1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/madvise.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
7 */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34
35 #include <asm/tlb.h>
36
37 #include "internal.h"
38
39 struct madvise_walk_private {
40 struct mmu_gather *tlb;
41 bool pageout;
42 };
43
44 /*
45 * Any behaviour which results in changes to the vma->vm_flags needs to
46 * take mmap_lock for writing. Others, which simply traverse vmas, need
47 * to only take it for reading.
48 */
madvise_need_mmap_write(int behavior)49 static int madvise_need_mmap_write(int behavior)
50 {
51 switch (behavior) {
52 case MADV_REMOVE:
53 case MADV_WILLNEED:
54 case MADV_DONTNEED:
55 case MADV_COLD:
56 case MADV_PAGEOUT:
57 case MADV_FREE:
58 return 0;
59 default:
60 /* be safe, default to 1. list exceptions explicitly */
61 return 1;
62 }
63 }
64
65 #ifdef CONFIG_ANON_VMA_NAME
anon_vma_name_alloc(const char * name)66 struct anon_vma_name *anon_vma_name_alloc(const char *name)
67 {
68 struct anon_vma_name *anon_name;
69 size_t count;
70
71 /* Add 1 for NUL terminator at the end of the anon_name->name */
72 count = strlen(name) + 1;
73 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
74 if (anon_name) {
75 kref_init(&anon_name->kref);
76 memcpy(anon_name->name, name, count);
77 }
78
79 return anon_name;
80 }
81
anon_vma_name_free(struct kref * kref)82 void anon_vma_name_free(struct kref *kref)
83 {
84 struct anon_vma_name *anon_name =
85 container_of(kref, struct anon_vma_name, kref);
86 kfree(anon_name);
87 }
88
anon_vma_name(struct vm_area_struct * vma)89 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
90 {
91 mmap_assert_locked(vma->vm_mm);
92
93 if (vma->vm_file)
94 return NULL;
95
96 return vma->anon_name;
97 }
98
99 /* mmap_lock should be write-locked */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)100 static int replace_anon_vma_name(struct vm_area_struct *vma,
101 struct anon_vma_name *anon_name)
102 {
103 struct anon_vma_name *orig_name = anon_vma_name(vma);
104
105 if (!anon_name) {
106 vma->anon_name = NULL;
107 anon_vma_name_put(orig_name);
108 return 0;
109 }
110
111 if (anon_vma_name_eq(orig_name, anon_name))
112 return 0;
113
114 vma->anon_name = anon_vma_name_reuse(anon_name);
115 anon_vma_name_put(orig_name);
116
117 return 0;
118 }
119 #else /* CONFIG_ANON_VMA_NAME */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)120 static int replace_anon_vma_name(struct vm_area_struct *vma,
121 struct anon_vma_name *anon_name)
122 {
123 if (anon_name)
124 return -EINVAL;
125
126 return 0;
127 }
128 #endif /* CONFIG_ANON_VMA_NAME */
129 /*
130 * Update the vm_flags on region of a vma, splitting it or merging it as
131 * necessary. Must be called with mmap_sem held for writing;
132 * Caller should ensure anon_name stability by raising its refcount even when
133 * anon_name belongs to a valid vma because this function might free that vma.
134 */
madvise_update_vma(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long new_flags,struct anon_vma_name * anon_name)135 static int madvise_update_vma(struct vm_area_struct *vma,
136 struct vm_area_struct **prev, unsigned long start,
137 unsigned long end, unsigned long new_flags,
138 struct anon_vma_name *anon_name)
139 {
140 struct mm_struct *mm = vma->vm_mm;
141 int error;
142 pgoff_t pgoff;
143
144 if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
145 *prev = vma;
146 return 0;
147 }
148
149 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
150 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
151 vma->vm_file, pgoff, vma_policy(vma),
152 vma->vm_userfaultfd_ctx, anon_name);
153 if (*prev) {
154 vma = *prev;
155 goto success;
156 }
157
158 *prev = vma;
159
160 if (start != vma->vm_start) {
161 if (unlikely(mm->map_count >= sysctl_max_map_count))
162 return -ENOMEM;
163 error = __split_vma(mm, vma, start, 1);
164 if (error)
165 return error;
166 }
167
168 if (end != vma->vm_end) {
169 if (unlikely(mm->map_count >= sysctl_max_map_count))
170 return -ENOMEM;
171 error = __split_vma(mm, vma, end, 0);
172 if (error)
173 return error;
174 }
175
176 success:
177 /*
178 * vm_flags is protected by the mmap_lock held in write mode.
179 */
180 vma->vm_flags = new_flags;
181 if (!vma->vm_file) {
182 error = replace_anon_vma_name(vma, anon_name);
183 if (error)
184 return error;
185 }
186
187 return 0;
188 }
189
190 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)191 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
192 unsigned long end, struct mm_walk *walk)
193 {
194 pte_t *orig_pte;
195 struct vm_area_struct *vma = walk->private;
196 unsigned long index;
197
198 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
199 return 0;
200
201 for (index = start; index != end; index += PAGE_SIZE) {
202 pte_t pte;
203 swp_entry_t entry;
204 struct page *page;
205 spinlock_t *ptl;
206
207 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
208 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
209 pte_unmap_unlock(orig_pte, ptl);
210
211 if (pte_present(pte) || pte_none(pte))
212 continue;
213 entry = pte_to_swp_entry(pte);
214 if (unlikely(non_swap_entry(entry)))
215 continue;
216
217 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
218 vma, index, false);
219 if (page)
220 put_page(page);
221 }
222
223 return 0;
224 }
225
226 static const struct mm_walk_ops swapin_walk_ops = {
227 .pmd_entry = swapin_walk_pmd_entry,
228 };
229
force_shm_swapin_readahead(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)230 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
231 unsigned long start, unsigned long end,
232 struct address_space *mapping)
233 {
234 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
235 pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
236 struct page *page;
237
238 rcu_read_lock();
239 xas_for_each(&xas, page, end_index) {
240 swp_entry_t swap;
241
242 if (!xa_is_value(page))
243 continue;
244 xas_pause(&xas);
245 rcu_read_unlock();
246
247 swap = radix_to_swp_entry(page);
248 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
249 NULL, 0, false);
250 if (page)
251 put_page(page);
252
253 rcu_read_lock();
254 }
255 rcu_read_unlock();
256
257 lru_add_drain(); /* Push any new pages onto the LRU now */
258 }
259 #endif /* CONFIG_SWAP */
260
261 /*
262 * Schedule all required I/O operations. Do not wait for completion.
263 */
madvise_willneed(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)264 static long madvise_willneed(struct vm_area_struct *vma,
265 struct vm_area_struct **prev,
266 unsigned long start, unsigned long end)
267 {
268 struct mm_struct *mm = vma->vm_mm;
269 struct file *file = vma->vm_file;
270 loff_t offset;
271
272 *prev = vma;
273 #ifdef CONFIG_SWAP
274 if (!file) {
275 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
276 lru_add_drain(); /* Push any new pages onto the LRU now */
277 return 0;
278 }
279
280 if (shmem_mapping(file->f_mapping)) {
281 force_shm_swapin_readahead(vma, start, end,
282 file->f_mapping);
283 return 0;
284 }
285 #else
286 if (!file)
287 return -EBADF;
288 #endif
289
290 if (IS_DAX(file_inode(file))) {
291 /* no bad return value, but ignore advice */
292 return 0;
293 }
294
295 /*
296 * Filesystem's fadvise may need to take various locks. We need to
297 * explicitly grab a reference because the vma (and hence the
298 * vma's reference to the file) can go away as soon as we drop
299 * mmap_lock.
300 */
301 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
302 get_file(file);
303 offset = (loff_t)(start - vma->vm_start)
304 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
305 mmap_read_unlock(mm);
306 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
307 fput(file);
308 mmap_read_lock(mm);
309 return 0;
310 }
311
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)312 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
313 unsigned long addr, unsigned long end,
314 struct mm_walk *walk)
315 {
316 struct madvise_walk_private *private = walk->private;
317 struct mmu_gather *tlb = private->tlb;
318 bool pageout = private->pageout;
319 struct mm_struct *mm = tlb->mm;
320 struct vm_area_struct *vma = walk->vma;
321 pte_t *orig_pte, *pte, ptent;
322 spinlock_t *ptl;
323 struct page *page = NULL;
324 LIST_HEAD(page_list);
325
326 if (fatal_signal_pending(current))
327 return -EINTR;
328
329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
330 if (pmd_trans_huge(*pmd)) {
331 pmd_t orig_pmd;
332 unsigned long next = pmd_addr_end(addr, end);
333
334 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
335 ptl = pmd_trans_huge_lock(pmd, vma);
336 if (!ptl)
337 return 0;
338
339 orig_pmd = *pmd;
340 if (is_huge_zero_pmd(orig_pmd))
341 goto huge_unlock;
342
343 if (unlikely(!pmd_present(orig_pmd))) {
344 VM_BUG_ON(thp_migration_supported() &&
345 !is_pmd_migration_entry(orig_pmd));
346 goto huge_unlock;
347 }
348
349 page = pmd_page(orig_pmd);
350
351 /* Do not interfere with other mappings of this page */
352 if (page_mapcount(page) != 1)
353 goto huge_unlock;
354
355 if (next - addr != HPAGE_PMD_SIZE) {
356 int err;
357
358 get_page(page);
359 spin_unlock(ptl);
360 lock_page(page);
361 err = split_huge_page(page);
362 unlock_page(page);
363 put_page(page);
364 if (!err)
365 goto regular_page;
366 return 0;
367 }
368
369 if (pmd_young(orig_pmd)) {
370 pmdp_invalidate(vma, addr, pmd);
371 orig_pmd = pmd_mkold(orig_pmd);
372
373 set_pmd_at(mm, addr, pmd, orig_pmd);
374 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
375 }
376
377 ClearPageReferenced(page);
378 test_and_clear_page_young(page);
379 if (pageout) {
380 if (!isolate_lru_page(page)) {
381 if (PageUnevictable(page))
382 putback_lru_page(page);
383 else
384 list_add(&page->lru, &page_list);
385 }
386 } else
387 deactivate_page(page);
388 huge_unlock:
389 spin_unlock(ptl);
390 if (pageout)
391 reclaim_pages(&page_list);
392 return 0;
393 }
394
395 regular_page:
396 if (pmd_trans_unstable(pmd))
397 return 0;
398 #endif
399 tlb_change_page_size(tlb, PAGE_SIZE);
400 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
401 flush_tlb_batched_pending(mm);
402 arch_enter_lazy_mmu_mode();
403 for (; addr < end; pte++, addr += PAGE_SIZE) {
404 ptent = *pte;
405
406 if (pte_none(ptent))
407 continue;
408
409 if (!pte_present(ptent))
410 continue;
411
412 page = vm_normal_page(vma, addr, ptent);
413 if (!page)
414 continue;
415
416 /*
417 * Creating a THP page is expensive so split it only if we
418 * are sure it's worth. Split it if we are only owner.
419 */
420 if (PageTransCompound(page)) {
421 if (page_mapcount(page) != 1)
422 break;
423 get_page(page);
424 if (!trylock_page(page)) {
425 put_page(page);
426 break;
427 }
428 pte_unmap_unlock(orig_pte, ptl);
429 if (split_huge_page(page)) {
430 unlock_page(page);
431 put_page(page);
432 pte_offset_map_lock(mm, pmd, addr, &ptl);
433 break;
434 }
435 unlock_page(page);
436 put_page(page);
437 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
438 pte--;
439 addr -= PAGE_SIZE;
440 continue;
441 }
442
443 /* Do not interfere with other mappings of this page */
444 if (page_mapcount(page) != 1)
445 continue;
446
447 VM_BUG_ON_PAGE(PageTransCompound(page), page);
448
449 if (pte_young(ptent)) {
450 ptent = ptep_get_and_clear_full(mm, addr, pte,
451 tlb->fullmm);
452 ptent = pte_mkold(ptent);
453 set_pte_at(mm, addr, pte, ptent);
454 tlb_remove_tlb_entry(tlb, pte, addr);
455 }
456
457 /*
458 * We are deactivating a page for accelerating reclaiming.
459 * VM couldn't reclaim the page unless we clear PG_young.
460 * As a side effect, it makes confuse idle-page tracking
461 * because they will miss recent referenced history.
462 */
463 ClearPageReferenced(page);
464 test_and_clear_page_young(page);
465 if (pageout) {
466 if (!isolate_lru_page(page)) {
467 if (PageUnevictable(page))
468 putback_lru_page(page);
469 else
470 list_add(&page->lru, &page_list);
471 }
472 } else
473 deactivate_page(page);
474 }
475
476 arch_leave_lazy_mmu_mode();
477 pte_unmap_unlock(orig_pte, ptl);
478 if (pageout)
479 reclaim_pages(&page_list);
480 cond_resched();
481
482 return 0;
483 }
484
485 static const struct mm_walk_ops cold_walk_ops = {
486 .pmd_entry = madvise_cold_or_pageout_pte_range,
487 };
488
madvise_cold_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)489 static void madvise_cold_page_range(struct mmu_gather *tlb,
490 struct vm_area_struct *vma,
491 unsigned long addr, unsigned long end)
492 {
493 struct madvise_walk_private walk_private = {
494 .pageout = false,
495 .tlb = tlb,
496 };
497
498 tlb_start_vma(tlb, vma);
499 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
500 tlb_end_vma(tlb, vma);
501 }
502
madvise_cold(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)503 static long madvise_cold(struct vm_area_struct *vma,
504 struct vm_area_struct **prev,
505 unsigned long start_addr, unsigned long end_addr)
506 {
507 struct mm_struct *mm = vma->vm_mm;
508 struct mmu_gather tlb;
509
510 *prev = vma;
511 if (!can_madv_lru_vma(vma))
512 return -EINVAL;
513
514 lru_add_drain();
515 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
516 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
517 tlb_finish_mmu(&tlb, start_addr, end_addr);
518
519 return 0;
520 }
521
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)522 static void madvise_pageout_page_range(struct mmu_gather *tlb,
523 struct vm_area_struct *vma,
524 unsigned long addr, unsigned long end)
525 {
526 struct madvise_walk_private walk_private = {
527 .pageout = true,
528 .tlb = tlb,
529 };
530
531 tlb_start_vma(tlb, vma);
532 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
533 tlb_end_vma(tlb, vma);
534 }
535
can_do_pageout(struct vm_area_struct * vma)536 static inline bool can_do_pageout(struct vm_area_struct *vma)
537 {
538 if (vma_is_anonymous(vma))
539 return true;
540 if (!vma->vm_file)
541 return false;
542 /*
543 * paging out pagecache only for non-anonymous mappings that correspond
544 * to the files the calling process could (if tried) open for writing;
545 * otherwise we'd be including shared non-exclusive mappings, which
546 * opens a side channel.
547 */
548 return inode_owner_or_capable(file_inode(vma->vm_file)) ||
549 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
550 }
551
madvise_pageout(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)552 static long madvise_pageout(struct vm_area_struct *vma,
553 struct vm_area_struct **prev,
554 unsigned long start_addr, unsigned long end_addr)
555 {
556 struct mm_struct *mm = vma->vm_mm;
557 struct mmu_gather tlb;
558
559 *prev = vma;
560 if (!can_madv_lru_vma(vma))
561 return -EINVAL;
562
563 if (!can_do_pageout(vma))
564 return 0;
565
566 lru_add_drain();
567 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
568 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
569 tlb_finish_mmu(&tlb, start_addr, end_addr);
570
571 return 0;
572 }
573
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)574 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
575 unsigned long end, struct mm_walk *walk)
576
577 {
578 struct mmu_gather *tlb = walk->private;
579 struct mm_struct *mm = tlb->mm;
580 struct vm_area_struct *vma = walk->vma;
581 spinlock_t *ptl;
582 pte_t *orig_pte, *pte, ptent;
583 struct page *page;
584 int nr_swap = 0;
585 unsigned long next;
586
587 next = pmd_addr_end(addr, end);
588 if (pmd_trans_huge(*pmd))
589 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
590 goto next;
591
592 if (pmd_trans_unstable(pmd))
593 return 0;
594
595 tlb_change_page_size(tlb, PAGE_SIZE);
596 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
597 flush_tlb_batched_pending(mm);
598 arch_enter_lazy_mmu_mode();
599 for (; addr != end; pte++, addr += PAGE_SIZE) {
600 ptent = *pte;
601
602 if (pte_none(ptent))
603 continue;
604 /*
605 * If the pte has swp_entry, just clear page table to
606 * prevent swap-in which is more expensive rather than
607 * (page allocation + zeroing).
608 */
609 if (!pte_present(ptent)) {
610 swp_entry_t entry;
611
612 entry = pte_to_swp_entry(ptent);
613 if (non_swap_entry(entry))
614 continue;
615 nr_swap--;
616 free_swap_and_cache(entry);
617 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
618 continue;
619 }
620
621 page = vm_normal_page(vma, addr, ptent);
622 if (!page)
623 continue;
624
625 /*
626 * If pmd isn't transhuge but the page is THP and
627 * is owned by only this process, split it and
628 * deactivate all pages.
629 */
630 if (PageTransCompound(page)) {
631 if (page_mapcount(page) != 1)
632 goto out;
633 get_page(page);
634 if (!trylock_page(page)) {
635 put_page(page);
636 goto out;
637 }
638 pte_unmap_unlock(orig_pte, ptl);
639 if (split_huge_page(page)) {
640 unlock_page(page);
641 put_page(page);
642 pte_offset_map_lock(mm, pmd, addr, &ptl);
643 goto out;
644 }
645 unlock_page(page);
646 put_page(page);
647 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
648 pte--;
649 addr -= PAGE_SIZE;
650 continue;
651 }
652
653 VM_BUG_ON_PAGE(PageTransCompound(page), page);
654
655 if (PageSwapCache(page) || PageDirty(page)) {
656 if (!trylock_page(page))
657 continue;
658 /*
659 * If page is shared with others, we couldn't clear
660 * PG_dirty of the page.
661 */
662 if (page_mapcount(page) != 1) {
663 unlock_page(page);
664 continue;
665 }
666
667 if (PageSwapCache(page) && !try_to_free_swap(page)) {
668 unlock_page(page);
669 continue;
670 }
671
672 ClearPageDirty(page);
673 unlock_page(page);
674 }
675
676 if (pte_young(ptent) || pte_dirty(ptent)) {
677 /*
678 * Some of architecture(ex, PPC) don't update TLB
679 * with set_pte_at and tlb_remove_tlb_entry so for
680 * the portability, remap the pte with old|clean
681 * after pte clearing.
682 */
683 ptent = ptep_get_and_clear_full(mm, addr, pte,
684 tlb->fullmm);
685
686 ptent = pte_mkold(ptent);
687 ptent = pte_mkclean(ptent);
688 set_pte_at(mm, addr, pte, ptent);
689 tlb_remove_tlb_entry(tlb, pte, addr);
690 }
691 mark_page_lazyfree(page);
692 }
693 out:
694 if (nr_swap) {
695 if (current->mm == mm)
696 sync_mm_rss(mm);
697
698 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
699 }
700 arch_leave_lazy_mmu_mode();
701 pte_unmap_unlock(orig_pte, ptl);
702 cond_resched();
703 next:
704 return 0;
705 }
706
707 static const struct mm_walk_ops madvise_free_walk_ops = {
708 .pmd_entry = madvise_free_pte_range,
709 };
710
madvise_free_single_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)711 static int madvise_free_single_vma(struct vm_area_struct *vma,
712 unsigned long start_addr, unsigned long end_addr)
713 {
714 struct mm_struct *mm = vma->vm_mm;
715 struct mmu_notifier_range range;
716 struct mmu_gather tlb;
717
718 /* MADV_FREE works for only anon vma at the moment */
719 if (!vma_is_anonymous(vma))
720 return -EINVAL;
721
722 range.start = max(vma->vm_start, start_addr);
723 if (range.start >= vma->vm_end)
724 return -EINVAL;
725 range.end = min(vma->vm_end, end_addr);
726 if (range.end <= vma->vm_start)
727 return -EINVAL;
728 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
729 range.start, range.end);
730
731 lru_add_drain();
732 tlb_gather_mmu(&tlb, mm, range.start, range.end);
733 update_hiwater_rss(mm);
734
735 mmu_notifier_invalidate_range_start(&range);
736 tlb_start_vma(&tlb, vma);
737 walk_page_range(vma->vm_mm, range.start, range.end,
738 &madvise_free_walk_ops, &tlb);
739 tlb_end_vma(&tlb, vma);
740 mmu_notifier_invalidate_range_end(&range);
741 tlb_finish_mmu(&tlb, range.start, range.end);
742
743 return 0;
744 }
745
746 /*
747 * Application no longer needs these pages. If the pages are dirty,
748 * it's OK to just throw them away. The app will be more careful about
749 * data it wants to keep. Be sure to free swap resources too. The
750 * zap_page_range call sets things up for shrink_active_list to actually free
751 * these pages later if no one else has touched them in the meantime,
752 * although we could add these pages to a global reuse list for
753 * shrink_active_list to pick up before reclaiming other pages.
754 *
755 * NB: This interface discards data rather than pushes it out to swap,
756 * as some implementations do. This has performance implications for
757 * applications like large transactional databases which want to discard
758 * pages in anonymous maps after committing to backing store the data
759 * that was kept in them. There is no reason to write this data out to
760 * the swap area if the application is discarding it.
761 *
762 * An interface that causes the system to free clean pages and flush
763 * dirty pages is already available as msync(MS_INVALIDATE).
764 */
madvise_dontneed_single_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)765 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
766 unsigned long start, unsigned long end)
767 {
768 zap_page_range(vma, start, end - start);
769 return 0;
770 }
771
madvise_dontneed_free(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)772 static long madvise_dontneed_free(struct vm_area_struct *vma,
773 struct vm_area_struct **prev,
774 unsigned long start, unsigned long end,
775 int behavior)
776 {
777 struct mm_struct *mm = vma->vm_mm;
778
779 *prev = vma;
780 if (!can_madv_lru_vma(vma))
781 return -EINVAL;
782
783 if (!userfaultfd_remove(vma, start, end)) {
784 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
785
786 mmap_read_lock(mm);
787 vma = find_vma(mm, start);
788 if (!vma)
789 return -ENOMEM;
790 if (start < vma->vm_start) {
791 /*
792 * This "vma" under revalidation is the one
793 * with the lowest vma->vm_start where start
794 * is also < vma->vm_end. If start <
795 * vma->vm_start it means an hole materialized
796 * in the user address space within the
797 * virtual range passed to MADV_DONTNEED
798 * or MADV_FREE.
799 */
800 return -ENOMEM;
801 }
802 if (!can_madv_lru_vma(vma))
803 return -EINVAL;
804 if (end > vma->vm_end) {
805 /*
806 * Don't fail if end > vma->vm_end. If the old
807 * vma was splitted while the mmap_lock was
808 * released the effect of the concurrent
809 * operation may not cause madvise() to
810 * have an undefined result. There may be an
811 * adjacent next vma that we'll walk
812 * next. userfaultfd_remove() will generate an
813 * UFFD_EVENT_REMOVE repetition on the
814 * end-vma->vm_end range, but the manager can
815 * handle a repetition fine.
816 */
817 end = vma->vm_end;
818 }
819 VM_WARN_ON(start >= end);
820 }
821
822 if (behavior == MADV_DONTNEED)
823 return madvise_dontneed_single_vma(vma, start, end);
824 else if (behavior == MADV_FREE)
825 return madvise_free_single_vma(vma, start, end);
826 else
827 return -EINVAL;
828 }
829
830 /*
831 * Application wants to free up the pages and associated backing store.
832 * This is effectively punching a hole into the middle of a file.
833 */
madvise_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)834 static long madvise_remove(struct vm_area_struct *vma,
835 struct vm_area_struct **prev,
836 unsigned long start, unsigned long end)
837 {
838 loff_t offset;
839 int error;
840 struct file *f;
841 struct mm_struct *mm = vma->vm_mm;
842
843 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
844
845 if (vma->vm_flags & VM_LOCKED)
846 return -EINVAL;
847
848 f = vma->vm_file;
849
850 if (!f || !f->f_mapping || !f->f_mapping->host) {
851 return -EINVAL;
852 }
853
854 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
855 return -EACCES;
856
857 offset = (loff_t)(start - vma->vm_start)
858 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
859
860 /*
861 * Filesystem's fallocate may need to take i_mutex. We need to
862 * explicitly grab a reference because the vma (and hence the
863 * vma's reference to the file) can go away as soon as we drop
864 * mmap_lock.
865 */
866 get_file(f);
867 if (userfaultfd_remove(vma, start, end)) {
868 /* mmap_lock was not released by userfaultfd_remove() */
869 mmap_read_unlock(mm);
870 }
871 error = vfs_fallocate(f,
872 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
873 offset, end - start);
874 fput(f);
875 mmap_read_lock(mm);
876 return error;
877 }
878
879 /*
880 * Apply an madvise behavior to a region of a vma. madvise_update_vma
881 * will handle splitting a vm area into separate areas, each area with its own
882 * behavior.
883 */
madvise_vma_behavior(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long behavior)884 static int madvise_vma_behavior(struct vm_area_struct *vma,
885 struct vm_area_struct **prev,
886 unsigned long start, unsigned long end,
887 unsigned long behavior)
888 {
889 int error;
890 struct anon_vma_name *anon_name;
891 unsigned long new_flags = vma->vm_flags;
892
893 switch (behavior) {
894 case MADV_REMOVE:
895 return madvise_remove(vma, prev, start, end);
896 case MADV_WILLNEED:
897 return madvise_willneed(vma, prev, start, end);
898 case MADV_COLD:
899 return madvise_cold(vma, prev, start, end);
900 case MADV_PAGEOUT:
901 return madvise_pageout(vma, prev, start, end);
902 case MADV_FREE:
903 case MADV_DONTNEED:
904 return madvise_dontneed_free(vma, prev, start, end, behavior);
905 case MADV_NORMAL:
906 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
907 break;
908 case MADV_SEQUENTIAL:
909 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
910 break;
911 case MADV_RANDOM:
912 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
913 break;
914 case MADV_DONTFORK:
915 new_flags |= VM_DONTCOPY;
916 break;
917 case MADV_DOFORK:
918 if (vma->vm_flags & VM_IO)
919 return -EINVAL;
920 new_flags &= ~VM_DONTCOPY;
921 break;
922 case MADV_WIPEONFORK:
923 /* MADV_WIPEONFORK is only supported on anonymous memory. */
924 if (vma->vm_file || vma->vm_flags & VM_SHARED)
925 return -EINVAL;
926 new_flags |= VM_WIPEONFORK;
927 break;
928 case MADV_KEEPONFORK:
929 new_flags &= ~VM_WIPEONFORK;
930 break;
931 case MADV_DONTDUMP:
932 new_flags |= VM_DONTDUMP;
933 break;
934 case MADV_DODUMP:
935 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
936 return -EINVAL;
937 new_flags &= ~VM_DONTDUMP;
938 break;
939 case MADV_MERGEABLE:
940 case MADV_UNMERGEABLE:
941 error = ksm_madvise(vma, start, end, behavior, &new_flags);
942 if (error)
943 goto out;
944 break;
945 case MADV_HUGEPAGE:
946 case MADV_NOHUGEPAGE:
947 error = hugepage_madvise(vma, &new_flags, behavior);
948 if (error)
949 goto out;
950 break;
951 }
952
953 anon_name = anon_vma_name(vma);
954 anon_vma_name_get(anon_name);
955 error = madvise_update_vma(vma, prev, start, end, new_flags,
956 anon_name);
957 anon_vma_name_put(anon_name);
958
959 out:
960 /*
961 * madvise() returns EAGAIN if kernel resources, such as
962 * slab, are temporarily unavailable.
963 */
964 if (error == -ENOMEM)
965 error = -EAGAIN;
966 return error;
967 }
968
969 #ifdef CONFIG_MEMORY_FAILURE
970 /*
971 * Error injection support for memory error handling.
972 */
madvise_inject_error(int behavior,unsigned long start,unsigned long end)973 static int madvise_inject_error(int behavior,
974 unsigned long start, unsigned long end)
975 {
976 struct zone *zone;
977 unsigned long size;
978
979 if (!capable(CAP_SYS_ADMIN))
980 return -EPERM;
981
982
983 for (; start < end; start += size) {
984 unsigned long pfn;
985 struct page *page;
986 int ret;
987
988 ret = get_user_pages_fast(start, 1, 0, &page);
989 if (ret != 1)
990 return ret;
991 pfn = page_to_pfn(page);
992
993 /*
994 * When soft offlining hugepages, after migrating the page
995 * we dissolve it, therefore in the second loop "page" will
996 * no longer be a compound page.
997 */
998 size = page_size(compound_head(page));
999
1000 if (behavior == MADV_SOFT_OFFLINE) {
1001 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1002 pfn, start);
1003 ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1004 } else {
1005 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1006 pfn, start);
1007 ret = memory_failure(pfn, MF_COUNT_INCREASED);
1008 }
1009
1010 if (ret)
1011 return ret;
1012 }
1013
1014 /* Ensure that all poisoned pages are removed from per-cpu lists */
1015 for_each_populated_zone(zone)
1016 drain_all_pages(zone);
1017
1018 return 0;
1019 }
1020 #endif
1021
1022 static bool
madvise_behavior_valid(int behavior)1023 madvise_behavior_valid(int behavior)
1024 {
1025 switch (behavior) {
1026 case MADV_DOFORK:
1027 case MADV_DONTFORK:
1028 case MADV_NORMAL:
1029 case MADV_SEQUENTIAL:
1030 case MADV_RANDOM:
1031 case MADV_REMOVE:
1032 case MADV_WILLNEED:
1033 case MADV_DONTNEED:
1034 case MADV_FREE:
1035 case MADV_COLD:
1036 case MADV_PAGEOUT:
1037 #ifdef CONFIG_KSM
1038 case MADV_MERGEABLE:
1039 case MADV_UNMERGEABLE:
1040 #endif
1041 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1042 case MADV_HUGEPAGE:
1043 case MADV_NOHUGEPAGE:
1044 #endif
1045 case MADV_DONTDUMP:
1046 case MADV_DODUMP:
1047 case MADV_WIPEONFORK:
1048 case MADV_KEEPONFORK:
1049 #ifdef CONFIG_MEMORY_FAILURE
1050 case MADV_SOFT_OFFLINE:
1051 case MADV_HWPOISON:
1052 #endif
1053 return true;
1054
1055 default:
1056 return false;
1057 }
1058 }
1059
1060 static bool
process_madvise_behavior_valid(int behavior)1061 process_madvise_behavior_valid(int behavior)
1062 {
1063 switch (behavior) {
1064 case MADV_COLD:
1065 case MADV_PAGEOUT:
1066 return true;
1067 default:
1068 return false;
1069 }
1070 }
1071
1072 /*
1073 * Walk the vmas in range [start,end), and call the visit function on each one.
1074 * The visit function will get start and end parameters that cover the overlap
1075 * between the current vma and the original range. Any unmapped regions in the
1076 * original range will result in this function returning -ENOMEM while still
1077 * calling the visit function on all of the existing vmas in the range.
1078 * Must be called with the mmap_lock held for reading or writing.
1079 */
1080 static
madvise_walk_vmas(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long arg,int (* visit)(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long arg))1081 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1082 unsigned long end, unsigned long arg,
1083 int (*visit)(struct vm_area_struct *vma,
1084 struct vm_area_struct **prev, unsigned long start,
1085 unsigned long end, unsigned long arg))
1086 {
1087 struct vm_area_struct *vma;
1088 struct vm_area_struct *prev;
1089 unsigned long tmp;
1090 int unmapped_error = 0;
1091
1092 /*
1093 * If the interval [start,end) covers some unmapped address
1094 * ranges, just ignore them, but return -ENOMEM at the end.
1095 * - different from the way of handling in mlock etc.
1096 */
1097 vma = find_vma_prev(mm, start, &prev);
1098 if (vma && start > vma->vm_start)
1099 prev = vma;
1100
1101 for (;;) {
1102 int error;
1103
1104 /* Still start < end. */
1105 if (!vma)
1106 return -ENOMEM;
1107
1108 /* Here start < (end|vma->vm_end). */
1109 if (start < vma->vm_start) {
1110 unmapped_error = -ENOMEM;
1111 start = vma->vm_start;
1112 if (start >= end)
1113 break;
1114 }
1115
1116 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1117 tmp = vma->vm_end;
1118 if (end < tmp)
1119 tmp = end;
1120
1121 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1122 error = visit(vma, &prev, start, tmp, arg);
1123 if (error)
1124 return error;
1125 start = tmp;
1126 if (prev && start < prev->vm_end)
1127 start = prev->vm_end;
1128 if (start >= end)
1129 break;
1130 if (prev)
1131 vma = prev->vm_next;
1132 else /* madvise_remove dropped mmap_lock */
1133 vma = find_vma(mm, start);
1134 }
1135
1136 return unmapped_error;
1137 }
1138
1139 #ifdef CONFIG_ANON_VMA_NAME
madvise_vma_anon_name(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long anon_name)1140 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1141 struct vm_area_struct **prev,
1142 unsigned long start, unsigned long end,
1143 unsigned long anon_name)
1144 {
1145 int error;
1146
1147 /* Only anonymous mappings can be named */
1148 if (vma->vm_file)
1149 return -EBADF;
1150
1151 error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1152 (struct anon_vma_name *)anon_name);
1153
1154 /*
1155 * madvise() returns EAGAIN if kernel resources, such as
1156 * slab, are temporarily unavailable.
1157 */
1158 if (error == -ENOMEM)
1159 error = -EAGAIN;
1160 return error;
1161 }
1162
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)1163 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1164 unsigned long len_in, struct anon_vma_name *anon_name)
1165 {
1166 unsigned long end;
1167 unsigned long len;
1168
1169 if (start & ~PAGE_MASK)
1170 return -EINVAL;
1171 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1172
1173 /* Check to see whether len was rounded up from small -ve to zero */
1174 if (len_in && !len)
1175 return -EINVAL;
1176
1177 end = start + len;
1178 if (end < start)
1179 return -EINVAL;
1180
1181 if (end == start)
1182 return 0;
1183
1184 return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1185 madvise_vma_anon_name);
1186 }
1187 #endif /* CONFIG_ANON_VMA_NAME */
1188 /*
1189 * The madvise(2) system call.
1190 *
1191 * Applications can use madvise() to advise the kernel how it should
1192 * handle paging I/O in this VM area. The idea is to help the kernel
1193 * use appropriate read-ahead and caching techniques. The information
1194 * provided is advisory only, and can be safely disregarded by the
1195 * kernel without affecting the correct operation of the application.
1196 *
1197 * behavior values:
1198 * MADV_NORMAL - the default behavior is to read clusters. This
1199 * results in some read-ahead and read-behind.
1200 * MADV_RANDOM - the system should read the minimum amount of data
1201 * on any access, since it is unlikely that the appli-
1202 * cation will need more than what it asks for.
1203 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1204 * once, so they can be aggressively read ahead, and
1205 * can be freed soon after they are accessed.
1206 * MADV_WILLNEED - the application is notifying the system to read
1207 * some pages ahead.
1208 * MADV_DONTNEED - the application is finished with the given range,
1209 * so the kernel can free resources associated with it.
1210 * MADV_FREE - the application marks pages in the given range as lazy free,
1211 * where actual purges are postponed until memory pressure happens.
1212 * MADV_REMOVE - the application wants to free up the given range of
1213 * pages and associated backing store.
1214 * MADV_DONTFORK - omit this area from child's address space when forking:
1215 * typically, to avoid COWing pages pinned by get_user_pages().
1216 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1217 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1218 * range after a fork.
1219 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1220 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1221 * were corrupted by unrecoverable hardware memory failure.
1222 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1223 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1224 * this area with pages of identical content from other such areas.
1225 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1226 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1227 * huge pages in the future. Existing pages might be coalesced and
1228 * new pages might be allocated as THP.
1229 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1230 * transparent huge pages so the existing pages will not be
1231 * coalesced into THP and new pages will not be allocated as THP.
1232 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1233 * from being included in its core dump.
1234 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1235 * MADV_COLD - the application is not expected to use this memory soon,
1236 * deactivate pages in this range so that they can be reclaimed
1237 * easily if memory pressure hanppens.
1238 * MADV_PAGEOUT - the application is not expected to use this memory soon,
1239 * page out the pages in this range immediately.
1240 *
1241 * return values:
1242 * zero - success
1243 * -EINVAL - start + len < 0, start is not page-aligned,
1244 * "behavior" is not a valid value, or application
1245 * is attempting to release locked or shared pages,
1246 * or the specified address range includes file, Huge TLB,
1247 * MAP_SHARED or VMPFNMAP range.
1248 * -ENOMEM - addresses in the specified range are not currently
1249 * mapped, or are outside the AS of the process.
1250 * -EIO - an I/O error occurred while paging in data.
1251 * -EBADF - map exists, but area maps something that isn't a file.
1252 * -EAGAIN - a kernel resource was temporarily unavailable.
1253 */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1254 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1255 {
1256 unsigned long end;
1257 int error;
1258 int write;
1259 size_t len;
1260 struct blk_plug plug;
1261
1262 start = untagged_addr(start);
1263
1264 if (!madvise_behavior_valid(behavior))
1265 return -EINVAL;
1266
1267 if (!PAGE_ALIGNED(start))
1268 return -EINVAL;
1269 len = PAGE_ALIGN(len_in);
1270
1271 /* Check to see whether len was rounded up from small -ve to zero */
1272 if (len_in && !len)
1273 return -EINVAL;
1274
1275 end = start + len;
1276 if (end < start)
1277 return -EINVAL;
1278
1279 if (end == start)
1280 return 0;
1281
1282 #ifdef CONFIG_MEMORY_FAILURE
1283 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1284 return madvise_inject_error(behavior, start, start + len_in);
1285 #endif
1286
1287 write = madvise_need_mmap_write(behavior);
1288 if (write) {
1289 if (mmap_write_lock_killable(mm))
1290 return -EINTR;
1291 } else {
1292 mmap_read_lock(mm);
1293 }
1294
1295 blk_start_plug(&plug);
1296 error = madvise_walk_vmas(mm, start, end, behavior,
1297 madvise_vma_behavior);
1298 blk_finish_plug(&plug);
1299 if (write)
1300 mmap_write_unlock(mm);
1301 else
1302 mmap_read_unlock(mm);
1303
1304 return error;
1305 }
1306
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)1307 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1308 {
1309 return do_madvise(current->mm, start, len_in, behavior);
1310 }
1311
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)1312 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1313 size_t, vlen, int, behavior, unsigned int, flags)
1314 {
1315 ssize_t ret;
1316 struct iovec iovstack[UIO_FASTIOV], iovec;
1317 struct iovec *iov = iovstack;
1318 struct iov_iter iter;
1319 struct pid *pid;
1320 struct task_struct *task;
1321 struct mm_struct *mm;
1322 size_t total_len;
1323 unsigned int f_flags;
1324
1325 if (flags != 0) {
1326 ret = -EINVAL;
1327 goto out;
1328 }
1329
1330 ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1331 if (ret < 0)
1332 goto out;
1333
1334 pid = pidfd_get_pid(pidfd, &f_flags);
1335 if (IS_ERR(pid)) {
1336 ret = PTR_ERR(pid);
1337 goto free_iov;
1338 }
1339
1340 task = get_pid_task(pid, PIDTYPE_PID);
1341 if (!task) {
1342 ret = -ESRCH;
1343 goto put_pid;
1344 }
1345
1346 if (!process_madvise_behavior_valid(behavior)) {
1347 ret = -EINVAL;
1348 goto release_task;
1349 }
1350
1351 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1352 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1353 if (IS_ERR_OR_NULL(mm)) {
1354 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1355 goto release_task;
1356 }
1357
1358 /*
1359 * Require CAP_SYS_NICE for influencing process performance. Note that
1360 * only non-destructive hints are currently supported.
1361 */
1362 if (!capable(CAP_SYS_NICE)) {
1363 ret = -EPERM;
1364 goto release_mm;
1365 }
1366
1367 total_len = iov_iter_count(&iter);
1368
1369 while (iov_iter_count(&iter)) {
1370 iovec = iov_iter_iovec(&iter);
1371 ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1372 iovec.iov_len, behavior);
1373 if (ret < 0)
1374 break;
1375 iov_iter_advance(&iter, iovec.iov_len);
1376 }
1377
1378 if (ret == 0)
1379 ret = total_len - iov_iter_count(&iter);
1380
1381 release_mm:
1382 mmput(mm);
1383 release_task:
1384 put_task_struct(task);
1385 put_pid:
1386 put_pid(pid);
1387 free_iov:
1388 kfree(iov);
1389 out:
1390 return ret;
1391 }
1392