1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/poll.h>
20 #include <linux/slab.h>
21 #include <linux/seq_file.h>
22 #include <linux/file.h>
23 #include <linux/bug.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/syscalls.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ioctl.h>
29 #include <linux/security.h>
30 #include <linux/hugetlb.h>
31
32 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
33
34 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35
36 /*
37 * Start with fault_pending_wqh and fault_wqh so they're more likely
38 * to be in the same cacheline.
39 *
40 * Locking order:
41 * fd_wqh.lock
42 * fault_pending_wqh.lock
43 * fault_wqh.lock
44 * event_wqh.lock
45 *
46 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
47 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
48 * also taken in IRQ context.
49 */
50 struct userfaultfd_ctx {
51 /* waitqueue head for the pending (i.e. not read) userfaults */
52 wait_queue_head_t fault_pending_wqh;
53 /* waitqueue head for the userfaults */
54 wait_queue_head_t fault_wqh;
55 /* waitqueue head for the pseudo fd to wakeup poll/read */
56 wait_queue_head_t fd_wqh;
57 /* waitqueue head for events */
58 wait_queue_head_t event_wqh;
59 /* a refile sequence protected by fault_pending_wqh lock */
60 seqcount_spinlock_t refile_seq;
61 /* pseudo fd refcounting */
62 refcount_t refcount;
63 /* userfaultfd syscall flags */
64 unsigned int flags;
65 /* features requested from the userspace */
66 unsigned int features;
67 /* released */
68 bool released;
69 /* memory mappings are changing because of non-cooperative event */
70 bool mmap_changing;
71 /* mm with one ore more vmas attached to this userfaultfd_ctx */
72 struct mm_struct *mm;
73 };
74
75 struct userfaultfd_fork_ctx {
76 struct userfaultfd_ctx *orig;
77 struct userfaultfd_ctx *new;
78 struct list_head list;
79 };
80
81 struct userfaultfd_unmap_ctx {
82 struct userfaultfd_ctx *ctx;
83 unsigned long start;
84 unsigned long end;
85 struct list_head list;
86 };
87
88 struct userfaultfd_wait_queue {
89 struct uffd_msg msg;
90 wait_queue_entry_t wq;
91 struct userfaultfd_ctx *ctx;
92 bool waken;
93 };
94
95 struct userfaultfd_wake_range {
96 unsigned long start;
97 unsigned long len;
98 };
99
100 /* internal indication that UFFD_API ioctl was successfully executed */
101 #define UFFD_FEATURE_INITIALIZED (1u << 31)
102
userfaultfd_is_initialized(struct userfaultfd_ctx * ctx)103 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
104 {
105 return ctx->features & UFFD_FEATURE_INITIALIZED;
106 }
107
userfaultfd_wake_function(wait_queue_entry_t * wq,unsigned mode,int wake_flags,void * key)108 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
109 int wake_flags, void *key)
110 {
111 struct userfaultfd_wake_range *range = key;
112 int ret;
113 struct userfaultfd_wait_queue *uwq;
114 unsigned long start, len;
115
116 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
117 ret = 0;
118 /* len == 0 means wake all */
119 start = range->start;
120 len = range->len;
121 if (len && (start > uwq->msg.arg.pagefault.address ||
122 start + len <= uwq->msg.arg.pagefault.address))
123 goto out;
124 WRITE_ONCE(uwq->waken, true);
125 /*
126 * The Program-Order guarantees provided by the scheduler
127 * ensure uwq->waken is visible before the task is woken.
128 */
129 ret = wake_up_state(wq->private, mode);
130 if (ret) {
131 /*
132 * Wake only once, autoremove behavior.
133 *
134 * After the effect of list_del_init is visible to the other
135 * CPUs, the waitqueue may disappear from under us, see the
136 * !list_empty_careful() in handle_userfault().
137 *
138 * try_to_wake_up() has an implicit smp_mb(), and the
139 * wq->private is read before calling the extern function
140 * "wake_up_state" (which in turns calls try_to_wake_up).
141 */
142 list_del_init(&wq->entry);
143 }
144 out:
145 return ret;
146 }
147
148 /**
149 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
150 * context.
151 * @ctx: [in] Pointer to the userfaultfd context.
152 */
userfaultfd_ctx_get(struct userfaultfd_ctx * ctx)153 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
154 {
155 refcount_inc(&ctx->refcount);
156 }
157
158 /**
159 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
160 * context.
161 * @ctx: [in] Pointer to userfaultfd context.
162 *
163 * The userfaultfd context reference must have been previously acquired either
164 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
165 */
userfaultfd_ctx_put(struct userfaultfd_ctx * ctx)166 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
167 {
168 if (refcount_dec_and_test(&ctx->refcount)) {
169 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
170 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
171 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
172 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
173 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
174 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
175 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
176 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
177 mmdrop(ctx->mm);
178 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
179 }
180 }
181
msg_init(struct uffd_msg * msg)182 static inline void msg_init(struct uffd_msg *msg)
183 {
184 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
185 /*
186 * Must use memset to zero out the paddings or kernel data is
187 * leaked to userland.
188 */
189 memset(msg, 0, sizeof(struct uffd_msg));
190 }
191
userfault_msg(unsigned long address,unsigned int flags,unsigned long reason,unsigned int features)192 static inline struct uffd_msg userfault_msg(unsigned long address,
193 unsigned int flags,
194 unsigned long reason,
195 unsigned int features)
196 {
197 struct uffd_msg msg;
198 msg_init(&msg);
199 msg.event = UFFD_EVENT_PAGEFAULT;
200 msg.arg.pagefault.address = address;
201 if (flags & FAULT_FLAG_WRITE)
202 /*
203 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
204 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
205 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
206 * was a read fault, otherwise if set it means it's
207 * a write fault.
208 */
209 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
210 if (reason & VM_UFFD_WP)
211 /*
212 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
213 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
214 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
215 * a missing fault, otherwise if set it means it's a
216 * write protect fault.
217 */
218 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
219 if (features & UFFD_FEATURE_THREAD_ID)
220 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
221 return msg;
222 }
223
224 #ifdef CONFIG_HUGETLB_PAGE
225 /*
226 * Same functionality as userfaultfd_must_wait below with modifications for
227 * hugepmd ranges.
228 */
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,unsigned long address,unsigned long flags,unsigned long reason)229 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
230 struct vm_area_struct *vma,
231 unsigned long address,
232 unsigned long flags,
233 unsigned long reason)
234 {
235 struct mm_struct *mm = ctx->mm;
236 pte_t *ptep, pte;
237 bool ret = true;
238
239 mmap_assert_locked(mm);
240
241 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
242
243 if (!ptep)
244 goto out;
245
246 ret = false;
247 pte = huge_ptep_get(ptep);
248
249 /*
250 * Lockless access: we're in a wait_event so it's ok if it
251 * changes under us.
252 */
253 if (huge_pte_none(pte))
254 ret = true;
255 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
256 ret = true;
257 out:
258 return ret;
259 }
260 #else
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,unsigned long address,unsigned long flags,unsigned long reason)261 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
262 struct vm_area_struct *vma,
263 unsigned long address,
264 unsigned long flags,
265 unsigned long reason)
266 {
267 return false; /* should never get here */
268 }
269 #endif /* CONFIG_HUGETLB_PAGE */
270
271 /*
272 * Verify the pagetables are still not ok after having reigstered into
273 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
274 * userfault that has already been resolved, if userfaultfd_read and
275 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
276 * threads.
277 */
userfaultfd_must_wait(struct userfaultfd_ctx * ctx,unsigned long address,unsigned long flags,unsigned long reason)278 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
279 unsigned long address,
280 unsigned long flags,
281 unsigned long reason)
282 {
283 struct mm_struct *mm = ctx->mm;
284 pgd_t *pgd;
285 p4d_t *p4d;
286 pud_t *pud;
287 pmd_t *pmd, _pmd;
288 pte_t *pte;
289 bool ret = true;
290
291 mmap_assert_locked(mm);
292
293 pgd = pgd_offset(mm, address);
294 if (!pgd_present(*pgd))
295 goto out;
296 p4d = p4d_offset(pgd, address);
297 if (!p4d_present(*p4d))
298 goto out;
299 pud = pud_offset(p4d, address);
300 if (!pud_present(*pud))
301 goto out;
302 pmd = pmd_offset(pud, address);
303 /*
304 * READ_ONCE must function as a barrier with narrower scope
305 * and it must be equivalent to:
306 * _pmd = *pmd; barrier();
307 *
308 * This is to deal with the instability (as in
309 * pmd_trans_unstable) of the pmd.
310 */
311 _pmd = READ_ONCE(*pmd);
312 if (pmd_none(_pmd))
313 goto out;
314
315 ret = false;
316 if (!pmd_present(_pmd))
317 goto out;
318
319 if (pmd_trans_huge(_pmd)) {
320 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
321 ret = true;
322 goto out;
323 }
324
325 /*
326 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
327 * and use the standard pte_offset_map() instead of parsing _pmd.
328 */
329 pte = pte_offset_map(pmd, address);
330 /*
331 * Lockless access: we're in a wait_event so it's ok if it
332 * changes under us.
333 */
334 if (pte_none(*pte))
335 ret = true;
336 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
337 ret = true;
338 pte_unmap(pte);
339
340 out:
341 return ret;
342 }
343
userfaultfd_get_blocking_state(unsigned int flags)344 static inline long userfaultfd_get_blocking_state(unsigned int flags)
345 {
346 if (flags & FAULT_FLAG_INTERRUPTIBLE)
347 return TASK_INTERRUPTIBLE;
348
349 if (flags & FAULT_FLAG_KILLABLE)
350 return TASK_KILLABLE;
351
352 return TASK_UNINTERRUPTIBLE;
353 }
354
355 /*
356 * The locking rules involved in returning VM_FAULT_RETRY depending on
357 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
358 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
359 * recommendation in __lock_page_or_retry is not an understatement.
360 *
361 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
362 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
363 * not set.
364 *
365 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
366 * set, VM_FAULT_RETRY can still be returned if and only if there are
367 * fatal_signal_pending()s, and the mmap_lock must be released before
368 * returning it.
369 */
handle_userfault(struct vm_fault * vmf,unsigned long reason)370 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
371 {
372 struct mm_struct *mm = vmf->vma->vm_mm;
373 struct userfaultfd_ctx *ctx;
374 struct userfaultfd_wait_queue uwq;
375 vm_fault_t ret = VM_FAULT_SIGBUS;
376 bool must_wait;
377 long blocking_state;
378
379 /*
380 * We don't do userfault handling for the final child pid update.
381 *
382 * We also don't do userfault handling during
383 * coredumping. hugetlbfs has the special
384 * follow_hugetlb_page() to skip missing pages in the
385 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
386 * the no_page_table() helper in follow_page_mask(), but the
387 * shmem_vm_ops->fault method is invoked even during
388 * coredumping without mmap_lock and it ends up here.
389 */
390 if (current->flags & (PF_EXITING|PF_DUMPCORE))
391 goto out;
392
393 /*
394 * Coredumping runs without mmap_lock so we can only check that
395 * the mmap_lock is held, if PF_DUMPCORE was not set.
396 */
397 mmap_assert_locked(mm);
398
399 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
400 if (!ctx)
401 goto out;
402
403 BUG_ON(ctx->mm != mm);
404
405 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
406 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
407
408 if (ctx->features & UFFD_FEATURE_SIGBUS)
409 goto out;
410
411 /*
412 * If it's already released don't get it. This avoids to loop
413 * in __get_user_pages if userfaultfd_release waits on the
414 * caller of handle_userfault to release the mmap_lock.
415 */
416 if (unlikely(READ_ONCE(ctx->released))) {
417 /*
418 * Don't return VM_FAULT_SIGBUS in this case, so a non
419 * cooperative manager can close the uffd after the
420 * last UFFDIO_COPY, without risking to trigger an
421 * involuntary SIGBUS if the process was starting the
422 * userfaultfd while the userfaultfd was still armed
423 * (but after the last UFFDIO_COPY). If the uffd
424 * wasn't already closed when the userfault reached
425 * this point, that would normally be solved by
426 * userfaultfd_must_wait returning 'false'.
427 *
428 * If we were to return VM_FAULT_SIGBUS here, the non
429 * cooperative manager would be instead forced to
430 * always call UFFDIO_UNREGISTER before it can safely
431 * close the uffd.
432 */
433 ret = VM_FAULT_NOPAGE;
434 goto out;
435 }
436
437 /*
438 * Check that we can return VM_FAULT_RETRY.
439 *
440 * NOTE: it should become possible to return VM_FAULT_RETRY
441 * even if FAULT_FLAG_TRIED is set without leading to gup()
442 * -EBUSY failures, if the userfaultfd is to be extended for
443 * VM_UFFD_WP tracking and we intend to arm the userfault
444 * without first stopping userland access to the memory. For
445 * VM_UFFD_MISSING userfaults this is enough for now.
446 */
447 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
448 /*
449 * Validate the invariant that nowait must allow retry
450 * to be sure not to return SIGBUS erroneously on
451 * nowait invocations.
452 */
453 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
454 #ifdef CONFIG_DEBUG_VM
455 if (printk_ratelimit()) {
456 printk(KERN_WARNING
457 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
458 vmf->flags);
459 dump_stack();
460 }
461 #endif
462 goto out;
463 }
464
465 /*
466 * Handle nowait, not much to do other than tell it to retry
467 * and wait.
468 */
469 ret = VM_FAULT_RETRY;
470 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
471 goto out;
472
473 /* take the reference before dropping the mmap_lock */
474 userfaultfd_ctx_get(ctx);
475
476 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
477 uwq.wq.private = current;
478 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
479 ctx->features);
480 uwq.ctx = ctx;
481 uwq.waken = false;
482
483 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
484
485 spin_lock_irq(&ctx->fault_pending_wqh.lock);
486 /*
487 * After the __add_wait_queue the uwq is visible to userland
488 * through poll/read().
489 */
490 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
491 /*
492 * The smp_mb() after __set_current_state prevents the reads
493 * following the spin_unlock to happen before the list_add in
494 * __add_wait_queue.
495 */
496 set_current_state(blocking_state);
497 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
498
499 if (!is_vm_hugetlb_page(vmf->vma))
500 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
501 reason);
502 else
503 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
504 vmf->address,
505 vmf->flags, reason);
506 mmap_read_unlock(mm);
507
508 if (likely(must_wait && !READ_ONCE(ctx->released))) {
509 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
510 schedule();
511 }
512
513 __set_current_state(TASK_RUNNING);
514
515 /*
516 * Here we race with the list_del; list_add in
517 * userfaultfd_ctx_read(), however because we don't ever run
518 * list_del_init() to refile across the two lists, the prev
519 * and next pointers will never point to self. list_add also
520 * would never let any of the two pointers to point to
521 * self. So list_empty_careful won't risk to see both pointers
522 * pointing to self at any time during the list refile. The
523 * only case where list_del_init() is called is the full
524 * removal in the wake function and there we don't re-list_add
525 * and it's fine not to block on the spinlock. The uwq on this
526 * kernel stack can be released after the list_del_init.
527 */
528 if (!list_empty_careful(&uwq.wq.entry)) {
529 spin_lock_irq(&ctx->fault_pending_wqh.lock);
530 /*
531 * No need of list_del_init(), the uwq on the stack
532 * will be freed shortly anyway.
533 */
534 list_del(&uwq.wq.entry);
535 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
536 }
537
538 /*
539 * ctx may go away after this if the userfault pseudo fd is
540 * already released.
541 */
542 userfaultfd_ctx_put(ctx);
543
544 out:
545 return ret;
546 }
547
userfaultfd_event_wait_completion(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)548 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
549 struct userfaultfd_wait_queue *ewq)
550 {
551 struct userfaultfd_ctx *release_new_ctx;
552
553 if (WARN_ON_ONCE(current->flags & PF_EXITING))
554 goto out;
555
556 ewq->ctx = ctx;
557 init_waitqueue_entry(&ewq->wq, current);
558 release_new_ctx = NULL;
559
560 spin_lock_irq(&ctx->event_wqh.lock);
561 /*
562 * After the __add_wait_queue the uwq is visible to userland
563 * through poll/read().
564 */
565 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
566 for (;;) {
567 set_current_state(TASK_KILLABLE);
568 if (ewq->msg.event == 0)
569 break;
570 if (READ_ONCE(ctx->released) ||
571 fatal_signal_pending(current)) {
572 /*
573 * &ewq->wq may be queued in fork_event, but
574 * __remove_wait_queue ignores the head
575 * parameter. It would be a problem if it
576 * didn't.
577 */
578 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
579 if (ewq->msg.event == UFFD_EVENT_FORK) {
580 struct userfaultfd_ctx *new;
581
582 new = (struct userfaultfd_ctx *)
583 (unsigned long)
584 ewq->msg.arg.reserved.reserved1;
585 release_new_ctx = new;
586 }
587 break;
588 }
589
590 spin_unlock_irq(&ctx->event_wqh.lock);
591
592 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
593 schedule();
594
595 spin_lock_irq(&ctx->event_wqh.lock);
596 }
597 __set_current_state(TASK_RUNNING);
598 spin_unlock_irq(&ctx->event_wqh.lock);
599
600 if (release_new_ctx) {
601 struct vm_area_struct *vma;
602 struct mm_struct *mm = release_new_ctx->mm;
603
604 /* the various vma->vm_userfaultfd_ctx still points to it */
605 mmap_write_lock(mm);
606 for (vma = mm->mmap; vma; vma = vma->vm_next)
607 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
608 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
609 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
610 }
611 mmap_write_unlock(mm);
612
613 userfaultfd_ctx_put(release_new_ctx);
614 }
615
616 /*
617 * ctx may go away after this if the userfault pseudo fd is
618 * already released.
619 */
620 out:
621 WRITE_ONCE(ctx->mmap_changing, false);
622 userfaultfd_ctx_put(ctx);
623 }
624
userfaultfd_event_complete(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)625 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
626 struct userfaultfd_wait_queue *ewq)
627 {
628 ewq->msg.event = 0;
629 wake_up_locked(&ctx->event_wqh);
630 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
631 }
632
dup_userfaultfd(struct vm_area_struct * vma,struct list_head * fcs)633 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
634 {
635 struct userfaultfd_ctx *ctx = NULL, *octx;
636 struct userfaultfd_fork_ctx *fctx;
637
638 octx = vma->vm_userfaultfd_ctx.ctx;
639 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
640 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
641 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
642 return 0;
643 }
644
645 list_for_each_entry(fctx, fcs, list)
646 if (fctx->orig == octx) {
647 ctx = fctx->new;
648 break;
649 }
650
651 if (!ctx) {
652 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
653 if (!fctx)
654 return -ENOMEM;
655
656 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
657 if (!ctx) {
658 kfree(fctx);
659 return -ENOMEM;
660 }
661
662 refcount_set(&ctx->refcount, 1);
663 ctx->flags = octx->flags;
664 ctx->features = octx->features;
665 ctx->released = false;
666 ctx->mmap_changing = false;
667 ctx->mm = vma->vm_mm;
668 mmgrab(ctx->mm);
669
670 userfaultfd_ctx_get(octx);
671 WRITE_ONCE(octx->mmap_changing, true);
672 fctx->orig = octx;
673 fctx->new = ctx;
674 list_add_tail(&fctx->list, fcs);
675 }
676
677 vma->vm_userfaultfd_ctx.ctx = ctx;
678 return 0;
679 }
680
dup_fctx(struct userfaultfd_fork_ctx * fctx)681 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
682 {
683 struct userfaultfd_ctx *ctx = fctx->orig;
684 struct userfaultfd_wait_queue ewq;
685
686 msg_init(&ewq.msg);
687
688 ewq.msg.event = UFFD_EVENT_FORK;
689 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
690
691 userfaultfd_event_wait_completion(ctx, &ewq);
692 }
693
dup_userfaultfd_complete(struct list_head * fcs)694 void dup_userfaultfd_complete(struct list_head *fcs)
695 {
696 struct userfaultfd_fork_ctx *fctx, *n;
697
698 list_for_each_entry_safe(fctx, n, fcs, list) {
699 dup_fctx(fctx);
700 list_del(&fctx->list);
701 kfree(fctx);
702 }
703 }
704
mremap_userfaultfd_prep(struct vm_area_struct * vma,struct vm_userfaultfd_ctx * vm_ctx)705 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
706 struct vm_userfaultfd_ctx *vm_ctx)
707 {
708 struct userfaultfd_ctx *ctx;
709
710 ctx = vma->vm_userfaultfd_ctx.ctx;
711
712 if (!ctx)
713 return;
714
715 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
716 vm_ctx->ctx = ctx;
717 userfaultfd_ctx_get(ctx);
718 WRITE_ONCE(ctx->mmap_changing, true);
719 } else {
720 /* Drop uffd context if remap feature not enabled */
721 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
722 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
723 }
724 }
725
mremap_userfaultfd_complete(struct vm_userfaultfd_ctx * vm_ctx,unsigned long from,unsigned long to,unsigned long len)726 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
727 unsigned long from, unsigned long to,
728 unsigned long len)
729 {
730 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
731 struct userfaultfd_wait_queue ewq;
732
733 if (!ctx)
734 return;
735
736 if (to & ~PAGE_MASK) {
737 userfaultfd_ctx_put(ctx);
738 return;
739 }
740
741 msg_init(&ewq.msg);
742
743 ewq.msg.event = UFFD_EVENT_REMAP;
744 ewq.msg.arg.remap.from = from;
745 ewq.msg.arg.remap.to = to;
746 ewq.msg.arg.remap.len = len;
747
748 userfaultfd_event_wait_completion(ctx, &ewq);
749 }
750
userfaultfd_remove(struct vm_area_struct * vma,unsigned long start,unsigned long end)751 bool userfaultfd_remove(struct vm_area_struct *vma,
752 unsigned long start, unsigned long end)
753 {
754 struct mm_struct *mm = vma->vm_mm;
755 struct userfaultfd_ctx *ctx;
756 struct userfaultfd_wait_queue ewq;
757
758 ctx = vma->vm_userfaultfd_ctx.ctx;
759 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
760 return true;
761
762 userfaultfd_ctx_get(ctx);
763 WRITE_ONCE(ctx->mmap_changing, true);
764 mmap_read_unlock(mm);
765
766 msg_init(&ewq.msg);
767
768 ewq.msg.event = UFFD_EVENT_REMOVE;
769 ewq.msg.arg.remove.start = start;
770 ewq.msg.arg.remove.end = end;
771
772 userfaultfd_event_wait_completion(ctx, &ewq);
773
774 return false;
775 }
776
has_unmap_ctx(struct userfaultfd_ctx * ctx,struct list_head * unmaps,unsigned long start,unsigned long end)777 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
778 unsigned long start, unsigned long end)
779 {
780 struct userfaultfd_unmap_ctx *unmap_ctx;
781
782 list_for_each_entry(unmap_ctx, unmaps, list)
783 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
784 unmap_ctx->end == end)
785 return true;
786
787 return false;
788 }
789
userfaultfd_unmap_prep(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * unmaps)790 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
791 unsigned long start, unsigned long end,
792 struct list_head *unmaps)
793 {
794 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
795 struct userfaultfd_unmap_ctx *unmap_ctx;
796 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
797
798 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
799 has_unmap_ctx(ctx, unmaps, start, end))
800 continue;
801
802 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
803 if (!unmap_ctx)
804 return -ENOMEM;
805
806 userfaultfd_ctx_get(ctx);
807 WRITE_ONCE(ctx->mmap_changing, true);
808 unmap_ctx->ctx = ctx;
809 unmap_ctx->start = start;
810 unmap_ctx->end = end;
811 list_add_tail(&unmap_ctx->list, unmaps);
812 }
813
814 return 0;
815 }
816
userfaultfd_unmap_complete(struct mm_struct * mm,struct list_head * uf)817 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
818 {
819 struct userfaultfd_unmap_ctx *ctx, *n;
820 struct userfaultfd_wait_queue ewq;
821
822 list_for_each_entry_safe(ctx, n, uf, list) {
823 msg_init(&ewq.msg);
824
825 ewq.msg.event = UFFD_EVENT_UNMAP;
826 ewq.msg.arg.remove.start = ctx->start;
827 ewq.msg.arg.remove.end = ctx->end;
828
829 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
830
831 list_del(&ctx->list);
832 kfree(ctx);
833 }
834 }
835
userfaultfd_release(struct inode * inode,struct file * file)836 static int userfaultfd_release(struct inode *inode, struct file *file)
837 {
838 struct userfaultfd_ctx *ctx = file->private_data;
839 struct mm_struct *mm = ctx->mm;
840 struct vm_area_struct *vma, *prev;
841 /* len == 0 means wake all */
842 struct userfaultfd_wake_range range = { .len = 0, };
843 unsigned long new_flags;
844
845 WRITE_ONCE(ctx->released, true);
846
847 if (!mmget_not_zero(mm))
848 goto wakeup;
849
850 /*
851 * Flush page faults out of all CPUs. NOTE: all page faults
852 * must be retried without returning VM_FAULT_SIGBUS if
853 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
854 * changes while handle_userfault released the mmap_lock. So
855 * it's critical that released is set to true (above), before
856 * taking the mmap_lock for writing.
857 */
858 mmap_write_lock(mm);
859 prev = NULL;
860 for (vma = mm->mmap; vma; vma = vma->vm_next) {
861 cond_resched();
862 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
863 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
864 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
865 prev = vma;
866 continue;
867 }
868 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
869 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
870 new_flags, vma->anon_vma,
871 vma->vm_file, vma->vm_pgoff,
872 vma_policy(vma),
873 NULL_VM_UFFD_CTX, anon_vma_name(vma));
874 if (prev)
875 vma = prev;
876 else
877 prev = vma;
878 vma->vm_flags = new_flags;
879 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
880 }
881 mmap_write_unlock(mm);
882 mmput(mm);
883 wakeup:
884 /*
885 * After no new page faults can wait on this fault_*wqh, flush
886 * the last page faults that may have been already waiting on
887 * the fault_*wqh.
888 */
889 spin_lock_irq(&ctx->fault_pending_wqh.lock);
890 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
891 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
892 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
893
894 /* Flush pending events that may still wait on event_wqh */
895 wake_up_all(&ctx->event_wqh);
896
897 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
898 userfaultfd_ctx_put(ctx);
899 return 0;
900 }
901
902 /* fault_pending_wqh.lock must be hold by the caller */
find_userfault_in(wait_queue_head_t * wqh)903 static inline struct userfaultfd_wait_queue *find_userfault_in(
904 wait_queue_head_t *wqh)
905 {
906 wait_queue_entry_t *wq;
907 struct userfaultfd_wait_queue *uwq;
908
909 lockdep_assert_held(&wqh->lock);
910
911 uwq = NULL;
912 if (!waitqueue_active(wqh))
913 goto out;
914 /* walk in reverse to provide FIFO behavior to read userfaults */
915 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
916 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
917 out:
918 return uwq;
919 }
920
find_userfault(struct userfaultfd_ctx * ctx)921 static inline struct userfaultfd_wait_queue *find_userfault(
922 struct userfaultfd_ctx *ctx)
923 {
924 return find_userfault_in(&ctx->fault_pending_wqh);
925 }
926
find_userfault_evt(struct userfaultfd_ctx * ctx)927 static inline struct userfaultfd_wait_queue *find_userfault_evt(
928 struct userfaultfd_ctx *ctx)
929 {
930 return find_userfault_in(&ctx->event_wqh);
931 }
932
userfaultfd_poll(struct file * file,poll_table * wait)933 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
934 {
935 struct userfaultfd_ctx *ctx = file->private_data;
936 __poll_t ret;
937
938 poll_wait(file, &ctx->fd_wqh, wait);
939
940 if (!userfaultfd_is_initialized(ctx))
941 return EPOLLERR;
942
943 /*
944 * poll() never guarantees that read won't block.
945 * userfaults can be waken before they're read().
946 */
947 if (unlikely(!(file->f_flags & O_NONBLOCK)))
948 return EPOLLERR;
949 /*
950 * lockless access to see if there are pending faults
951 * __pollwait last action is the add_wait_queue but
952 * the spin_unlock would allow the waitqueue_active to
953 * pass above the actual list_add inside
954 * add_wait_queue critical section. So use a full
955 * memory barrier to serialize the list_add write of
956 * add_wait_queue() with the waitqueue_active read
957 * below.
958 */
959 ret = 0;
960 smp_mb();
961 if (waitqueue_active(&ctx->fault_pending_wqh))
962 ret = EPOLLIN;
963 else if (waitqueue_active(&ctx->event_wqh))
964 ret = EPOLLIN;
965
966 return ret;
967 }
968
969 static const struct file_operations userfaultfd_fops;
970
resolve_userfault_fork(struct userfaultfd_ctx * ctx,struct userfaultfd_ctx * new,struct uffd_msg * msg)971 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
972 struct userfaultfd_ctx *new,
973 struct uffd_msg *msg)
974 {
975 int fd;
976
977 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
978 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
979 if (fd < 0)
980 return fd;
981
982 msg->arg.reserved.reserved1 = 0;
983 msg->arg.fork.ufd = fd;
984 return 0;
985 }
986
userfaultfd_ctx_read(struct userfaultfd_ctx * ctx,int no_wait,struct uffd_msg * msg)987 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
988 struct uffd_msg *msg)
989 {
990 ssize_t ret;
991 DECLARE_WAITQUEUE(wait, current);
992 struct userfaultfd_wait_queue *uwq;
993 /*
994 * Handling fork event requires sleeping operations, so
995 * we drop the event_wqh lock, then do these ops, then
996 * lock it back and wake up the waiter. While the lock is
997 * dropped the ewq may go away so we keep track of it
998 * carefully.
999 */
1000 LIST_HEAD(fork_event);
1001 struct userfaultfd_ctx *fork_nctx = NULL;
1002
1003 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1004 spin_lock_irq(&ctx->fd_wqh.lock);
1005 __add_wait_queue(&ctx->fd_wqh, &wait);
1006 for (;;) {
1007 set_current_state(TASK_INTERRUPTIBLE);
1008 spin_lock(&ctx->fault_pending_wqh.lock);
1009 uwq = find_userfault(ctx);
1010 if (uwq) {
1011 /*
1012 * Use a seqcount to repeat the lockless check
1013 * in wake_userfault() to avoid missing
1014 * wakeups because during the refile both
1015 * waitqueue could become empty if this is the
1016 * only userfault.
1017 */
1018 write_seqcount_begin(&ctx->refile_seq);
1019
1020 /*
1021 * The fault_pending_wqh.lock prevents the uwq
1022 * to disappear from under us.
1023 *
1024 * Refile this userfault from
1025 * fault_pending_wqh to fault_wqh, it's not
1026 * pending anymore after we read it.
1027 *
1028 * Use list_del() by hand (as
1029 * userfaultfd_wake_function also uses
1030 * list_del_init() by hand) to be sure nobody
1031 * changes __remove_wait_queue() to use
1032 * list_del_init() in turn breaking the
1033 * !list_empty_careful() check in
1034 * handle_userfault(). The uwq->wq.head list
1035 * must never be empty at any time during the
1036 * refile, or the waitqueue could disappear
1037 * from under us. The "wait_queue_head_t"
1038 * parameter of __remove_wait_queue() is unused
1039 * anyway.
1040 */
1041 list_del(&uwq->wq.entry);
1042 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1043
1044 write_seqcount_end(&ctx->refile_seq);
1045
1046 /* careful to always initialize msg if ret == 0 */
1047 *msg = uwq->msg;
1048 spin_unlock(&ctx->fault_pending_wqh.lock);
1049 ret = 0;
1050 break;
1051 }
1052 spin_unlock(&ctx->fault_pending_wqh.lock);
1053
1054 spin_lock(&ctx->event_wqh.lock);
1055 uwq = find_userfault_evt(ctx);
1056 if (uwq) {
1057 *msg = uwq->msg;
1058
1059 if (uwq->msg.event == UFFD_EVENT_FORK) {
1060 fork_nctx = (struct userfaultfd_ctx *)
1061 (unsigned long)
1062 uwq->msg.arg.reserved.reserved1;
1063 list_move(&uwq->wq.entry, &fork_event);
1064 /*
1065 * fork_nctx can be freed as soon as
1066 * we drop the lock, unless we take a
1067 * reference on it.
1068 */
1069 userfaultfd_ctx_get(fork_nctx);
1070 spin_unlock(&ctx->event_wqh.lock);
1071 ret = 0;
1072 break;
1073 }
1074
1075 userfaultfd_event_complete(ctx, uwq);
1076 spin_unlock(&ctx->event_wqh.lock);
1077 ret = 0;
1078 break;
1079 }
1080 spin_unlock(&ctx->event_wqh.lock);
1081
1082 if (signal_pending(current)) {
1083 ret = -ERESTARTSYS;
1084 break;
1085 }
1086 if (no_wait) {
1087 ret = -EAGAIN;
1088 break;
1089 }
1090 spin_unlock_irq(&ctx->fd_wqh.lock);
1091 schedule();
1092 spin_lock_irq(&ctx->fd_wqh.lock);
1093 }
1094 __remove_wait_queue(&ctx->fd_wqh, &wait);
1095 __set_current_state(TASK_RUNNING);
1096 spin_unlock_irq(&ctx->fd_wqh.lock);
1097
1098 if (!ret && msg->event == UFFD_EVENT_FORK) {
1099 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1100 spin_lock_irq(&ctx->event_wqh.lock);
1101 if (!list_empty(&fork_event)) {
1102 /*
1103 * The fork thread didn't abort, so we can
1104 * drop the temporary refcount.
1105 */
1106 userfaultfd_ctx_put(fork_nctx);
1107
1108 uwq = list_first_entry(&fork_event,
1109 typeof(*uwq),
1110 wq.entry);
1111 /*
1112 * If fork_event list wasn't empty and in turn
1113 * the event wasn't already released by fork
1114 * (the event is allocated on fork kernel
1115 * stack), put the event back to its place in
1116 * the event_wq. fork_event head will be freed
1117 * as soon as we return so the event cannot
1118 * stay queued there no matter the current
1119 * "ret" value.
1120 */
1121 list_del(&uwq->wq.entry);
1122 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1123
1124 /*
1125 * Leave the event in the waitqueue and report
1126 * error to userland if we failed to resolve
1127 * the userfault fork.
1128 */
1129 if (likely(!ret))
1130 userfaultfd_event_complete(ctx, uwq);
1131 } else {
1132 /*
1133 * Here the fork thread aborted and the
1134 * refcount from the fork thread on fork_nctx
1135 * has already been released. We still hold
1136 * the reference we took before releasing the
1137 * lock above. If resolve_userfault_fork
1138 * failed we've to drop it because the
1139 * fork_nctx has to be freed in such case. If
1140 * it succeeded we'll hold it because the new
1141 * uffd references it.
1142 */
1143 if (ret)
1144 userfaultfd_ctx_put(fork_nctx);
1145 }
1146 spin_unlock_irq(&ctx->event_wqh.lock);
1147 }
1148
1149 return ret;
1150 }
1151
userfaultfd_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1152 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1153 size_t count, loff_t *ppos)
1154 {
1155 struct userfaultfd_ctx *ctx = file->private_data;
1156 ssize_t _ret, ret = 0;
1157 struct uffd_msg msg;
1158 int no_wait = file->f_flags & O_NONBLOCK;
1159
1160 if (!userfaultfd_is_initialized(ctx))
1161 return -EINVAL;
1162
1163 for (;;) {
1164 if (count < sizeof(msg))
1165 return ret ? ret : -EINVAL;
1166 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1167 if (_ret < 0)
1168 return ret ? ret : _ret;
1169 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1170 return ret ? ret : -EFAULT;
1171 ret += sizeof(msg);
1172 buf += sizeof(msg);
1173 count -= sizeof(msg);
1174 /*
1175 * Allow to read more than one fault at time but only
1176 * block if waiting for the very first one.
1177 */
1178 no_wait = O_NONBLOCK;
1179 }
1180 }
1181
__wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1182 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1183 struct userfaultfd_wake_range *range)
1184 {
1185 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1186 /* wake all in the range and autoremove */
1187 if (waitqueue_active(&ctx->fault_pending_wqh))
1188 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1189 range);
1190 if (waitqueue_active(&ctx->fault_wqh))
1191 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1192 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1193 }
1194
wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1195 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1196 struct userfaultfd_wake_range *range)
1197 {
1198 unsigned seq;
1199 bool need_wakeup;
1200
1201 /*
1202 * To be sure waitqueue_active() is not reordered by the CPU
1203 * before the pagetable update, use an explicit SMP memory
1204 * barrier here. PT lock release or mmap_read_unlock(mm) still
1205 * have release semantics that can allow the
1206 * waitqueue_active() to be reordered before the pte update.
1207 */
1208 smp_mb();
1209
1210 /*
1211 * Use waitqueue_active because it's very frequent to
1212 * change the address space atomically even if there are no
1213 * userfaults yet. So we take the spinlock only when we're
1214 * sure we've userfaults to wake.
1215 */
1216 do {
1217 seq = read_seqcount_begin(&ctx->refile_seq);
1218 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1219 waitqueue_active(&ctx->fault_wqh);
1220 cond_resched();
1221 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1222 if (need_wakeup)
1223 __wake_userfault(ctx, range);
1224 }
1225
validate_range(struct mm_struct * mm,__u64 start,__u64 len)1226 static __always_inline int validate_range(struct mm_struct *mm,
1227 __u64 start, __u64 len)
1228 {
1229 __u64 task_size = mm->task_size;
1230
1231 if (start & ~PAGE_MASK)
1232 return -EINVAL;
1233 if (len & ~PAGE_MASK)
1234 return -EINVAL;
1235 if (!len)
1236 return -EINVAL;
1237 if (start < mmap_min_addr)
1238 return -EINVAL;
1239 if (start >= task_size)
1240 return -EINVAL;
1241 if (len > task_size - start)
1242 return -EINVAL;
1243 return 0;
1244 }
1245
vma_can_userfault(struct vm_area_struct * vma,unsigned long vm_flags)1246 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1247 unsigned long vm_flags)
1248 {
1249 /* FIXME: add WP support to hugetlbfs and shmem */
1250 return vma_is_anonymous(vma) ||
1251 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
1252 !(vm_flags & VM_UFFD_WP));
1253 }
1254
userfaultfd_register(struct userfaultfd_ctx * ctx,unsigned long arg)1255 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1256 unsigned long arg)
1257 {
1258 struct mm_struct *mm = ctx->mm;
1259 struct vm_area_struct *vma, *prev, *cur;
1260 int ret;
1261 struct uffdio_register uffdio_register;
1262 struct uffdio_register __user *user_uffdio_register;
1263 unsigned long vm_flags, new_flags;
1264 bool found;
1265 bool basic_ioctls;
1266 unsigned long start, end, vma_end;
1267
1268 user_uffdio_register = (struct uffdio_register __user *) arg;
1269
1270 ret = -EFAULT;
1271 if (copy_from_user(&uffdio_register, user_uffdio_register,
1272 sizeof(uffdio_register)-sizeof(__u64)))
1273 goto out;
1274
1275 ret = -EINVAL;
1276 if (!uffdio_register.mode)
1277 goto out;
1278 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1279 UFFDIO_REGISTER_MODE_WP))
1280 goto out;
1281 vm_flags = 0;
1282 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1283 vm_flags |= VM_UFFD_MISSING;
1284 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1285 vm_flags |= VM_UFFD_WP;
1286
1287 ret = validate_range(mm, uffdio_register.range.start,
1288 uffdio_register.range.len);
1289 if (ret)
1290 goto out;
1291
1292 start = uffdio_register.range.start;
1293 end = start + uffdio_register.range.len;
1294
1295 ret = -ENOMEM;
1296 if (!mmget_not_zero(mm))
1297 goto out;
1298
1299 mmap_write_lock(mm);
1300 vma = find_vma_prev(mm, start, &prev);
1301 if (!vma)
1302 goto out_unlock;
1303
1304 /* check that there's at least one vma in the range */
1305 ret = -EINVAL;
1306 if (vma->vm_start >= end)
1307 goto out_unlock;
1308
1309 /*
1310 * If the first vma contains huge pages, make sure start address
1311 * is aligned to huge page size.
1312 */
1313 if (is_vm_hugetlb_page(vma)) {
1314 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1315
1316 if (start & (vma_hpagesize - 1))
1317 goto out_unlock;
1318 }
1319
1320 /*
1321 * Search for not compatible vmas.
1322 */
1323 found = false;
1324 basic_ioctls = false;
1325 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1326 cond_resched();
1327
1328 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1329 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1330
1331 /* check not compatible vmas */
1332 ret = -EINVAL;
1333 if (!vma_can_userfault(cur, vm_flags))
1334 goto out_unlock;
1335
1336 /*
1337 * UFFDIO_COPY will fill file holes even without
1338 * PROT_WRITE. This check enforces that if this is a
1339 * MAP_SHARED, the process has write permission to the backing
1340 * file. If VM_MAYWRITE is set it also enforces that on a
1341 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1342 * F_WRITE_SEAL can be taken until the vma is destroyed.
1343 */
1344 ret = -EPERM;
1345 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1346 goto out_unlock;
1347
1348 /*
1349 * If this vma contains ending address, and huge pages
1350 * check alignment.
1351 */
1352 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1353 end > cur->vm_start) {
1354 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1355
1356 ret = -EINVAL;
1357
1358 if (end & (vma_hpagesize - 1))
1359 goto out_unlock;
1360 }
1361 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1362 goto out_unlock;
1363
1364 /*
1365 * Check that this vma isn't already owned by a
1366 * different userfaultfd. We can't allow more than one
1367 * userfaultfd to own a single vma simultaneously or we
1368 * wouldn't know which one to deliver the userfaults to.
1369 */
1370 ret = -EBUSY;
1371 if (cur->vm_userfaultfd_ctx.ctx &&
1372 cur->vm_userfaultfd_ctx.ctx != ctx)
1373 goto out_unlock;
1374
1375 /*
1376 * Note vmas containing huge pages
1377 */
1378 if (is_vm_hugetlb_page(cur))
1379 basic_ioctls = true;
1380
1381 found = true;
1382 }
1383 BUG_ON(!found);
1384
1385 if (vma->vm_start < start)
1386 prev = vma;
1387
1388 ret = 0;
1389 do {
1390 cond_resched();
1391
1392 BUG_ON(!vma_can_userfault(vma, vm_flags));
1393 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1394 vma->vm_userfaultfd_ctx.ctx != ctx);
1395 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1396
1397 /*
1398 * Nothing to do: this vma is already registered into this
1399 * userfaultfd and with the right tracking mode too.
1400 */
1401 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1402 (vma->vm_flags & vm_flags) == vm_flags)
1403 goto skip;
1404
1405 if (vma->vm_start > start)
1406 start = vma->vm_start;
1407 vma_end = min(end, vma->vm_end);
1408
1409 new_flags = (vma->vm_flags &
1410 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1411 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1412 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1413 vma_policy(vma),
1414 ((struct vm_userfaultfd_ctx){ ctx }),
1415 anon_vma_name(vma));
1416 if (prev) {
1417 vma = prev;
1418 goto next;
1419 }
1420 if (vma->vm_start < start) {
1421 ret = split_vma(mm, vma, start, 1);
1422 if (ret)
1423 break;
1424 }
1425 if (vma->vm_end > end) {
1426 ret = split_vma(mm, vma, end, 0);
1427 if (ret)
1428 break;
1429 }
1430 next:
1431 /*
1432 * In the vma_merge() successful mprotect-like case 8:
1433 * the next vma was merged into the current one and
1434 * the current one has not been updated yet.
1435 */
1436 vma->vm_flags = new_flags;
1437 vma->vm_userfaultfd_ctx.ctx = ctx;
1438
1439 skip:
1440 prev = vma;
1441 start = vma->vm_end;
1442 vma = vma->vm_next;
1443 } while (vma && vma->vm_start < end);
1444 out_unlock:
1445 mmap_write_unlock(mm);
1446 mmput(mm);
1447 if (!ret) {
1448 __u64 ioctls_out;
1449
1450 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1451 UFFD_API_RANGE_IOCTLS;
1452
1453 /*
1454 * Declare the WP ioctl only if the WP mode is
1455 * specified and all checks passed with the range
1456 */
1457 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1458 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1459
1460 /*
1461 * Now that we scanned all vmas we can already tell
1462 * userland which ioctls methods are guaranteed to
1463 * succeed on this range.
1464 */
1465 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1466 ret = -EFAULT;
1467 }
1468 out:
1469 return ret;
1470 }
1471
userfaultfd_unregister(struct userfaultfd_ctx * ctx,unsigned long arg)1472 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1473 unsigned long arg)
1474 {
1475 struct mm_struct *mm = ctx->mm;
1476 struct vm_area_struct *vma, *prev, *cur;
1477 int ret;
1478 struct uffdio_range uffdio_unregister;
1479 unsigned long new_flags;
1480 bool found;
1481 unsigned long start, end, vma_end;
1482 const void __user *buf = (void __user *)arg;
1483
1484 ret = -EFAULT;
1485 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1486 goto out;
1487
1488 ret = validate_range(mm, uffdio_unregister.start,
1489 uffdio_unregister.len);
1490 if (ret)
1491 goto out;
1492
1493 start = uffdio_unregister.start;
1494 end = start + uffdio_unregister.len;
1495
1496 ret = -ENOMEM;
1497 if (!mmget_not_zero(mm))
1498 goto out;
1499
1500 mmap_write_lock(mm);
1501 vma = find_vma_prev(mm, start, &prev);
1502 if (!vma)
1503 goto out_unlock;
1504
1505 /* check that there's at least one vma in the range */
1506 ret = -EINVAL;
1507 if (vma->vm_start >= end)
1508 goto out_unlock;
1509
1510 /*
1511 * If the first vma contains huge pages, make sure start address
1512 * is aligned to huge page size.
1513 */
1514 if (is_vm_hugetlb_page(vma)) {
1515 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1516
1517 if (start & (vma_hpagesize - 1))
1518 goto out_unlock;
1519 }
1520
1521 /*
1522 * Search for not compatible vmas.
1523 */
1524 found = false;
1525 ret = -EINVAL;
1526 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1527 cond_resched();
1528
1529 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1530 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1531
1532 /*
1533 * Check not compatible vmas, not strictly required
1534 * here as not compatible vmas cannot have an
1535 * userfaultfd_ctx registered on them, but this
1536 * provides for more strict behavior to notice
1537 * unregistration errors.
1538 */
1539 if (!vma_can_userfault(cur, cur->vm_flags))
1540 goto out_unlock;
1541
1542 found = true;
1543 }
1544 BUG_ON(!found);
1545
1546 if (vma->vm_start < start)
1547 prev = vma;
1548
1549 ret = 0;
1550 do {
1551 cond_resched();
1552
1553 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1554
1555 /*
1556 * Nothing to do: this vma is already registered into this
1557 * userfaultfd and with the right tracking mode too.
1558 */
1559 if (!vma->vm_userfaultfd_ctx.ctx)
1560 goto skip;
1561
1562 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1563
1564 if (vma->vm_start > start)
1565 start = vma->vm_start;
1566 vma_end = min(end, vma->vm_end);
1567
1568 if (userfaultfd_missing(vma)) {
1569 /*
1570 * Wake any concurrent pending userfault while
1571 * we unregister, so they will not hang
1572 * permanently and it avoids userland to call
1573 * UFFDIO_WAKE explicitly.
1574 */
1575 struct userfaultfd_wake_range range;
1576 range.start = start;
1577 range.len = vma_end - start;
1578 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1579 }
1580
1581 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1582 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1583 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1584 vma_policy(vma),
1585 NULL_VM_UFFD_CTX, anon_vma_name(vma));
1586 if (prev) {
1587 vma = prev;
1588 goto next;
1589 }
1590 if (vma->vm_start < start) {
1591 ret = split_vma(mm, vma, start, 1);
1592 if (ret)
1593 break;
1594 }
1595 if (vma->vm_end > end) {
1596 ret = split_vma(mm, vma, end, 0);
1597 if (ret)
1598 break;
1599 }
1600 next:
1601 /*
1602 * In the vma_merge() successful mprotect-like case 8:
1603 * the next vma was merged into the current one and
1604 * the current one has not been updated yet.
1605 */
1606 vma->vm_flags = new_flags;
1607 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1608
1609 skip:
1610 prev = vma;
1611 start = vma->vm_end;
1612 vma = vma->vm_next;
1613 } while (vma && vma->vm_start < end);
1614 out_unlock:
1615 mmap_write_unlock(mm);
1616 mmput(mm);
1617 out:
1618 return ret;
1619 }
1620
1621 /*
1622 * userfaultfd_wake may be used in combination with the
1623 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1624 */
userfaultfd_wake(struct userfaultfd_ctx * ctx,unsigned long arg)1625 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1626 unsigned long arg)
1627 {
1628 int ret;
1629 struct uffdio_range uffdio_wake;
1630 struct userfaultfd_wake_range range;
1631 const void __user *buf = (void __user *)arg;
1632
1633 ret = -EFAULT;
1634 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1635 goto out;
1636
1637 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1638 if (ret)
1639 goto out;
1640
1641 range.start = uffdio_wake.start;
1642 range.len = uffdio_wake.len;
1643
1644 /*
1645 * len == 0 means wake all and we don't want to wake all here,
1646 * so check it again to be sure.
1647 */
1648 VM_BUG_ON(!range.len);
1649
1650 wake_userfault(ctx, &range);
1651 ret = 0;
1652
1653 out:
1654 return ret;
1655 }
1656
userfaultfd_copy(struct userfaultfd_ctx * ctx,unsigned long arg)1657 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1658 unsigned long arg)
1659 {
1660 __s64 ret;
1661 struct uffdio_copy uffdio_copy;
1662 struct uffdio_copy __user *user_uffdio_copy;
1663 struct userfaultfd_wake_range range;
1664
1665 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1666
1667 ret = -EAGAIN;
1668 if (READ_ONCE(ctx->mmap_changing))
1669 goto out;
1670
1671 ret = -EFAULT;
1672 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1673 /* don't copy "copy" last field */
1674 sizeof(uffdio_copy)-sizeof(__s64)))
1675 goto out;
1676
1677 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1678 if (ret)
1679 goto out;
1680 /*
1681 * double check for wraparound just in case. copy_from_user()
1682 * will later check uffdio_copy.src + uffdio_copy.len to fit
1683 * in the userland range.
1684 */
1685 ret = -EINVAL;
1686 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1687 goto out;
1688 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1689 goto out;
1690 if (mmget_not_zero(ctx->mm)) {
1691 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1692 uffdio_copy.len, &ctx->mmap_changing,
1693 uffdio_copy.mode);
1694 mmput(ctx->mm);
1695 } else {
1696 return -ESRCH;
1697 }
1698 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1699 return -EFAULT;
1700 if (ret < 0)
1701 goto out;
1702 BUG_ON(!ret);
1703 /* len == 0 would wake all */
1704 range.len = ret;
1705 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1706 range.start = uffdio_copy.dst;
1707 wake_userfault(ctx, &range);
1708 }
1709 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1710 out:
1711 return ret;
1712 }
1713
userfaultfd_zeropage(struct userfaultfd_ctx * ctx,unsigned long arg)1714 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1715 unsigned long arg)
1716 {
1717 __s64 ret;
1718 struct uffdio_zeropage uffdio_zeropage;
1719 struct uffdio_zeropage __user *user_uffdio_zeropage;
1720 struct userfaultfd_wake_range range;
1721
1722 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1723
1724 ret = -EAGAIN;
1725 if (READ_ONCE(ctx->mmap_changing))
1726 goto out;
1727
1728 ret = -EFAULT;
1729 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1730 /* don't copy "zeropage" last field */
1731 sizeof(uffdio_zeropage)-sizeof(__s64)))
1732 goto out;
1733
1734 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1735 uffdio_zeropage.range.len);
1736 if (ret)
1737 goto out;
1738 ret = -EINVAL;
1739 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1740 goto out;
1741
1742 if (mmget_not_zero(ctx->mm)) {
1743 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1744 uffdio_zeropage.range.len,
1745 &ctx->mmap_changing);
1746 mmput(ctx->mm);
1747 } else {
1748 return -ESRCH;
1749 }
1750 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1751 return -EFAULT;
1752 if (ret < 0)
1753 goto out;
1754 /* len == 0 would wake all */
1755 BUG_ON(!ret);
1756 range.len = ret;
1757 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1758 range.start = uffdio_zeropage.range.start;
1759 wake_userfault(ctx, &range);
1760 }
1761 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1762 out:
1763 return ret;
1764 }
1765
userfaultfd_writeprotect(struct userfaultfd_ctx * ctx,unsigned long arg)1766 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1767 unsigned long arg)
1768 {
1769 int ret;
1770 struct uffdio_writeprotect uffdio_wp;
1771 struct uffdio_writeprotect __user *user_uffdio_wp;
1772 struct userfaultfd_wake_range range;
1773 bool mode_wp, mode_dontwake;
1774
1775 if (READ_ONCE(ctx->mmap_changing))
1776 return -EAGAIN;
1777
1778 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1779
1780 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1781 sizeof(struct uffdio_writeprotect)))
1782 return -EFAULT;
1783
1784 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1785 uffdio_wp.range.len);
1786 if (ret)
1787 return ret;
1788
1789 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1790 UFFDIO_WRITEPROTECT_MODE_WP))
1791 return -EINVAL;
1792
1793 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1794 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1795
1796 if (mode_wp && mode_dontwake)
1797 return -EINVAL;
1798
1799 if (mmget_not_zero(ctx->mm)) {
1800 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1801 uffdio_wp.range.len, mode_wp,
1802 &ctx->mmap_changing);
1803 mmput(ctx->mm);
1804 } else {
1805 return -ESRCH;
1806 }
1807
1808 if (ret)
1809 return ret;
1810
1811 if (!mode_wp && !mode_dontwake) {
1812 range.start = uffdio_wp.range.start;
1813 range.len = uffdio_wp.range.len;
1814 wake_userfault(ctx, &range);
1815 }
1816 return ret;
1817 }
1818
uffd_ctx_features(__u64 user_features)1819 static inline unsigned int uffd_ctx_features(__u64 user_features)
1820 {
1821 /*
1822 * For the current set of features the bits just coincide. Set
1823 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1824 */
1825 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1826 }
1827
1828 /*
1829 * userland asks for a certain API version and we return which bits
1830 * and ioctl commands are implemented in this kernel for such API
1831 * version or -EINVAL if unknown.
1832 */
userfaultfd_api(struct userfaultfd_ctx * ctx,unsigned long arg)1833 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1834 unsigned long arg)
1835 {
1836 struct uffdio_api uffdio_api;
1837 void __user *buf = (void __user *)arg;
1838 unsigned int ctx_features;
1839 int ret;
1840 __u64 features;
1841
1842 ret = -EFAULT;
1843 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1844 goto out;
1845 features = uffdio_api.features;
1846 ret = -EINVAL;
1847 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1848 goto err_out;
1849 ret = -EPERM;
1850 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1851 goto err_out;
1852 /* report all available features and ioctls to userland */
1853 uffdio_api.features = UFFD_API_FEATURES;
1854 uffdio_api.ioctls = UFFD_API_IOCTLS;
1855 ret = -EFAULT;
1856 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1857 goto out;
1858
1859 /* only enable the requested features for this uffd context */
1860 ctx_features = uffd_ctx_features(features);
1861 ret = -EINVAL;
1862 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1863 goto err_out;
1864
1865 ret = 0;
1866 out:
1867 return ret;
1868 err_out:
1869 memset(&uffdio_api, 0, sizeof(uffdio_api));
1870 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1871 ret = -EFAULT;
1872 goto out;
1873 }
1874
userfaultfd_ioctl(struct file * file,unsigned cmd,unsigned long arg)1875 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1876 unsigned long arg)
1877 {
1878 int ret = -EINVAL;
1879 struct userfaultfd_ctx *ctx = file->private_data;
1880
1881 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1882 return -EINVAL;
1883
1884 switch(cmd) {
1885 case UFFDIO_API:
1886 ret = userfaultfd_api(ctx, arg);
1887 break;
1888 case UFFDIO_REGISTER:
1889 ret = userfaultfd_register(ctx, arg);
1890 break;
1891 case UFFDIO_UNREGISTER:
1892 ret = userfaultfd_unregister(ctx, arg);
1893 break;
1894 case UFFDIO_WAKE:
1895 ret = userfaultfd_wake(ctx, arg);
1896 break;
1897 case UFFDIO_COPY:
1898 ret = userfaultfd_copy(ctx, arg);
1899 break;
1900 case UFFDIO_ZEROPAGE:
1901 ret = userfaultfd_zeropage(ctx, arg);
1902 break;
1903 case UFFDIO_WRITEPROTECT:
1904 ret = userfaultfd_writeprotect(ctx, arg);
1905 break;
1906 }
1907 return ret;
1908 }
1909
1910 #ifdef CONFIG_PROC_FS
userfaultfd_show_fdinfo(struct seq_file * m,struct file * f)1911 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1912 {
1913 struct userfaultfd_ctx *ctx = f->private_data;
1914 wait_queue_entry_t *wq;
1915 unsigned long pending = 0, total = 0;
1916
1917 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1918 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1919 pending++;
1920 total++;
1921 }
1922 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1923 total++;
1924 }
1925 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1926
1927 /*
1928 * If more protocols will be added, there will be all shown
1929 * separated by a space. Like this:
1930 * protocols: aa:... bb:...
1931 */
1932 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1933 pending, total, UFFD_API, ctx->features,
1934 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1935 }
1936 #endif
1937
1938 static const struct file_operations userfaultfd_fops = {
1939 #ifdef CONFIG_PROC_FS
1940 .show_fdinfo = userfaultfd_show_fdinfo,
1941 #endif
1942 .release = userfaultfd_release,
1943 .poll = userfaultfd_poll,
1944 .read = userfaultfd_read,
1945 .unlocked_ioctl = userfaultfd_ioctl,
1946 .compat_ioctl = compat_ptr_ioctl,
1947 .llseek = noop_llseek,
1948 };
1949
init_once_userfaultfd_ctx(void * mem)1950 static void init_once_userfaultfd_ctx(void *mem)
1951 {
1952 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1953
1954 init_waitqueue_head(&ctx->fault_pending_wqh);
1955 init_waitqueue_head(&ctx->fault_wqh);
1956 init_waitqueue_head(&ctx->event_wqh);
1957 init_waitqueue_head(&ctx->fd_wqh);
1958 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
1959 }
1960
SYSCALL_DEFINE1(userfaultfd,int,flags)1961 SYSCALL_DEFINE1(userfaultfd, int, flags)
1962 {
1963 struct userfaultfd_ctx *ctx;
1964 int fd;
1965
1966 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1967 return -EPERM;
1968
1969 BUG_ON(!current->mm);
1970
1971 /* Check the UFFD_* constants for consistency. */
1972 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1973 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1974
1975 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1976 return -EINVAL;
1977
1978 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1979 if (!ctx)
1980 return -ENOMEM;
1981
1982 refcount_set(&ctx->refcount, 1);
1983 ctx->flags = flags;
1984 ctx->features = 0;
1985 ctx->released = false;
1986 ctx->mmap_changing = false;
1987 ctx->mm = current->mm;
1988 /* prevent the mm struct to be freed */
1989 mmgrab(ctx->mm);
1990
1991 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1992 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1993 if (fd < 0) {
1994 mmdrop(ctx->mm);
1995 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1996 }
1997 return fd;
1998 }
1999
userfaultfd_init(void)2000 static int __init userfaultfd_init(void)
2001 {
2002 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2003 sizeof(struct userfaultfd_ctx),
2004 0,
2005 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2006 init_once_userfaultfd_ctx);
2007 return 0;
2008 }
2009 __initcall(userfaultfd_init);
2010