
2356  * - sync(2)
2357  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2358  */
fuse_page_mkwrite(struct vm_fault * vmf)2359 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2360 {
2361 	struct page *page = vmf->page;
2362 	struct inode *inode = file_inode(vmf->vma->vm_file);
2363 
2364 	file_update_time(vmf->vma->vm_file);
2365 	lock_page(page);
2366 	if (page->mapping != inode->i_mapping) {
2367 		unlock_page(page);
2368 		return VM_FAULT_NOPAGE;
2369 	}
2370 
2371 	fuse_wait_on_page_writeback(inode, page->index);
2372 	return VM_FAULT_LOCKED;
2373 }
2374 
2375 static const struct vm_operations_struct fuse_file_vm_ops = {
2376 	.close		= fuse_vma_close,
2377 	.fault		= filemap_fault,
2378 	.map_pages	= filemap_map_pages,
2379 	.page_mkwrite	= fuse_page_mkwrite,
2380 };
2381 
fuse_file_mmap(struct file * file,struct vm_area_struct * vma)2382 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2383 {
2384 	struct fuse_file *ff = file->private_data;
2385 
2386 	/* DAX mmap is superior to direct_io mmap */
2387 	if (FUSE_IS_DAX(file_inode(file)))
2388 		return fuse_dax_mmap(file, vma);
2389 
2390 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2391 		/* Can't provide the coherency needed for MAP_SHARED */
2392 		if (vma->vm_flags & VM_MAYSHARE)
2393 			return -ENODEV;
2394 
2395 		invalidate_inode_pages2(file->f_mapping);
2396 
2397 		return generic_file_mmap(file, vma);
2398 	}
2399 
2400 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2401 		fuse_link_write_file(file);
2402 
2403 	file_accessed(file);
2404 	vma->vm_ops = &fuse_file_vm_ops;
2405 	return 0;
2406 }
2407 
convert_fuse_file_lock(struct fuse_conn * fc,const struct fuse_file_lock * ffl,struct file_lock * fl)2408 static int convert_fuse_file_lock(struct fuse_conn *fc,
2409 				  const struct fuse_file_lock *ffl,
2410 				  struct file_lock *fl)
2411 {
2412 	switch (ffl->type) {
2413 	case F_UNLCK:
2414 		break;
2415 
2416 	case F_RDLCK:
2417 	case F_WRLCK:
2418 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2419 		    ffl->end < ffl->start)
2420 			return -EIO;
2421 
2422 		fl->fl_start = ffl->start;
2423 		fl->fl_end = ffl->end;
2424 
2425 		/*
2426 		 * Convert pid into init's pid namespace.  The locks API will
2427 		 * translate it into the caller's pid namespace.
2428 		 */
2429 		rcu_read_lock();
2430 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2431 		rcu_read_unlock();
2432 		break;
2433 
2434 	default:
2435 		return -EIO;
2436 	}
2437 	fl->fl_type = ffl->type;
2438 	return 0;
2439 }
2440 
fuse_lk_fill(struct fuse_args * args,struct file * file,const struct file_lock * fl,int opcode,pid_t pid,int flock,struct fuse_lk_in * inarg)2441 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2442 			 const struct file_lock *fl, int opcode, pid_t pid,
2443 			 int flock, struct fuse_lk_in *inarg)
2444 {
2445 	struct inode *inode = file_inode(file);
2446 	struct fuse_conn *fc = get_fuse_conn(inode);
2447 	struct fuse_file *ff = file->private_data;
2448 
2449 	memset(inarg, 0, sizeof(*inarg));
2450 	inarg->fh = ff->fh;
2451 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2452 	inarg->lk.start = fl->fl_start;
2453 	inarg->lk.end = fl->fl_end;
2454 	inarg->lk.type = fl->fl_type;
2455 	inarg->lk.pid = pid;
2456 	if (flock)
2457 		inarg->lk_flags |= FUSE_LK_FLOCK;
2458 	args->opcode = opcode;
2459 	args->nodeid = get_node_id(inode);
2460 	args->in_numargs = 1;
2461 	args->in_args[0].size = sizeof(*inarg);
2462 	args->in_args[0].value = inarg;
2463 }
2464 
fuse_getlk(struct file * file,struct file_lock * fl)2465 static int fuse_getlk(struct file *file, struct file_lock *fl)
2466 {
2467 	struct inode *inode = file_inode(file);
2468 	struct fuse_mount *fm = get_fuse_mount(inode);
2469 	FUSE_ARGS(args);
2470 	struct fuse_lk_in inarg;
2471 	struct fuse_lk_out outarg;
2472 	int err;
2473 
2474 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2475 	args.out_numargs = 1;
2476 	args.out_args[0].size = sizeof(outarg);
2477 	args.out_args[0].value = &outarg;
2478 	err = fuse_simple_request(fm, &args);
2479 	if (!err)
2480 		err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2481 
2482 	return err;
2483 }
2484 
fuse_setlk(struct file * file,struct file_lock * fl,int flock)2485 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2486 {
2487 	struct inode *inode = file_inode(file);
2488 	struct fuse_mount *fm = get_fuse_mount(inode);
2489 	FUSE_ARGS(args);
2490 	struct fuse_lk_in inarg;
2491 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2492 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2493 	pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2494 	int err;
2495 
2496 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2497 		/* NLM needs asynchronous locks, which we don't support yet */
2498 		return -ENOLCK;
2499 	}
2500 
2501 	/* Unlock on close is handled by the flush method */
2502 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2503 		return 0;
2504 
2505 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2506 	err = fuse_simple_request(fm, &args);
2507 
2508 	/* locking is restartable */
2509 	if (err == -EINTR)
2510 		err = -ERESTARTSYS;
2511 
2512 	return err;
2513 }
2514 
fuse_file_lock(struct file * file,int cmd,struct file_lock * fl)2515 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2516 {
2517 	struct inode *inode = file_inode(file);
2518 	struct fuse_conn *fc = get_fuse_conn(inode);
2519 	int err;
2520 
2521 	if (cmd == F_CANCELLK) {
2522 		err = 0;
2523 	} else if (cmd == F_GETLK) {
2524 		if (fc->no_lock) {
2525 			posix_test_lock(file, fl);
2526 			err = 0;
2527 		} else
2528 			err = fuse_getlk(file, fl);
2529 	} else {
2530 		if (fc->no_lock)
2531 			err = posix_lock_file(file, fl, NULL);
2532 		else
2533 			err = fuse_setlk(file, fl, 0);
2534 	}
2535 	return err;
2536 }
2537 
fuse_file_flock(struct file * file,int cmd,struct file_lock * fl)2538 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2539 {
2540 	struct inode *inode = file_inode(file);
2541 	struct fuse_conn *fc = get_fuse_conn(inode);
2542 	int err;
2543 
2544 	if (fc->no_flock) {
2545 		err = locks_lock_file_wait(file, fl);
2546 	} else {
2547 		struct fuse_file *ff = file->private_data;
2548 
2549 		/* emulate flock with POSIX locks */
2550 		ff->flock = true;
2551 		err = fuse_setlk(file, fl, 1);
2552 	}
2553 
2554 	return err;
2555 }
2556 
fuse_bmap(struct address_space * mapping,sector_t block)2557 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2558 {
2559 	struct inode *inode = mapping->host;
2560 	struct fuse_mount *fm = get_fuse_mount(inode);
2561 	FUSE_ARGS(args);
2562 	struct fuse_bmap_in inarg;
2563 	struct fuse_bmap_out outarg;
2564 	int err;
2565 
2566 	if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2567 		return 0;
2568 
2569 	memset(&inarg, 0, sizeof(inarg));
2570 	inarg.block = block;
2571 	inarg.blocksize = inode->i_sb->s_blocksize;
2572 	args.opcode = FUSE_BMAP;
2573 	args.nodeid = get_node_id(inode);
2574 	args.in_numargs = 1;
2575 	args.in_args[0].size = sizeof(inarg);
2576 	args.in_args[0].value = &inarg;
2577 	args.out_numargs = 1;
2578 	args.out_args[0].size = sizeof(outarg);
2579 	args.out_args[0].value = &outarg;
2580 	err = fuse_simple_request(fm, &args);
2581 	if (err == -ENOSYS)
2582 		fm->fc->no_bmap = 1;
2583 
2584 	return err ? 0 : outarg.block;
2585 }
2586 
fuse_lseek(struct file * file,loff_t offset,int whence)2587 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2588 {
2589 	struct inode *inode = file->f_mapping->host;
2590 	struct fuse_mount *fm = get_fuse_mount(inode);
2591 	struct fuse_file *ff = file->private_data;
2592 	FUSE_ARGS(args);
2593 	struct fuse_lseek_in inarg = {
2594 		.fh = ff->fh,
2595 		.offset = offset,
2596 		.whence = whence
2597 	};
2598 	struct fuse_lseek_out outarg;
2599 	int err;
2600 
2601 	if (fm->fc->no_lseek)
2602 		goto fallback;
2603 
2604 	args.opcode = FUSE_LSEEK;
2605 	args.nodeid = ff->nodeid;
2606 	args.in_numargs = 1;
2607 	args.in_args[0].size = sizeof(inarg);
2608 	args.in_args[0].value = &inarg;
2609 	args.out_numargs = 1;
2610 	args.out_args[0].size = sizeof(outarg);
2611 	args.out_args[0].value = &outarg;
2612 	err = fuse_simple_request(fm, &args);
2613 	if (err) {
2614 		if (err == -ENOSYS) {
2615 			fm->fc->no_lseek = 1;
2616 			goto fallback;
2617 		}
2618 		return err;
2619 	}
2620 
2621 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2622 
2623 fallback:
2624 	err = fuse_update_attributes(inode, file);
2625 	if (!err)
2626 		return generic_file_llseek(file, offset, whence);
2627 	else
2628 		return err;
2629 }
2630 
fuse_file_llseek(struct file * file,loff_t offset,int whence)2631 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2632 {
2633 	loff_t retval;
2634 	struct inode *inode = file_inode(file);
2635 
2636 	switch (whence) {
2637 	case SEEK_SET:
2638 	case SEEK_CUR:
2639 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2640 		retval = generic_file_llseek(file, offset, whence);
2641 		break;
2642 	case SEEK_END:
2643 		inode_lock(inode);
2644 		retval = fuse_update_attributes(inode, file);
2645 		if (!retval)
2646 			retval = generic_file_llseek(file, offset, whence);
2647 		inode_unlock(inode);
2648 		break;
2649 	case SEEK_HOLE:
2650 	case SEEK_DATA:
2651 		inode_lock(inode);
2652 		retval = fuse_lseek(file, offset, whence);
2653 		inode_unlock(inode);
2654 		break;
2655 	default:
2656 		retval = -EINVAL;
2657 	}
2658 
2659 	return retval;
2660 }
2661 
2662 /*
2663  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2664  * ABI was defined to be 'struct iovec' which is different on 32bit
2665  * and 64bit.  Fortunately we can determine which structure the server
2666  * used from the size of the reply.
2667  */
fuse_copy_ioctl_iovec_old(struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2668 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2669 				     size_t transferred, unsigned count,
2670 				     bool is_compat)
2671 {
2672 #ifdef CONFIG_COMPAT
2673 	if (count * sizeof(struct compat_iovec) == transferred) {
2674 		struct compat_iovec *ciov = src;
2675 		unsigned i;
2676 
2677 		/*
2678 		 * With this interface a 32bit server cannot support
2679 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2680 		 * requests
2681 		 */
2682 		if (!is_compat)
2683 			return -EINVAL;
2684 
2685 		for (i = 0; i < count; i++) {
2686 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2687 			dst[i].iov_len = ciov[i].iov_len;
2688 		}
2689 		return 0;
2690 	}
2691 #endif
2692 
2693 	if (count * sizeof(struct iovec) != transferred)
2694 		return -EIO;
2695 
2696 	memcpy(dst, src, transferred);
2697 	return 0;
2698 }
2699 
2700 /* Make sure iov_length() won't overflow */
fuse_verify_ioctl_iov(struct fuse_conn * fc,struct iovec * iov,size_t count)2701 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2702 				 size_t count)
2703 {
2704 	size_t n;
2705 	u32 max = fc->max_pages << PAGE_SHIFT;
2706 
2707 	for (n = 0; n < count; n++, iov++) {
2708 		if (iov->iov_len > (size_t) max)
2709 			return -ENOMEM;
2710 		max -= iov->iov_len;
2711 	}
2712 	return 0;
2713 }
2714 
fuse_copy_ioctl_iovec(struct fuse_conn * fc,struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2715 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2716 				 void *src, size_t transferred, unsigned count,
2717 				 bool is_compat)
2718 {
2719 	unsigned i;
2720 	struct fuse_ioctl_iovec *fiov = src;
2721 
2722 	if (fc->minor < 16) {
2723 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2724 						 count, is_compat);
2725 	}
2726 
2727 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2728 		return -EIO;
2729 
2730 	for (i = 0; i < count; i++) {
2731 		/* Did the server supply an inappropriate value? */
2732 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2733 		    fiov[i].len != (unsigned long) fiov[i].len)
2734 			return -EIO;
2735 
2736 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2737 		dst[i].iov_len = (size_t) fiov[i].len;
2738 
2739 #ifdef CONFIG_COMPAT
2740 		if (is_compat &&
2741 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2742 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2743 			return -EIO;
2744 #endif
2745 	}
2746 
2747 	return 0;
2748 }
2749 
2750 
2751 /*
2752  * For ioctls, there is no generic way to determine how much memory
2753  * needs to be read and/or written.  Furthermore, ioctls are allowed
2754  * to dereference the passed pointer, so the parameter requires deep
2755  * copying but FUSE has no idea whatsoever about what to copy in or
2756  * out.
2757  *
2758  * This is solved by allowing FUSE server to retry ioctl with
2759  * necessary in/out iovecs.  Let's assume the ioctl implementation
2760  * needs to read in the following structure.
2761  *
2762  * struct a {
2763  *	char	*buf;
2764  *	size_t	buflen;
2765  * }
2766  *
2767  * On the first callout to FUSE server, inarg->in_size and
2768  * inarg->out_size will be NULL; then, the server completes the ioctl
2769  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2770  * the actual iov array to
2771  *
2772  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2773  *
2774  * which tells FUSE to copy in the requested area and retry the ioctl.
2775  * On the second round, the server has access to the structure and
2776  * from that it can tell what to look for next, so on the invocation,
2777  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2778  *
2779  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2780  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2781  *
2782  * FUSE will copy both struct a and the pointed buffer from the
2783  * process doing the ioctl and retry ioctl with both struct a and the
2784  * buffer.
2785  *
2786  * This time, FUSE server has everything it needs and completes ioctl
2787  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2788  *
2789  * Copying data out works the same way.
2790  *
2791  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2792  * automatically initializes in and out iovs by decoding @cmd with
2793  * _IOC_* macros and the server is not allowed to request RETRY.  This
2794  * limits ioctl data transfers to well-formed ioctls and is the forced
2795  * behavior for all FUSE servers.
2796  */
fuse_do_ioctl(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)2797 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2798 		   unsigned int flags)
2799 {
2800 	struct fuse_file *ff = file->private_data;
2801 	struct fuse_mount *fm = ff->fm;
2802 	struct fuse_ioctl_in inarg = {
2803 		.fh = ff->fh,
2804 		.cmd = cmd,
2805 		.arg = arg,
2806 		.flags = flags
2807 	};
2808 	struct fuse_ioctl_out outarg;
2809 	struct iovec *iov_page = NULL;
2810 	struct iovec *in_iov = NULL, *out_iov = NULL;
2811 	unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2812 	size_t in_size, out_size, c;
2813 	ssize_t transferred;
2814 	int err, i;
2815 	struct iov_iter ii;
2816 	struct fuse_args_pages ap = {};
2817 
2818 #if BITS_PER_LONG == 32
2819 	inarg.flags |= FUSE_IOCTL_32BIT;
2820 #else
2821 	if (flags & FUSE_IOCTL_COMPAT) {
2822 		inarg.flags |= FUSE_IOCTL_32BIT;
2823 #ifdef CONFIG_X86_X32
2824 		if (in_x32_syscall())
2825 			inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2826 #endif
2827 	}
2828 #endif
2829 
2830 	/* assume all the iovs returned by client always fits in a page */
2831 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2832 
2833 	err = -ENOMEM;
2834 	ap.pages = fuse_pages_alloc(fm->fc->max_pages, GFP_KERNEL, &ap.descs);
2835 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2836 	if (!ap.pages || !iov_page)
2837 		goto out;
2838 
2839 	fuse_page_descs_length_init(ap.descs, 0, fm->fc->max_pages);
2840 
2841 	/*
2842 	 * If restricted, initialize IO parameters as encoded in @cmd.
2843 	 * RETRY from server is not allowed.
2844 	 */
2845 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2846 		struct iovec *iov = iov_page;
2847 
2848 		iov->iov_base = (void __user *)arg;
2849 
2850 		switch (cmd) {
2851 		case FS_IOC_GETFLAGS:
2852 		case FS_IOC_SETFLAGS:
2853 			iov->iov_len = sizeof(int);
2854 			break;
2855 		default:
2856 			iov->iov_len = _IOC_SIZE(cmd);
2857 			break;
2858 		}
2859 
2860 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2861 			in_iov = iov;
2862 			in_iovs = 1;
2863 		}
2864 
2865 		if (_IOC_DIR(cmd) & _IOC_READ) {
2866 			out_iov = iov;
2867 			out_iovs = 1;
2868 		}
2869 	}
2870 
2871  retry:
2872 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2873 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2874 
2875 	/*
2876 	 * Out data can be used either for actual out data or iovs,
2877 	 * make sure there always is at least one page.
2878 	 */
2879 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2880 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2881 
2882 	/* make sure there are enough buffer pages and init request with them */
2883 	err = -ENOMEM;
2884 	if (max_pages > fm->fc->max_pages)
2885 		goto out;
2886 	while (ap.num_pages < max_pages) {
2887 		ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2888 		if (!ap.pages[ap.num_pages])
2889 			goto out;
2890 		ap.num_pages++;
2891 	}
2892 
2893 
2894 	/* okay, let's send it to the client */
2895 	ap.args.opcode = FUSE_IOCTL;
2896 	ap.args.nodeid = ff->nodeid;
2897 	ap.args.in_numargs = 1;
2898 	ap.args.in_args[0].size = sizeof(inarg);
2899 	ap.args.in_args[0].value = &inarg;
2900 	if (in_size) {
2901 		ap.args.in_numargs++;
2902 		ap.args.in_args[1].size = in_size;
2903 		ap.args.in_pages = true;
2904 
2905 		err = -EFAULT;
2906 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2907 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2908 			c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2909 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2910 				goto out;
2911 		}
2912 	}
2913 
2914 	ap.args.out_numargs = 2;
2915 	ap.args.out_args[0].size = sizeof(outarg);
2916 	ap.args.out_args[0].value = &outarg;
2917 	ap.args.out_args[1].size = out_size;
2918 	ap.args.out_pages = true;
2919 	ap.args.out_argvar = true;
2920 
2921 	transferred = fuse_simple_request(fm, &ap.args);
2922 	err = transferred;
2923 	if (transferred < 0)
2924 		goto out;
2925 
2926 	/* did it ask for retry? */
2927 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2928 		void *vaddr;
2929 
2930 		/* no retry if in restricted mode */
2931 		err = -EIO;
2932 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2933 			goto out;
2934 
2935 		in_iovs = outarg.in_iovs;
2936 		out_iovs = outarg.out_iovs;
2937 
2938 		/*
2939 		 * Make sure things are in boundary, separate checks
2940 		 * are to protect against overflow.
2941 		 */
2942 		err = -ENOMEM;
2943 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2944 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2945 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2946 			goto out;
2947 
2948 		vaddr = kmap_atomic(ap.pages[0]);
2949 		err = fuse_copy_ioctl_iovec(fm->fc, iov_page, vaddr,
2950 					    transferred, in_iovs + out_iovs,
2951 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2952 		kunmap_atomic(vaddr);
2953 		if (err)
2954 			goto out;
2955 
2956 		in_iov = iov_page;
2957 		out_iov = in_iov + in_iovs;
2958 
2959 		err = fuse_verify_ioctl_iov(fm->fc, in_iov, in_iovs);
2960 		if (err)
2961 			goto out;
2962 
2963 		err = fuse_verify_ioctl_iov(fm->fc, out_iov, out_iovs);
2964 		if (err)
2965 			goto out;
2966 
2967 		goto retry;
2968 	}
2969 
2970 	err = -EIO;
2971 	if (transferred > inarg.out_size)
2972 		goto out;
2973 
2974 	err = -EFAULT;
2975 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2976 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2977 		c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2978 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2979 			goto out;
2980 	}
2981 	err = 0;
2982  out:
2983 	free_page((unsigned long) iov_page);
2984 	while (ap.num_pages)
2985 		__free_page(ap.pages[--ap.num_pages]);
2986 	kfree(ap.pages);
2987 
2988 	return err ? err : outarg.result;
2989 }
2990 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2991 
fuse_ioctl_common(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)2992 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2993 		       unsigned long arg, unsigned int flags)
2994 {
2995 	struct inode *inode = file_inode(file);
2996 	struct fuse_conn *fc = get_fuse_conn(inode);
2997 
2998 	if (!fuse_allow_current_process(fc))
2999 		return -EACCES;
3000 
3001 	if (fuse_is_bad(inode))
3002 		return -EIO;
3003 
3004 	return fuse_do_ioctl(file, cmd, arg, flags);
3005 }
3006 
fuse_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3007 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
3008 			    unsigned long arg)
3009 {
3010 	return fuse_ioctl_common(file, cmd, arg, 0);
3011 }
3012 
fuse_file_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3013 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
3014 				   unsigned long arg)
3015 {
3016 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
3017 }
3018 
3019 /*
3020  * All files which have been polled are linked to RB tree
3021  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
3022  * find the matching one.
3023  */
fuse_find_polled_node(struct fuse_conn * fc,u64 kh,struct rb_node ** parent_out)3024 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
3025 					      struct rb_node **parent_out)
3026 {
3027 	struct rb_node **link = &fc->polled_files.rb_node;
3028 	struct rb_node *last = NULL;
3029 
3030 	while (*link) {
3031 		struct fuse_file *ff;
3032 
3033 		last = *link;
3034 		ff = rb_entry(last, struct fuse_file, polled_node);
3035 
3036 		if (kh < ff->kh)
3037 			link = &last->rb_left;
3038 		else if (kh > ff->kh)
3039 			link = &last->rb_right;
3040 		else
3041 			return link;
3042 	}
3043 
3044 	if (parent_out)
3045 		*parent_out = last;
3046 	return link;
3047 }
3048 
3049 /*
3050  * The file is about to be polled.  Make sure it's on the polled_files
3051  * RB tree.  Note that files once added to the polled_files tree are
3052  * not removed before the file is released.  This is because a file
3053  * polled once is likely to be polled again.
3054  */
fuse_register_polled_file(struct fuse_conn * fc,struct fuse_file * ff)3055 static void fuse_register_polled_file(struct fuse_conn *fc,
3056 				      struct fuse_file *ff)
3057 {
3058 	spin_lock(&fc->lock);
3059 	if (RB_EMPTY_NODE(&ff->polled_node)) {
3060 		struct rb_node **link, *parent;
3061 
3062 		link = fuse_find_polled_node(fc, ff->kh, &parent);
3063 		BUG_ON(*link);
3064 		rb_link_node(&ff->polled_node, parent, link);
3065 		rb_insert_color(&ff->polled_node, &fc->polled_files);
3066 	}
3067 	spin_unlock(&fc->lock);
3068 }
3069 
fuse_file_poll(struct file * file,poll_table * wait)3070 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
3071 {
3072 	struct fuse_file *ff = file->private_data;
3073 	struct fuse_mount *fm = ff->fm;
3074 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
3075 	struct fuse_poll_out outarg;
3076 	FUSE_ARGS(args);
3077 	int err;
3078 
3079 	if (fm->fc->no_poll)
3080 		return DEFAULT_POLLMASK;
3081 
3082 	poll_wait(file, &ff->poll_wait, wait);
3083 	inarg.events = mangle_poll(poll_requested_events(wait));
3084 
3085 	/*
3086 	 * Ask for notification iff there's someone waiting for it.
3087 	 * The client may ignore the flag and always notify.
3088 	 */
3089 	if (waitqueue_active(&ff->poll_wait)) {
3090 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
3091 		fuse_register_polled_file(fm->fc, ff);
3092 	}
3093 
3094 	args.opcode = FUSE_POLL;
3095 	args.nodeid = ff->nodeid;
3096 	args.in_numargs = 1;
3097 	args.in_args[0].size = sizeof(inarg);
3098 	args.in_args[0].value = &inarg;
3099 	args.out_numargs = 1;
3100 	args.out_args[0].size = sizeof(outarg);
3101 	args.out_args[0].value = &outarg;
3102 	err = fuse_simple_request(fm, &args);
3103 
3104 	if (!err)
3105 		return demangle_poll(outarg.revents);
3106 	if (err == -ENOSYS) {
3107 		fm->fc->no_poll = 1;
3108 		return DEFAULT_POLLMASK;
3109 	}
3110 	return EPOLLERR;
3111 }
3112 EXPORT_SYMBOL_GPL(fuse_file_poll);
3113 
3114 /*
3115  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3116  * wakes up the poll waiters.
3117  */
fuse_notify_poll_wakeup(struct fuse_conn * fc,struct fuse_notify_poll_wakeup_out * outarg)3118 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3119 			    struct fuse_notify_poll_wakeup_out *outarg)
3120 {
3121 	u64 kh = outarg->kh;
3122 	struct rb_node **link;
3123 
3124 	spin_lock(&fc->lock);
3125 
3126 	link = fuse_find_polled_node(fc, kh, NULL);
3127 	if (*link) {
3128 		struct fuse_file *ff;
3129 
3130 		ff = rb_entry(*link, struct fuse_file, polled_node);
3131 		wake_up_interruptible_sync(&ff->poll_wait);
3132 	}
3133 
3134 	spin_unlock(&fc->lock);
3135 	return 0;
3136 }
3137 
fuse_do_truncate(struct file * file)3138 static void fuse_do_truncate(struct file *file)
3139 {
3140 	struct inode *inode = file->f_mapping->host;
3141 	struct iattr attr;
3142 
3143 	attr.ia_valid = ATTR_SIZE;
3144 	attr.ia_size = i_size_read(inode);
3145 
3146 	attr.ia_file = file;
3147 	attr.ia_valid |= ATTR_FILE;
3148 
3149 	fuse_do_setattr(file_dentry(file), &attr, file);
3150 }
3151 
fuse_round_up(struct fuse_conn * fc,loff_t off)3152 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3153 {
3154 	return round_up(off, fc->max_pages << PAGE_SHIFT);
3155 }
3156 
3157 static ssize_t
fuse_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3158 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3159 {
3160 	DECLARE_COMPLETION_ONSTACK(wait);
3161 	ssize_t ret = 0;
3162 	struct file *file = iocb->ki_filp;
3163 	struct fuse_file *ff = file->private_data;
3164 	loff_t pos = 0;
3165 	struct inode *inode;
3166 	loff_t i_size;
3167 	size_t count = iov_iter_count(iter), shortened = 0;
3168 	loff_t offset = iocb->ki_pos;
3169 	struct fuse_io_priv *io;
3170 
3171 	pos = offset;
3172 	inode = file->f_mapping->host;
3173 	i_size = i_size_read(inode);
3174 
3175 	if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
3176 		return 0;
3177 
3178 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3179 	if (!io)
3180 		return -ENOMEM;
3181 	spin_lock_init(&io->lock);
3182 	kref_init(&io->refcnt);
3183 	io->reqs = 1;
3184 	io->bytes = -1;
3185 	io->size = 0;
3186 	io->offset = offset;
3187 	io->write = (iov_iter_rw(iter) == WRITE);
3188 	io->err = 0;
3189 	/*
3190 	 * By default, we want to optimize all I/Os with async request
3191 	 * submission to the client filesystem if supported.
3192 	 */
3193 	io->async = ff->fm->fc->async_dio;
3194 	io->iocb = iocb;
3195 	io->blocking = is_sync_kiocb(iocb);
3196 
3197 	/* optimization for short read */
3198 	if (io->async && !io->write && offset + count > i_size) {
3199 		iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
3200 		shortened = count - iov_iter_count(iter);
3201 		count -= shortened;
3202 	}
3203 
3204 	/*
3205 	 * We cannot asynchronously extend the size of a file.
3206 	 * In such case the aio will behave exactly like sync io.
3207 	 */
3208 	if ((offset + count > i_size) && io->write)
3209 		io->blocking = true;
3210 
3211 	if (io->async && io->blocking) {
3212 		/*
3213 		 * Additional reference to keep io around after
3214 		 * calling fuse_aio_complete()
3215 		 */
3216 		kref_get(&io->refcnt);
3217 		io->done = &wait;
3218 	}
3219 
3220 	if (iov_iter_rw(iter) == WRITE) {
3221 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3222 		fuse_invalidate_attr(inode);
3223 	} else {
3224 		ret = __fuse_direct_read(io, iter, &pos);
3225 	}
3226 	iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
3227 
3228 	if (io->async) {
3229 		bool blocking = io->blocking;
3230 
3231 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3232 
3233 		/* we have a non-extending, async request, so return */
3234 		if (!blocking)
3235 			return -EIOCBQUEUED;
3236 
3237 		wait_for_completion(&wait);
3238 		ret = fuse_get_res_by_io(io);
3239 	}
3240 
3241 	kref_put(&io->refcnt, fuse_io_release);
3242 
3243 	if (iov_iter_rw(iter) == WRITE) {
3244 		if (ret > 0)
3245 			fuse_write_update_size(inode, pos);
3246 		else if (ret < 0 && offset + count > i_size)
3247 			fuse_do_truncate(file);
3248 	}
3249 
3250 	return ret;
3251 }
3252 
fuse_writeback_range(struct inode * inode,loff_t start,loff_t end)3253 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3254 {
3255 	int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
3256 
3257 	if (!err)
3258 		fuse_sync_writes(inode);
3259 
3260 	return err;
3261 }
3262 
fuse_file_fallocate(struct file * file,int mode,loff_t offset,loff_t length)3263 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3264 				loff_t length)
3265 {
3266 	struct fuse_file *ff = file->private_data;
3267 	struct inode *inode = file_inode(file);
3268 	struct fuse_inode *fi = get_fuse_inode(inode);
3269 	struct fuse_mount *fm = ff->fm;
3270 	FUSE_ARGS(args);
3271 	struct fuse_fallocate_in inarg = {
3272 		.fh = ff->fh,
3273 		.offset = offset,
3274 		.length = length,
3275 		.mode = mode
3276 	};
3277 	int err;
3278 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3279 			   (mode & FALLOC_FL_PUNCH_HOLE);
3280 
3281 	bool block_faults = FUSE_IS_DAX(inode) && lock_inode;
3282 
3283 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3284 		return -EOPNOTSUPP;
3285 
3286 	if (fm->fc->no_fallocate)
3287 		return -EOPNOTSUPP;
3288 
3289 	if (lock_inode) {
3290 		inode_lock(inode);
3291 		if (block_faults) {
3292 			down_write(&fi->i_mmap_sem);
3293 			err = fuse_dax_break_layouts(inode, 0, 0);
3294 			if (err)
3295 				goto out;
3296 		}
3297 
3298 		if (mode & FALLOC_FL_PUNCH_HOLE) {
3299 			loff_t endbyte = offset + length - 1;
3300 
3301 			err = fuse_writeback_range(inode, offset, endbyte);
3302 			if (err)
3303 				goto out;
3304 		}
3305 	}
3306 
3307 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3308 	    offset + length > i_size_read(inode)) {
3309 		err = inode_newsize_ok(inode, offset + length);
3310 		if (err)
3311 			goto out;
3312 	}
3313 
3314 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3315 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3316 
3317 	args.opcode = FUSE_FALLOCATE;
3318 	args.nodeid = ff->nodeid;
3319 	args.in_numargs = 1;
3320 	args.in_args[0].size = sizeof(inarg);
3321 	args.in_args[0].value = &inarg;
3322 	err = fuse_simple_request(fm, &args);
3323 	if (err == -ENOSYS) {
3324 		fm->fc->no_fallocate = 1;
3325 		err = -EOPNOTSUPP;
3326 	}
3327 	if (err)
3328 		goto out;
3329 
3330 	/* we could have extended the file */
3331 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3332 		bool changed = fuse_write_update_size(inode, offset + length);
3333 
3334 		if (changed && fm->fc->writeback_cache)
3335 			file_update_time(file);
3336 	}
3337 
3338 	if (mode & FALLOC_FL_PUNCH_HOLE)
3339 		truncate_pagecache_range(inode, offset, offset + length - 1);
3340 
3341 	fuse_invalidate_attr(inode);
3342 
3343 out:
3344 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3345 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3346 
3347 	if (block_faults)
3348 		up_write(&fi->i_mmap_sem);
3349 
3350 	if (lock_inode)
3351 		inode_unlock(inode);
3352 
3353 	fuse_flush_time_update(inode);
3354 
3355 	return err;
3356 }
3357 
__fuse_copy_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len,unsigned int flags)3358 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3359 				      struct file *file_out, loff_t pos_out,
3360 				      size_t len, unsigned int flags)
3361 {
3362 	struct fuse_file *ff_in = file_in->private_data;
3363 	struct fuse_file *ff_out = file_out->private_data;
3364 	struct inode *inode_in = file_inode(file_in);
3365 	struct inode *inode_out = file_inode(file_out);
3366 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3367 	struct fuse_mount *fm = ff_in->fm;
3368 	struct fuse_conn *fc = fm->fc;
3369 	FUSE_ARGS(args);
3370 	struct fuse_copy_file_range_in inarg = {
3371 		.fh_in = ff_in->fh,
3372 		.off_in = pos_in,
3373 		.nodeid_out = ff_out->nodeid,
3374 		.fh_out = ff_out->fh,
3375 		.off_out = pos_out,
3376 		.len = len,
3377 		.flags = flags
3378 	};
3379 	struct fuse_write_out outarg;
3380 	ssize_t err;
3381 	/* mark unstable when write-back is not used, and file_out gets
3382 	 * extended */
3383 	bool is_unstable = (!fc->writeback_cache) &&
3384 			   ((pos_out + len) > inode_out->i_size);
3385 
3386 	if (fc->no_copy_file_range)
3387 		return -EOPNOTSUPP;
3388 
3389 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3390 		return -EXDEV;
3391 
3392 	inode_lock(inode_in);
3393 	err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3394 	inode_unlock(inode_in);
3395 	if (err)
3396 		return err;
3397 
3398 	inode_lock(inode_out);
3399 
3400 	err = file_modified(file_out);
3401 	if (err)
3402 		goto out;
3403 
3404 	/*
3405 	 * Write out dirty pages in the destination file before sending the COPY
3406 	 * request to userspace.  After the request is completed, truncate off
3407 	 * pages (including partial ones) from the cache that have been copied,
3408 	 * since these contain stale data at that point.
3409 	 *
3410 	 * This should be mostly correct, but if the COPY writes to partial
3411 	 * pages (at the start or end) and the parts not covered by the COPY are
3412 	 * written through a memory map after calling fuse_writeback_range(),
3413 	 * then these partial page modifications will be lost on truncation.
3414 	 *
3415 	 * It is unlikely that someone would rely on such mixed style
3416 	 * modifications.  Yet this does give less guarantees than if the
3417 	 * copying was performed with write(2).
3418 	 *
3419 	 * To fix this a i_mmap_sem style lock could be used to prevent new
3420 	 * faults while the copy is ongoing.
3421 	 */
3422 	err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3423 	if (err)
3424 		goto out;
3425 
3426 	if (is_unstable)
3427 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3428 
3429 	args.opcode = FUSE_COPY_FILE_RANGE;
3430 	args.nodeid = ff_in->nodeid;
3431 	args.in_numargs = 1;
3432 	args.in_args[0].size = sizeof(inarg);
3433 	args.in_args[0].value = &inarg;
3434 	args.out_numargs = 1;
3435 	args.out_args[0].size = sizeof(outarg);
3436 	args.out_args[0].value = &outarg;
3437 	err = fuse_simple_request(fm, &args);
3438 	if (err == -ENOSYS) {
3439 		fc->no_copy_file_range = 1;
3440 		err = -EOPNOTSUPP;
3441 	}
3442 	if (err)
3443 		goto out;
3444 
3445 	truncate_inode_pages_range(inode_out->i_mapping,
3446 				   ALIGN_DOWN(pos_out, PAGE_SIZE),
3447 				   ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3448 
3449 	if (fc->writeback_cache) {
3450 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3451 		file_update_time(file_out);
3452 	}
3453 
3454 	fuse_invalidate_attr(inode_out);
3455 
3456 	err = outarg.size;
3457 out:
3458 	if (is_unstable)
3459 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3460 
3461 	inode_unlock(inode_out);
3462 	file_accessed(file_in);
3463 
3464 	fuse_flush_time_update(inode_out);
3465 
3466 	return err;
3467 }
3468 
fuse_copy_file_range(struct file * src_file,loff_t src_off,struct file * dst_file,loff_t dst_off,size_t len,unsigned int flags)3469 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3470 				    struct file *dst_file, loff_t dst_off,
3471 				    size_t len, unsigned int flags)
3472 {
3473 	ssize_t ret;
3474 
3475 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3476 				     len, flags);
3477 
3478 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3479 		ret = generic_copy_file_range(src_file, src_off, dst_file,
3480 					      dst_off, len, flags);
3481 	return ret;
3482 }
3483 
3484 static const struct file_operations fuse_file_operations = {
3485 	.llseek		= fuse_file_llseek,
3486 	.read_iter	= fuse_file_read_iter,
3487 	.write_iter	= fuse_file_write_iter,
3488 	.mmap		= fuse_file_mmap,
3489 	.open		= fuse_open,
3490 	.flush		= fuse_flush,
3491 	.release	= fuse_release,
3492 	.fsync		= fuse_fsync,
3493 	.lock		= fuse_file_lock,
3494 	.get_unmapped_area = thp_get_unmapped_area,
3495 	.flock		= fuse_file_flock,
3496 	.splice_read	= generic_file_splice_read,
3497 	.splice_write	= iter_file_splice_write,
3498 	.unlocked_ioctl	= fuse_file_ioctl,
3499 	.compat_ioctl	= fuse_file_compat_ioctl,
3500 	.poll		= fuse_file_poll,
3501 	.fallocate	= fuse_file_fallocate,
3502 	.copy_file_range = fuse_copy_file_range,
3503 };
3504 
3505 static const struct address_space_operations fuse_file_aops  = {
3506 	.readpage	= fuse_readpage,
3507 	.readahead	= fuse_readahead,
3508 	.writepage	= fuse_writepage,
3509 	.writepages	= fuse_writepages,
3510 	.launder_page	= fuse_launder_page,
3511 	.set_page_dirty	= __set_page_dirty_nobuffers,
3512 	.bmap		= fuse_bmap,
3513 	.direct_IO	= fuse_direct_IO,
3514 	.write_begin	= fuse_write_begin,
3515 	.write_end	= fuse_write_end,
3516 };
3517 
fuse_init_file_inode(struct inode * inode)3518 void fuse_init_file_inode(struct inode *inode)
3519 {
3520 	struct fuse_inode *fi = get_fuse_inode(inode);
3521 
3522 	inode->i_fop = &fuse_file_operations;
3523 	inode->i_data.a_ops = &fuse_file_aops;
3524 
3525 	INIT_LIST_HEAD(&fi->write_files);
3526 	INIT_LIST_HEAD(&fi->queued_writes);
3527 	fi->writectr = 0;
3528 	init_waitqueue_head(&fi->page_waitq);
3529 	fi->writepages = RB_ROOT;
3530 
3531 	if (IS_ENABLED(CONFIG_FUSE_DAX))
3532 		fuse_dax_inode_init(inode);
3533 }
3534