1 // SPDX-License-Identifier: GPL-2.0
2 /**
3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
4 *
5 * Copyright (c) 2019, Ericsson AB
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the names of the copyright holders nor the names of its
17 * contributors may be used to endorse or promote products derived from
18 * this software without specific prior written permission.
19 *
20 * Alternatively, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") version 2 as published by the Free
22 * Software Foundation.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include <crypto/aead.h>
38 #include <crypto/aes.h>
39 #include <crypto/rng.h>
40 #include "crypto.h"
41 #include "msg.h"
42 #include "bcast.h"
43
44 #define TIPC_TX_GRACE_PERIOD msecs_to_jiffies(5000) /* 5s */
45 #define TIPC_TX_LASTING_TIME msecs_to_jiffies(10000) /* 10s */
46 #define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */
47 #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(15000) /* 15s */
48
49 #define TIPC_MAX_TFMS_DEF 10
50 #define TIPC_MAX_TFMS_LIM 1000
51
52 #define TIPC_REKEYING_INTV_DEF (60 * 24) /* default: 1 day */
53
54 /**
55 * TIPC Key ids
56 */
57 enum {
58 KEY_MASTER = 0,
59 KEY_MIN = KEY_MASTER,
60 KEY_1 = 1,
61 KEY_2,
62 KEY_3,
63 KEY_MAX = KEY_3,
64 };
65
66 /**
67 * TIPC Crypto statistics
68 */
69 enum {
70 STAT_OK,
71 STAT_NOK,
72 STAT_ASYNC,
73 STAT_ASYNC_OK,
74 STAT_ASYNC_NOK,
75 STAT_BADKEYS, /* tx only */
76 STAT_BADMSGS = STAT_BADKEYS, /* rx only */
77 STAT_NOKEYS,
78 STAT_SWITCHES,
79
80 MAX_STATS,
81 };
82
83 /* TIPC crypto statistics' header */
84 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
85 "async_nok", "badmsgs", "nokeys",
86 "switches"};
87
88 /* Max TFMs number per key */
89 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
90 /* Key exchange switch, default: on */
91 int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
92
93 /**
94 * struct tipc_key - TIPC keys' status indicator
95 *
96 * 7 6 5 4 3 2 1 0
97 * +-----+-----+-----+-----+-----+-----+-----+-----+
98 * key: | (reserved)|passive idx| active idx|pending idx|
99 * +-----+-----+-----+-----+-----+-----+-----+-----+
100 */
101 struct tipc_key {
102 #define KEY_BITS (2)
103 #define KEY_MASK ((1 << KEY_BITS) - 1)
104 union {
105 struct {
106 #if defined(__LITTLE_ENDIAN_BITFIELD)
107 u8 pending:2,
108 active:2,
109 passive:2, /* rx only */
110 reserved:2;
111 #elif defined(__BIG_ENDIAN_BITFIELD)
112 u8 reserved:2,
113 passive:2, /* rx only */
114 active:2,
115 pending:2;
116 #else
117 #error "Please fix <asm/byteorder.h>"
118 #endif
119 } __packed;
120 u8 keys;
121 };
122 };
123
124 /**
125 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
126 */
127 struct tipc_tfm {
128 struct crypto_aead *tfm;
129 struct list_head list;
130 };
131
132 /**
133 * struct tipc_aead - TIPC AEAD key structure
134 * @tfm_entry: per-cpu pointer to one entry in TFM list
135 * @crypto: TIPC crypto owns this key
136 * @cloned: reference to the source key in case cloning
137 * @users: the number of the key users (TX/RX)
138 * @salt: the key's SALT value
139 * @authsize: authentication tag size (max = 16)
140 * @mode: crypto mode is applied to the key
141 * @hint[]: a hint for user key
142 * @rcu: struct rcu_head
143 * @key: the aead key
144 * @gen: the key's generation
145 * @seqno: the key seqno (cluster scope)
146 * @refcnt: the key reference counter
147 */
148 struct tipc_aead {
149 #define TIPC_AEAD_HINT_LEN (5)
150 struct tipc_tfm * __percpu *tfm_entry;
151 struct tipc_crypto *crypto;
152 struct tipc_aead *cloned;
153 atomic_t users;
154 u32 salt;
155 u8 authsize;
156 u8 mode;
157 char hint[2 * TIPC_AEAD_HINT_LEN + 1];
158 struct rcu_head rcu;
159 struct tipc_aead_key *key;
160 u16 gen;
161
162 atomic64_t seqno ____cacheline_aligned;
163 refcount_t refcnt ____cacheline_aligned;
164
165 } ____cacheline_aligned;
166
167 /**
168 * struct tipc_crypto_stats - TIPC Crypto statistics
169 */
170 struct tipc_crypto_stats {
171 unsigned int stat[MAX_STATS];
172 };
173
174 /**
175 * struct tipc_crypto - TIPC TX/RX crypto structure
176 * @net: struct net
177 * @node: TIPC node (RX)
178 * @aead: array of pointers to AEAD keys for encryption/decryption
179 * @peer_rx_active: replicated peer RX active key index
180 * @key_gen: TX/RX key generation
181 * @key: the key states
182 * @skey_mode: session key's mode
183 * @skey: received session key
184 * @wq: common workqueue on TX crypto
185 * @work: delayed work sched for TX/RX
186 * @key_distr: key distributing state
187 * @rekeying_intv: rekeying interval (in minutes)
188 * @stats: the crypto statistics
189 * @name: the crypto name
190 * @sndnxt: the per-peer sndnxt (TX)
191 * @timer1: general timer 1 (jiffies)
192 * @timer2: general timer 2 (jiffies)
193 * @working: the crypto is working or not
194 * @key_master: flag indicates if master key exists
195 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
196 * @nokey: no key indication
197 * @lock: tipc_key lock
198 */
199 struct tipc_crypto {
200 struct net *net;
201 struct tipc_node *node;
202 struct tipc_aead __rcu *aead[KEY_MAX + 1];
203 atomic_t peer_rx_active;
204 u16 key_gen;
205 struct tipc_key key;
206 u8 skey_mode;
207 struct tipc_aead_key *skey;
208 struct workqueue_struct *wq;
209 struct delayed_work work;
210 #define KEY_DISTR_SCHED 1
211 #define KEY_DISTR_COMPL 2
212 atomic_t key_distr;
213 u32 rekeying_intv;
214
215 struct tipc_crypto_stats __percpu *stats;
216 char name[48];
217
218 atomic64_t sndnxt ____cacheline_aligned;
219 unsigned long timer1;
220 unsigned long timer2;
221 union {
222 struct {
223 u8 working:1;
224 u8 key_master:1;
225 u8 legacy_user:1;
226 u8 nokey: 1;
227 };
228 u8 flags;
229 };
230 spinlock_t lock; /* crypto lock */
231
232 } ____cacheline_aligned;
233
234 /* struct tipc_crypto_tx_ctx - TX context for callbacks */
235 struct tipc_crypto_tx_ctx {
236 struct tipc_aead *aead;
237 struct tipc_bearer *bearer;
238 struct tipc_media_addr dst;
239 };
240
241 /* struct tipc_crypto_rx_ctx - RX context for callbacks */
242 struct tipc_crypto_rx_ctx {
243 struct tipc_aead *aead;
244 struct tipc_bearer *bearer;
245 };
246
247 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
248 static inline void tipc_aead_put(struct tipc_aead *aead);
249 static void tipc_aead_free(struct rcu_head *rp);
250 static int tipc_aead_users(struct tipc_aead __rcu *aead);
251 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
252 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
253 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
254 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
255 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
256 u8 mode);
257 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
258 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
259 unsigned int crypto_ctx_size,
260 u8 **iv, struct aead_request **req,
261 struct scatterlist **sg, int nsg);
262 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
263 struct tipc_bearer *b,
264 struct tipc_media_addr *dst,
265 struct tipc_node *__dnode);
266 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
267 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
268 struct sk_buff *skb, struct tipc_bearer *b);
269 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
270 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
271 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
272 u8 tx_key, struct sk_buff *skb,
273 struct tipc_crypto *__rx);
274 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
275 u8 new_passive,
276 u8 new_active,
277 u8 new_pending);
278 static int tipc_crypto_key_attach(struct tipc_crypto *c,
279 struct tipc_aead *aead, u8 pos,
280 bool master_key);
281 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
282 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
283 struct tipc_crypto *rx,
284 struct sk_buff *skb,
285 u8 tx_key);
286 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
287 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
288 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
289 struct tipc_bearer *b,
290 struct tipc_media_addr *dst,
291 struct tipc_node *__dnode, u8 type);
292 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
293 struct tipc_bearer *b,
294 struct sk_buff **skb, int err);
295 static void tipc_crypto_do_cmd(struct net *net, int cmd);
296 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
297 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
298 char *buf);
299 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
300 u16 gen, u8 mode, u32 dnode);
301 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
302 static void tipc_crypto_work_tx(struct work_struct *work);
303 static void tipc_crypto_work_rx(struct work_struct *work);
304 static int tipc_aead_key_generate(struct tipc_aead_key *skey);
305
306 #define is_tx(crypto) (!(crypto)->node)
307 #define is_rx(crypto) (!is_tx(crypto))
308
309 #define key_next(cur) ((cur) % KEY_MAX + 1)
310
311 #define tipc_aead_rcu_ptr(rcu_ptr, lock) \
312 rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
313
314 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \
315 do { \
316 typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr), \
317 lockdep_is_held(lock)); \
318 rcu_assign_pointer((rcu_ptr), (ptr)); \
319 tipc_aead_put(__tmp); \
320 } while (0)
321
322 #define tipc_crypto_key_detach(rcu_ptr, lock) \
323 tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
324
325 /**
326 * tipc_aead_key_validate - Validate a AEAD user key
327 */
tipc_aead_key_validate(struct tipc_aead_key * ukey,struct genl_info * info)328 int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
329 {
330 int keylen;
331
332 /* Check if algorithm exists */
333 if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
334 GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
335 return -ENODEV;
336 }
337
338 /* Currently, we only support the "gcm(aes)" cipher algorithm */
339 if (strcmp(ukey->alg_name, "gcm(aes)")) {
340 GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
341 return -ENOTSUPP;
342 }
343
344 /* Check if key size is correct */
345 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
346 if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
347 keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
348 keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
349 GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
350 return -EKEYREJECTED;
351 }
352
353 return 0;
354 }
355
356 /**
357 * tipc_aead_key_generate - Generate new session key
358 * @skey: input/output key with new content
359 *
360 * Return: 0 in case of success, otherwise < 0
361 */
tipc_aead_key_generate(struct tipc_aead_key * skey)362 static int tipc_aead_key_generate(struct tipc_aead_key *skey)
363 {
364 int rc = 0;
365
366 /* Fill the key's content with a random value via RNG cipher */
367 rc = crypto_get_default_rng();
368 if (likely(!rc)) {
369 rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
370 skey->keylen);
371 crypto_put_default_rng();
372 }
373
374 return rc;
375 }
376
tipc_aead_get(struct tipc_aead __rcu * aead)377 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
378 {
379 struct tipc_aead *tmp;
380
381 rcu_read_lock();
382 tmp = rcu_dereference(aead);
383 if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
384 tmp = NULL;
385 rcu_read_unlock();
386
387 return tmp;
388 }
389
tipc_aead_put(struct tipc_aead * aead)390 static inline void tipc_aead_put(struct tipc_aead *aead)
391 {
392 if (aead && refcount_dec_and_test(&aead->refcnt))
393 call_rcu(&aead->rcu, tipc_aead_free);
394 }
395
396 /**
397 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
398 * @rp: rcu head pointer
399 */
tipc_aead_free(struct rcu_head * rp)400 static void tipc_aead_free(struct rcu_head *rp)
401 {
402 struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
403 struct tipc_tfm *tfm_entry, *head, *tmp;
404
405 if (aead->cloned) {
406 tipc_aead_put(aead->cloned);
407 } else {
408 head = *get_cpu_ptr(aead->tfm_entry);
409 put_cpu_ptr(aead->tfm_entry);
410 list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
411 crypto_free_aead(tfm_entry->tfm);
412 list_del(&tfm_entry->list);
413 kfree(tfm_entry);
414 }
415 /* Free the head */
416 crypto_free_aead(head->tfm);
417 list_del(&head->list);
418 kfree(head);
419 }
420 free_percpu(aead->tfm_entry);
421 kfree_sensitive(aead->key);
422 kfree(aead);
423 }
424
tipc_aead_users(struct tipc_aead __rcu * aead)425 static int tipc_aead_users(struct tipc_aead __rcu *aead)
426 {
427 struct tipc_aead *tmp;
428 int users = 0;
429
430 rcu_read_lock();
431 tmp = rcu_dereference(aead);
432 if (tmp)
433 users = atomic_read(&tmp->users);
434 rcu_read_unlock();
435
436 return users;
437 }
438
tipc_aead_users_inc(struct tipc_aead __rcu * aead,int lim)439 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
440 {
441 struct tipc_aead *tmp;
442
443 rcu_read_lock();
444 tmp = rcu_dereference(aead);
445 if (tmp)
446 atomic_add_unless(&tmp->users, 1, lim);
447 rcu_read_unlock();
448 }
449
tipc_aead_users_dec(struct tipc_aead __rcu * aead,int lim)450 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
451 {
452 struct tipc_aead *tmp;
453
454 rcu_read_lock();
455 tmp = rcu_dereference(aead);
456 if (tmp)
457 atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
458 rcu_read_unlock();
459 }
460
tipc_aead_users_set(struct tipc_aead __rcu * aead,int val)461 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
462 {
463 struct tipc_aead *tmp;
464 int cur;
465
466 rcu_read_lock();
467 tmp = rcu_dereference(aead);
468 if (tmp) {
469 do {
470 cur = atomic_read(&tmp->users);
471 if (cur == val)
472 break;
473 } while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
474 }
475 rcu_read_unlock();
476 }
477
478 /**
479 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
480 */
tipc_aead_tfm_next(struct tipc_aead * aead)481 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
482 {
483 struct tipc_tfm **tfm_entry;
484 struct crypto_aead *tfm;
485
486 tfm_entry = get_cpu_ptr(aead->tfm_entry);
487 *tfm_entry = list_next_entry(*tfm_entry, list);
488 tfm = (*tfm_entry)->tfm;
489 put_cpu_ptr(tfm_entry);
490
491 return tfm;
492 }
493
494 /**
495 * tipc_aead_init - Initiate TIPC AEAD
496 * @aead: returned new TIPC AEAD key handle pointer
497 * @ukey: pointer to user key data
498 * @mode: the key mode
499 *
500 * Allocate a (list of) new cipher transformation (TFM) with the specific user
501 * key data if valid. The number of the allocated TFMs can be set via the sysfs
502 * "net/tipc/max_tfms" first.
503 * Also, all the other AEAD data are also initialized.
504 *
505 * Return: 0 if the initiation is successful, otherwise: < 0
506 */
tipc_aead_init(struct tipc_aead ** aead,struct tipc_aead_key * ukey,u8 mode)507 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
508 u8 mode)
509 {
510 struct tipc_tfm *tfm_entry, *head;
511 struct crypto_aead *tfm;
512 struct tipc_aead *tmp;
513 int keylen, err, cpu;
514 int tfm_cnt = 0;
515
516 if (unlikely(*aead))
517 return -EEXIST;
518
519 /* Allocate a new AEAD */
520 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
521 if (unlikely(!tmp))
522 return -ENOMEM;
523
524 /* The key consists of two parts: [AES-KEY][SALT] */
525 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
526
527 /* Allocate per-cpu TFM entry pointer */
528 tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
529 if (!tmp->tfm_entry) {
530 kfree_sensitive(tmp);
531 return -ENOMEM;
532 }
533
534 /* Make a list of TFMs with the user key data */
535 do {
536 tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
537 if (IS_ERR(tfm)) {
538 err = PTR_ERR(tfm);
539 break;
540 }
541
542 if (unlikely(!tfm_cnt &&
543 crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
544 crypto_free_aead(tfm);
545 err = -ENOTSUPP;
546 break;
547 }
548
549 err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
550 err |= crypto_aead_setkey(tfm, ukey->key, keylen);
551 if (unlikely(err)) {
552 crypto_free_aead(tfm);
553 break;
554 }
555
556 tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
557 if (unlikely(!tfm_entry)) {
558 crypto_free_aead(tfm);
559 err = -ENOMEM;
560 break;
561 }
562 INIT_LIST_HEAD(&tfm_entry->list);
563 tfm_entry->tfm = tfm;
564
565 /* First entry? */
566 if (!tfm_cnt) {
567 head = tfm_entry;
568 for_each_possible_cpu(cpu) {
569 *per_cpu_ptr(tmp->tfm_entry, cpu) = head;
570 }
571 } else {
572 list_add_tail(&tfm_entry->list, &head->list);
573 }
574
575 } while (++tfm_cnt < sysctl_tipc_max_tfms);
576
577 /* Not any TFM is allocated? */
578 if (!tfm_cnt) {
579 free_percpu(tmp->tfm_entry);
580 kfree_sensitive(tmp);
581 return err;
582 }
583
584 /* Form a hex string of some last bytes as the key's hint */
585 bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
586 TIPC_AEAD_HINT_LEN);
587
588 /* Initialize the other data */
589 tmp->mode = mode;
590 tmp->cloned = NULL;
591 tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
592 tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
593 if (!tmp->key) {
594 tipc_aead_free(&tmp->rcu);
595 return -ENOMEM;
596 }
597 memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
598 atomic_set(&tmp->users, 0);
599 atomic64_set(&tmp->seqno, 0);
600 refcount_set(&tmp->refcnt, 1);
601
602 *aead = tmp;
603 return 0;
604 }
605
606 /**
607 * tipc_aead_clone - Clone a TIPC AEAD key
608 * @dst: dest key for the cloning
609 * @src: source key to clone from
610 *
611 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
612 * common for the keys.
613 * A reference to the source is hold in the "cloned" pointer for the later
614 * freeing purposes.
615 *
616 * Note: this must be done in cluster-key mode only!
617 * Return: 0 in case of success, otherwise < 0
618 */
tipc_aead_clone(struct tipc_aead ** dst,struct tipc_aead * src)619 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
620 {
621 struct tipc_aead *aead;
622 int cpu;
623
624 if (!src)
625 return -ENOKEY;
626
627 if (src->mode != CLUSTER_KEY)
628 return -EINVAL;
629
630 if (unlikely(*dst))
631 return -EEXIST;
632
633 aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
634 if (unlikely(!aead))
635 return -ENOMEM;
636
637 aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
638 if (unlikely(!aead->tfm_entry)) {
639 kfree_sensitive(aead);
640 return -ENOMEM;
641 }
642
643 for_each_possible_cpu(cpu) {
644 *per_cpu_ptr(aead->tfm_entry, cpu) =
645 *per_cpu_ptr(src->tfm_entry, cpu);
646 }
647
648 memcpy(aead->hint, src->hint, sizeof(src->hint));
649 aead->mode = src->mode;
650 aead->salt = src->salt;
651 aead->authsize = src->authsize;
652 atomic_set(&aead->users, 0);
653 atomic64_set(&aead->seqno, 0);
654 refcount_set(&aead->refcnt, 1);
655
656 WARN_ON(!refcount_inc_not_zero(&src->refcnt));
657 aead->cloned = src;
658
659 *dst = aead;
660 return 0;
661 }
662
663 /**
664 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
665 * @tfm: cipher handle to be registered with the request
666 * @crypto_ctx_size: size of crypto context for callback
667 * @iv: returned pointer to IV data
668 * @req: returned pointer to AEAD request data
669 * @sg: returned pointer to SG lists
670 * @nsg: number of SG lists to be allocated
671 *
672 * Allocate memory to store the crypto context data, AEAD request, IV and SG
673 * lists, the memory layout is as follows:
674 * crypto_ctx || iv || aead_req || sg[]
675 *
676 * Return: the pointer to the memory areas in case of success, otherwise NULL
677 */
tipc_aead_mem_alloc(struct crypto_aead * tfm,unsigned int crypto_ctx_size,u8 ** iv,struct aead_request ** req,struct scatterlist ** sg,int nsg)678 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
679 unsigned int crypto_ctx_size,
680 u8 **iv, struct aead_request **req,
681 struct scatterlist **sg, int nsg)
682 {
683 unsigned int iv_size, req_size;
684 unsigned int len;
685 u8 *mem;
686
687 iv_size = crypto_aead_ivsize(tfm);
688 req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
689
690 len = crypto_ctx_size;
691 len += iv_size;
692 len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
693 len = ALIGN(len, crypto_tfm_ctx_alignment());
694 len += req_size;
695 len = ALIGN(len, __alignof__(struct scatterlist));
696 len += nsg * sizeof(**sg);
697
698 mem = kmalloc(len, GFP_ATOMIC);
699 if (!mem)
700 return NULL;
701
702 *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
703 crypto_aead_alignmask(tfm) + 1);
704 *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
705 crypto_tfm_ctx_alignment());
706 *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
707 __alignof__(struct scatterlist));
708
709 return (void *)mem;
710 }
711
712 /**
713 * tipc_aead_encrypt - Encrypt a message
714 * @aead: TIPC AEAD key for the message encryption
715 * @skb: the input/output skb
716 * @b: TIPC bearer where the message will be delivered after the encryption
717 * @dst: the destination media address
718 * @__dnode: TIPC dest node if "known"
719 *
720 * Return:
721 * 0 : if the encryption has completed
722 * -EINPROGRESS/-EBUSY : if a callback will be performed
723 * < 0 : the encryption has failed
724 */
tipc_aead_encrypt(struct tipc_aead * aead,struct sk_buff * skb,struct tipc_bearer * b,struct tipc_media_addr * dst,struct tipc_node * __dnode)725 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
726 struct tipc_bearer *b,
727 struct tipc_media_addr *dst,
728 struct tipc_node *__dnode)
729 {
730 struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
731 struct tipc_crypto_tx_ctx *tx_ctx;
732 struct aead_request *req;
733 struct sk_buff *trailer;
734 struct scatterlist *sg;
735 struct tipc_ehdr *ehdr;
736 int ehsz, len, tailen, nsg, rc;
737 void *ctx;
738 u32 salt;
739 u8 *iv;
740
741 /* Make sure message len at least 4-byte aligned */
742 len = ALIGN(skb->len, 4);
743 tailen = len - skb->len + aead->authsize;
744
745 /* Expand skb tail for authentication tag:
746 * As for simplicity, we'd have made sure skb having enough tailroom
747 * for authentication tag @skb allocation. Even when skb is nonlinear
748 * but there is no frag_list, it should be still fine!
749 * Otherwise, we must cow it to be a writable buffer with the tailroom.
750 */
751 SKB_LINEAR_ASSERT(skb);
752 if (tailen > skb_tailroom(skb)) {
753 pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
754 skb_tailroom(skb), tailen);
755 }
756
757 if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
758 nsg = 1;
759 trailer = skb;
760 } else {
761 /* TODO: We could avoid skb_cow_data() if skb has no frag_list
762 * e.g. by skb_fill_page_desc() to add another page to the skb
763 * with the wanted tailen... However, page skbs look not often,
764 * so take it easy now!
765 * Cloned skbs e.g. from link_xmit() seems no choice though :(
766 */
767 nsg = skb_cow_data(skb, tailen, &trailer);
768 if (unlikely(nsg < 0)) {
769 pr_err("TX: skb_cow_data() returned %d\n", nsg);
770 return nsg;
771 }
772 }
773
774 pskb_put(skb, trailer, tailen);
775
776 /* Allocate memory for the AEAD operation */
777 ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
778 if (unlikely(!ctx))
779 return -ENOMEM;
780 TIPC_SKB_CB(skb)->crypto_ctx = ctx;
781
782 /* Map skb to the sg lists */
783 sg_init_table(sg, nsg);
784 rc = skb_to_sgvec(skb, sg, 0, skb->len);
785 if (unlikely(rc < 0)) {
786 pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
787 goto exit;
788 }
789
790 /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
791 * In case we're in cluster-key mode, SALT is varied by xor-ing with
792 * the source address (or w0 of id), otherwise with the dest address
793 * if dest is known.
794 */
795 ehdr = (struct tipc_ehdr *)skb->data;
796 salt = aead->salt;
797 if (aead->mode == CLUSTER_KEY)
798 salt ^= ehdr->addr; /* __be32 */
799 else if (__dnode)
800 salt ^= tipc_node_get_addr(__dnode);
801 memcpy(iv, &salt, 4);
802 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
803
804 /* Prepare request */
805 ehsz = tipc_ehdr_size(ehdr);
806 aead_request_set_tfm(req, tfm);
807 aead_request_set_ad(req, ehsz);
808 aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
809
810 /* Set callback function & data */
811 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
812 tipc_aead_encrypt_done, skb);
813 tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
814 tx_ctx->aead = aead;
815 tx_ctx->bearer = b;
816 memcpy(&tx_ctx->dst, dst, sizeof(*dst));
817
818 /* Hold bearer */
819 if (unlikely(!tipc_bearer_hold(b))) {
820 rc = -ENODEV;
821 goto exit;
822 }
823
824 /* Now, do encrypt */
825 rc = crypto_aead_encrypt(req);
826 if (rc == -EINPROGRESS || rc == -EBUSY)
827 return rc;
828
829 tipc_bearer_put(b);
830
831 exit:
832 kfree(ctx);
833 TIPC_SKB_CB(skb)->crypto_ctx = NULL;
834 return rc;
835 }
836
tipc_aead_encrypt_done(struct crypto_async_request * base,int err)837 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
838 {
839 struct sk_buff *skb = base->data;
840 struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
841 struct tipc_bearer *b = tx_ctx->bearer;
842 struct tipc_aead *aead = tx_ctx->aead;
843 struct tipc_crypto *tx = aead->crypto;
844 struct net *net = tx->net;
845
846 switch (err) {
847 case 0:
848 this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
849 rcu_read_lock();
850 if (likely(test_bit(0, &b->up)))
851 b->media->send_msg(net, skb, b, &tx_ctx->dst);
852 else
853 kfree_skb(skb);
854 rcu_read_unlock();
855 break;
856 case -EINPROGRESS:
857 return;
858 default:
859 this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
860 kfree_skb(skb);
861 break;
862 }
863
864 kfree(tx_ctx);
865 tipc_bearer_put(b);
866 tipc_aead_put(aead);
867 }
868
869 /**
870 * tipc_aead_decrypt - Decrypt an encrypted message
871 * @net: struct net
872 * @aead: TIPC AEAD for the message decryption
873 * @skb: the input/output skb
874 * @b: TIPC bearer where the message has been received
875 *
876 * Return:
877 * 0 : if the decryption has completed
878 * -EINPROGRESS/-EBUSY : if a callback will be performed
879 * < 0 : the decryption has failed
880 */
tipc_aead_decrypt(struct net * net,struct tipc_aead * aead,struct sk_buff * skb,struct tipc_bearer * b)881 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
882 struct sk_buff *skb, struct tipc_bearer *b)
883 {
884 struct tipc_crypto_rx_ctx *rx_ctx;
885 struct aead_request *req;
886 struct crypto_aead *tfm;
887 struct sk_buff *unused;
888 struct scatterlist *sg;
889 struct tipc_ehdr *ehdr;
890 int ehsz, nsg, rc;
891 void *ctx;
892 u32 salt;
893 u8 *iv;
894
895 if (unlikely(!aead))
896 return -ENOKEY;
897
898 nsg = skb_cow_data(skb, 0, &unused);
899 if (unlikely(nsg < 0)) {
900 pr_err("RX: skb_cow_data() returned %d\n", nsg);
901 return nsg;
902 }
903
904 /* Allocate memory for the AEAD operation */
905 tfm = tipc_aead_tfm_next(aead);
906 ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
907 if (unlikely(!ctx))
908 return -ENOMEM;
909 TIPC_SKB_CB(skb)->crypto_ctx = ctx;
910
911 /* Map skb to the sg lists */
912 sg_init_table(sg, nsg);
913 rc = skb_to_sgvec(skb, sg, 0, skb->len);
914 if (unlikely(rc < 0)) {
915 pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
916 goto exit;
917 }
918
919 /* Reconstruct IV: */
920 ehdr = (struct tipc_ehdr *)skb->data;
921 salt = aead->salt;
922 if (aead->mode == CLUSTER_KEY)
923 salt ^= ehdr->addr; /* __be32 */
924 else if (ehdr->destined)
925 salt ^= tipc_own_addr(net);
926 memcpy(iv, &salt, 4);
927 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
928
929 /* Prepare request */
930 ehsz = tipc_ehdr_size(ehdr);
931 aead_request_set_tfm(req, tfm);
932 aead_request_set_ad(req, ehsz);
933 aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
934
935 /* Set callback function & data */
936 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
937 tipc_aead_decrypt_done, skb);
938 rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
939 rx_ctx->aead = aead;
940 rx_ctx->bearer = b;
941
942 /* Hold bearer */
943 if (unlikely(!tipc_bearer_hold(b))) {
944 rc = -ENODEV;
945 goto exit;
946 }
947
948 /* Now, do decrypt */
949 rc = crypto_aead_decrypt(req);
950 if (rc == -EINPROGRESS || rc == -EBUSY)
951 return rc;
952
953 tipc_bearer_put(b);
954
955 exit:
956 kfree(ctx);
957 TIPC_SKB_CB(skb)->crypto_ctx = NULL;
958 return rc;
959 }
960
tipc_aead_decrypt_done(struct crypto_async_request * base,int err)961 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
962 {
963 struct sk_buff *skb = base->data;
964 struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
965 struct tipc_bearer *b = rx_ctx->bearer;
966 struct tipc_aead *aead = rx_ctx->aead;
967 struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
968 struct net *net = aead->crypto->net;
969
970 switch (err) {
971 case 0:
972 this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
973 break;
974 case -EINPROGRESS:
975 return;
976 default:
977 this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
978 break;
979 }
980
981 kfree(rx_ctx);
982 tipc_crypto_rcv_complete(net, aead, b, &skb, err);
983 if (likely(skb)) {
984 if (likely(test_bit(0, &b->up)))
985 tipc_rcv(net, skb, b);
986 else
987 kfree_skb(skb);
988 }
989
990 tipc_bearer_put(b);
991 }
992
tipc_ehdr_size(struct tipc_ehdr * ehdr)993 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
994 {
995 return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
996 }
997
998 /**
999 * tipc_ehdr_validate - Validate an encryption message
1000 * @skb: the message buffer
1001 *
1002 * Returns "true" if this is a valid encryption message, otherwise "false"
1003 */
tipc_ehdr_validate(struct sk_buff * skb)1004 bool tipc_ehdr_validate(struct sk_buff *skb)
1005 {
1006 struct tipc_ehdr *ehdr;
1007 int ehsz;
1008
1009 if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1010 return false;
1011
1012 ehdr = (struct tipc_ehdr *)skb->data;
1013 if (unlikely(ehdr->version != TIPC_EVERSION))
1014 return false;
1015 ehsz = tipc_ehdr_size(ehdr);
1016 if (unlikely(!pskb_may_pull(skb, ehsz)))
1017 return false;
1018 if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1019 return false;
1020
1021 return true;
1022 }
1023
1024 /**
1025 * tipc_ehdr_build - Build TIPC encryption message header
1026 * @net: struct net
1027 * @aead: TX AEAD key to be used for the message encryption
1028 * @tx_key: key id used for the message encryption
1029 * @skb: input/output message skb
1030 * @__rx: RX crypto handle if dest is "known"
1031 *
1032 * Return: the header size if the building is successful, otherwise < 0
1033 */
tipc_ehdr_build(struct net * net,struct tipc_aead * aead,u8 tx_key,struct sk_buff * skb,struct tipc_crypto * __rx)1034 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1035 u8 tx_key, struct sk_buff *skb,
1036 struct tipc_crypto *__rx)
1037 {
1038 struct tipc_msg *hdr = buf_msg(skb);
1039 struct tipc_ehdr *ehdr;
1040 u32 user = msg_user(hdr);
1041 u64 seqno;
1042 int ehsz;
1043
1044 /* Make room for encryption header */
1045 ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1046 WARN_ON(skb_headroom(skb) < ehsz);
1047 ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1048
1049 /* Obtain a seqno first:
1050 * Use the key seqno (= cluster wise) if dest is unknown or we're in
1051 * cluster key mode, otherwise it's better for a per-peer seqno!
1052 */
1053 if (!__rx || aead->mode == CLUSTER_KEY)
1054 seqno = atomic64_inc_return(&aead->seqno);
1055 else
1056 seqno = atomic64_inc_return(&__rx->sndnxt);
1057
1058 /* Revoke the key if seqno is wrapped around */
1059 if (unlikely(!seqno))
1060 return tipc_crypto_key_revoke(net, tx_key);
1061
1062 /* Word 1-2 */
1063 ehdr->seqno = cpu_to_be64(seqno);
1064
1065 /* Words 0, 3- */
1066 ehdr->version = TIPC_EVERSION;
1067 ehdr->user = 0;
1068 ehdr->keepalive = 0;
1069 ehdr->tx_key = tx_key;
1070 ehdr->destined = (__rx) ? 1 : 0;
1071 ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1072 ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1073 ehdr->master_key = aead->crypto->key_master;
1074 ehdr->reserved_1 = 0;
1075 ehdr->reserved_2 = 0;
1076
1077 switch (user) {
1078 case LINK_CONFIG:
1079 ehdr->user = LINK_CONFIG;
1080 memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1081 break;
1082 default:
1083 if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1084 ehdr->user = LINK_PROTOCOL;
1085 ehdr->keepalive = msg_is_keepalive(hdr);
1086 }
1087 ehdr->addr = hdr->hdr[3];
1088 break;
1089 }
1090
1091 return ehsz;
1092 }
1093
tipc_crypto_key_set_state(struct tipc_crypto * c,u8 new_passive,u8 new_active,u8 new_pending)1094 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1095 u8 new_passive,
1096 u8 new_active,
1097 u8 new_pending)
1098 {
1099 struct tipc_key old = c->key;
1100 char buf[32];
1101
1102 c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1103 ((new_active & KEY_MASK) << (KEY_BITS)) |
1104 ((new_pending & KEY_MASK));
1105
1106 pr_debug("%s: key changing %s ::%pS\n", c->name,
1107 tipc_key_change_dump(old, c->key, buf),
1108 __builtin_return_address(0));
1109 }
1110
1111 /**
1112 * tipc_crypto_key_init - Initiate a new user / AEAD key
1113 * @c: TIPC crypto to which new key is attached
1114 * @ukey: the user key
1115 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1116 * @master_key: specify this is a cluster master key
1117 *
1118 * A new TIPC AEAD key will be allocated and initiated with the specified user
1119 * key, then attached to the TIPC crypto.
1120 *
1121 * Return: new key id in case of success, otherwise: < 0
1122 */
tipc_crypto_key_init(struct tipc_crypto * c,struct tipc_aead_key * ukey,u8 mode,bool master_key)1123 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1124 u8 mode, bool master_key)
1125 {
1126 struct tipc_aead *aead = NULL;
1127 int rc = 0;
1128
1129 /* Initiate with the new user key */
1130 rc = tipc_aead_init(&aead, ukey, mode);
1131
1132 /* Attach it to the crypto */
1133 if (likely(!rc)) {
1134 rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1135 if (rc < 0)
1136 tipc_aead_free(&aead->rcu);
1137 }
1138
1139 return rc;
1140 }
1141
1142 /**
1143 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1144 * @c: TIPC crypto to which the new AEAD key is attached
1145 * @aead: the new AEAD key pointer
1146 * @pos: desired slot in the crypto key array, = 0 if any!
1147 * @master_key: specify this is a cluster master key
1148 *
1149 * Return: new key id in case of success, otherwise: -EBUSY
1150 */
tipc_crypto_key_attach(struct tipc_crypto * c,struct tipc_aead * aead,u8 pos,bool master_key)1151 static int tipc_crypto_key_attach(struct tipc_crypto *c,
1152 struct tipc_aead *aead, u8 pos,
1153 bool master_key)
1154 {
1155 struct tipc_key key;
1156 int rc = -EBUSY;
1157 u8 new_key;
1158
1159 spin_lock_bh(&c->lock);
1160 key = c->key;
1161 if (master_key) {
1162 new_key = KEY_MASTER;
1163 goto attach;
1164 }
1165 if (key.active && key.passive)
1166 goto exit;
1167 if (key.pending) {
1168 if (tipc_aead_users(c->aead[key.pending]) > 0)
1169 goto exit;
1170 /* if (pos): ok with replacing, will be aligned when needed */
1171 /* Replace it */
1172 new_key = key.pending;
1173 } else {
1174 if (pos) {
1175 if (key.active && pos != key_next(key.active)) {
1176 key.passive = pos;
1177 new_key = pos;
1178 goto attach;
1179 } else if (!key.active && !key.passive) {
1180 key.pending = pos;
1181 new_key = pos;
1182 goto attach;
1183 }
1184 }
1185 key.pending = key_next(key.active ?: key.passive);
1186 new_key = key.pending;
1187 }
1188
1189 attach:
1190 aead->crypto = c;
1191 aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1192 tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1193 if (likely(c->key.keys != key.keys))
1194 tipc_crypto_key_set_state(c, key.passive, key.active,
1195 key.pending);
1196 c->working = 1;
1197 c->nokey = 0;
1198 c->key_master |= master_key;
1199 rc = new_key;
1200
1201 exit:
1202 spin_unlock_bh(&c->lock);
1203 return rc;
1204 }
1205
tipc_crypto_key_flush(struct tipc_crypto * c)1206 void tipc_crypto_key_flush(struct tipc_crypto *c)
1207 {
1208 struct tipc_crypto *tx, *rx;
1209 int k;
1210
1211 spin_lock_bh(&c->lock);
1212 if (is_rx(c)) {
1213 /* Try to cancel pending work */
1214 rx = c;
1215 tx = tipc_net(rx->net)->crypto_tx;
1216 if (cancel_delayed_work(&rx->work)) {
1217 kfree(rx->skey);
1218 rx->skey = NULL;
1219 atomic_xchg(&rx->key_distr, 0);
1220 tipc_node_put(rx->node);
1221 }
1222 /* RX stopping => decrease TX key users if any */
1223 k = atomic_xchg(&rx->peer_rx_active, 0);
1224 if (k) {
1225 tipc_aead_users_dec(tx->aead[k], 0);
1226 /* Mark the point TX key users changed */
1227 tx->timer1 = jiffies;
1228 }
1229 }
1230
1231 c->flags = 0;
1232 tipc_crypto_key_set_state(c, 0, 0, 0);
1233 for (k = KEY_MIN; k <= KEY_MAX; k++)
1234 tipc_crypto_key_detach(c->aead[k], &c->lock);
1235 atomic64_set(&c->sndnxt, 0);
1236 spin_unlock_bh(&c->lock);
1237 }
1238
1239 /**
1240 * tipc_crypto_key_try_align - Align RX keys if possible
1241 * @rx: RX crypto handle
1242 * @new_pending: new pending slot if aligned (= TX key from peer)
1243 *
1244 * Peer has used an unknown key slot, this only happens when peer has left and
1245 * rejoned, or we are newcomer.
1246 * That means, there must be no active key but a pending key at unaligned slot.
1247 * If so, we try to move the pending key to the new slot.
1248 * Note: A potential passive key can exist, it will be shifted correspondingly!
1249 *
1250 * Return: "true" if key is successfully aligned, otherwise "false"
1251 */
tipc_crypto_key_try_align(struct tipc_crypto * rx,u8 new_pending)1252 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1253 {
1254 struct tipc_aead *tmp1, *tmp2 = NULL;
1255 struct tipc_key key;
1256 bool aligned = false;
1257 u8 new_passive = 0;
1258 int x;
1259
1260 spin_lock(&rx->lock);
1261 key = rx->key;
1262 if (key.pending == new_pending) {
1263 aligned = true;
1264 goto exit;
1265 }
1266 if (key.active)
1267 goto exit;
1268 if (!key.pending)
1269 goto exit;
1270 if (tipc_aead_users(rx->aead[key.pending]) > 0)
1271 goto exit;
1272
1273 /* Try to "isolate" this pending key first */
1274 tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1275 if (!refcount_dec_if_one(&tmp1->refcnt))
1276 goto exit;
1277 rcu_assign_pointer(rx->aead[key.pending], NULL);
1278
1279 /* Move passive key if any */
1280 if (key.passive) {
1281 tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1282 x = (key.passive - key.pending + new_pending) % KEY_MAX;
1283 new_passive = (x <= 0) ? x + KEY_MAX : x;
1284 }
1285
1286 /* Re-allocate the key(s) */
1287 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1288 rcu_assign_pointer(rx->aead[new_pending], tmp1);
1289 if (new_passive)
1290 rcu_assign_pointer(rx->aead[new_passive], tmp2);
1291 refcount_set(&tmp1->refcnt, 1);
1292 aligned = true;
1293 pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1294 new_pending);
1295
1296 exit:
1297 spin_unlock(&rx->lock);
1298 return aligned;
1299 }
1300
1301 /**
1302 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1303 * @tx: TX crypto handle
1304 * @rx: RX crypto handle (can be NULL)
1305 * @skb: the message skb which will be decrypted later
1306 * @tx_key: peer TX key id
1307 *
1308 * This function looks up the existing TX keys and pick one which is suitable
1309 * for the message decryption, that must be a cluster key and not used before
1310 * on the same message (i.e. recursive).
1311 *
1312 * Return: the TX AEAD key handle in case of success, otherwise NULL
1313 */
tipc_crypto_key_pick_tx(struct tipc_crypto * tx,struct tipc_crypto * rx,struct sk_buff * skb,u8 tx_key)1314 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1315 struct tipc_crypto *rx,
1316 struct sk_buff *skb,
1317 u8 tx_key)
1318 {
1319 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1320 struct tipc_aead *aead = NULL;
1321 struct tipc_key key = tx->key;
1322 u8 k, i = 0;
1323
1324 /* Initialize data if not yet */
1325 if (!skb_cb->tx_clone_deferred) {
1326 skb_cb->tx_clone_deferred = 1;
1327 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1328 }
1329
1330 skb_cb->tx_clone_ctx.rx = rx;
1331 if (++skb_cb->tx_clone_ctx.recurs > 2)
1332 return NULL;
1333
1334 /* Pick one TX key */
1335 spin_lock(&tx->lock);
1336 if (tx_key == KEY_MASTER) {
1337 aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1338 goto done;
1339 }
1340 do {
1341 k = (i == 0) ? key.pending :
1342 ((i == 1) ? key.active : key.passive);
1343 if (!k)
1344 continue;
1345 aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1346 if (!aead)
1347 continue;
1348 if (aead->mode != CLUSTER_KEY ||
1349 aead == skb_cb->tx_clone_ctx.last) {
1350 aead = NULL;
1351 continue;
1352 }
1353 /* Ok, found one cluster key */
1354 skb_cb->tx_clone_ctx.last = aead;
1355 WARN_ON(skb->next);
1356 skb->next = skb_clone(skb, GFP_ATOMIC);
1357 if (unlikely(!skb->next))
1358 pr_warn("Failed to clone skb for next round if any\n");
1359 break;
1360 } while (++i < 3);
1361
1362 done:
1363 if (likely(aead))
1364 WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1365 spin_unlock(&tx->lock);
1366
1367 return aead;
1368 }
1369
1370 /**
1371 * tipc_crypto_key_synch: Synch own key data according to peer key status
1372 * @rx: RX crypto handle
1373 * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1374 *
1375 * This function updates the peer node related data as the peer RX active key
1376 * has changed, so the number of TX keys' users on this node are increased and
1377 * decreased correspondingly.
1378 *
1379 * It also considers if peer has no key, then we need to make own master key
1380 * (if any) taking over i.e. starting grace period and also trigger key
1381 * distributing process.
1382 *
1383 * The "per-peer" sndnxt is also reset when the peer key has switched.
1384 */
tipc_crypto_key_synch(struct tipc_crypto * rx,struct sk_buff * skb)1385 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1386 {
1387 struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1388 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1389 struct tipc_msg *hdr = buf_msg(skb);
1390 u32 self = tipc_own_addr(rx->net);
1391 u8 cur, new;
1392 unsigned long delay;
1393
1394 /* Update RX 'key_master' flag according to peer, also mark "legacy" if
1395 * a peer has no master key.
1396 */
1397 rx->key_master = ehdr->master_key;
1398 if (!rx->key_master)
1399 tx->legacy_user = 1;
1400
1401 /* For later cases, apply only if message is destined to this node */
1402 if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1403 return;
1404
1405 /* Case 1: Peer has no keys, let's make master key take over */
1406 if (ehdr->rx_nokey) {
1407 /* Set or extend grace period */
1408 tx->timer2 = jiffies;
1409 /* Schedule key distributing for the peer if not yet */
1410 if (tx->key.keys &&
1411 !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1412 get_random_bytes(&delay, 2);
1413 delay %= 5;
1414 delay = msecs_to_jiffies(500 * ++delay);
1415 if (queue_delayed_work(tx->wq, &rx->work, delay))
1416 tipc_node_get(rx->node);
1417 }
1418 } else {
1419 /* Cancel a pending key distributing if any */
1420 atomic_xchg(&rx->key_distr, 0);
1421 }
1422
1423 /* Case 2: Peer RX active key has changed, let's update own TX users */
1424 cur = atomic_read(&rx->peer_rx_active);
1425 new = ehdr->rx_key_active;
1426 if (tx->key.keys &&
1427 cur != new &&
1428 atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1429 if (new)
1430 tipc_aead_users_inc(tx->aead[new], INT_MAX);
1431 if (cur)
1432 tipc_aead_users_dec(tx->aead[cur], 0);
1433
1434 atomic64_set(&rx->sndnxt, 0);
1435 /* Mark the point TX key users changed */
1436 tx->timer1 = jiffies;
1437
1438 pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1439 tx->name, cur, new, rx->name);
1440 }
1441 }
1442
tipc_crypto_key_revoke(struct net * net,u8 tx_key)1443 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1444 {
1445 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1446 struct tipc_key key;
1447
1448 spin_lock(&tx->lock);
1449 key = tx->key;
1450 WARN_ON(!key.active || tx_key != key.active);
1451
1452 /* Free the active key */
1453 tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1454 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1455 spin_unlock(&tx->lock);
1456
1457 pr_warn("%s: key is revoked\n", tx->name);
1458 return -EKEYREVOKED;
1459 }
1460
tipc_crypto_start(struct tipc_crypto ** crypto,struct net * net,struct tipc_node * node)1461 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1462 struct tipc_node *node)
1463 {
1464 struct tipc_crypto *c;
1465
1466 if (*crypto)
1467 return -EEXIST;
1468
1469 /* Allocate crypto */
1470 c = kzalloc(sizeof(*c), GFP_ATOMIC);
1471 if (!c)
1472 return -ENOMEM;
1473
1474 /* Allocate workqueue on TX */
1475 if (!node) {
1476 c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1477 if (!c->wq) {
1478 kfree(c);
1479 return -ENOMEM;
1480 }
1481 }
1482
1483 /* Allocate statistic structure */
1484 c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1485 if (!c->stats) {
1486 if (c->wq)
1487 destroy_workqueue(c->wq);
1488 kfree_sensitive(c);
1489 return -ENOMEM;
1490 }
1491
1492 c->flags = 0;
1493 c->net = net;
1494 c->node = node;
1495 get_random_bytes(&c->key_gen, 2);
1496 tipc_crypto_key_set_state(c, 0, 0, 0);
1497 atomic_set(&c->key_distr, 0);
1498 atomic_set(&c->peer_rx_active, 0);
1499 atomic64_set(&c->sndnxt, 0);
1500 c->timer1 = jiffies;
1501 c->timer2 = jiffies;
1502 c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1503 spin_lock_init(&c->lock);
1504 scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1505 (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1506 tipc_own_id_string(c->net));
1507
1508 if (is_rx(c))
1509 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1510 else
1511 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1512
1513 *crypto = c;
1514 return 0;
1515 }
1516
tipc_crypto_stop(struct tipc_crypto ** crypto)1517 void tipc_crypto_stop(struct tipc_crypto **crypto)
1518 {
1519 struct tipc_crypto *c = *crypto;
1520 u8 k;
1521
1522 if (!c)
1523 return;
1524
1525 /* Flush any queued works & destroy wq */
1526 if (is_tx(c)) {
1527 c->rekeying_intv = 0;
1528 cancel_delayed_work_sync(&c->work);
1529 destroy_workqueue(c->wq);
1530 }
1531
1532 /* Release AEAD keys */
1533 rcu_read_lock();
1534 for (k = KEY_MIN; k <= KEY_MAX; k++)
1535 tipc_aead_put(rcu_dereference(c->aead[k]));
1536 rcu_read_unlock();
1537 pr_debug("%s: has been stopped\n", c->name);
1538
1539 /* Free this crypto statistics */
1540 free_percpu(c->stats);
1541
1542 *crypto = NULL;
1543 kfree_sensitive(c);
1544 }
1545
tipc_crypto_timeout(struct tipc_crypto * rx)1546 void tipc_crypto_timeout(struct tipc_crypto *rx)
1547 {
1548 struct tipc_net *tn = tipc_net(rx->net);
1549 struct tipc_crypto *tx = tn->crypto_tx;
1550 struct tipc_key key;
1551 int cmd;
1552
1553 /* TX pending: taking all users & stable -> active */
1554 spin_lock(&tx->lock);
1555 key = tx->key;
1556 if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1557 goto s1;
1558 if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1559 goto s1;
1560 if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1561 goto s1;
1562
1563 tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1564 if (key.active)
1565 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1566 this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1567 pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1568
1569 s1:
1570 spin_unlock(&tx->lock);
1571
1572 /* RX pending: having user -> active */
1573 spin_lock(&rx->lock);
1574 key = rx->key;
1575 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1576 goto s2;
1577
1578 if (key.active)
1579 key.passive = key.active;
1580 key.active = key.pending;
1581 rx->timer2 = jiffies;
1582 tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1583 this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1584 pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1585 goto s5;
1586
1587 s2:
1588 /* RX pending: not working -> remove */
1589 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1590 goto s3;
1591
1592 tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1593 tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1594 pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1595 goto s5;
1596
1597 s3:
1598 /* RX active: timed out or no user -> pending */
1599 if (!key.active)
1600 goto s4;
1601 if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1602 tipc_aead_users(rx->aead[key.active]) > 0)
1603 goto s4;
1604
1605 if (key.pending)
1606 key.passive = key.active;
1607 else
1608 key.pending = key.active;
1609 rx->timer2 = jiffies;
1610 tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1611 tipc_aead_users_set(rx->aead[key.pending], 0);
1612 pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1613 goto s5;
1614
1615 s4:
1616 /* RX passive: outdated or not working -> free */
1617 if (!key.passive)
1618 goto s5;
1619 if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1620 tipc_aead_users(rx->aead[key.passive]) > -10)
1621 goto s5;
1622
1623 tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1624 tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1625 pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1626
1627 s5:
1628 spin_unlock(&rx->lock);
1629
1630 /* Relax it here, the flag will be set again if it really is, but only
1631 * when we are not in grace period for safety!
1632 */
1633 if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1634 tx->legacy_user = 0;
1635
1636 /* Limit max_tfms & do debug commands if needed */
1637 if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1638 return;
1639
1640 cmd = sysctl_tipc_max_tfms;
1641 sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1642 tipc_crypto_do_cmd(rx->net, cmd);
1643 }
1644
tipc_crypto_clone_msg(struct net * net,struct sk_buff * _skb,struct tipc_bearer * b,struct tipc_media_addr * dst,struct tipc_node * __dnode,u8 type)1645 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1646 struct tipc_bearer *b,
1647 struct tipc_media_addr *dst,
1648 struct tipc_node *__dnode, u8 type)
1649 {
1650 struct sk_buff *skb;
1651
1652 skb = skb_clone(_skb, GFP_ATOMIC);
1653 if (skb) {
1654 TIPC_SKB_CB(skb)->xmit_type = type;
1655 tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1656 if (skb)
1657 b->media->send_msg(net, skb, b, dst);
1658 }
1659 }
1660
1661 /**
1662 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1663 * @net: struct net
1664 * @skb: input/output message skb pointer
1665 * @b: bearer used for xmit later
1666 * @dst: destination media address
1667 * @__dnode: destination node for reference if any
1668 *
1669 * First, build an encryption message header on the top of the message, then
1670 * encrypt the original TIPC message by using the pending, master or active
1671 * key with this preference order.
1672 * If the encryption is successful, the encrypted skb is returned directly or
1673 * via the callback.
1674 * Otherwise, the skb is freed!
1675 *
1676 * Return:
1677 * 0 : the encryption has succeeded (or no encryption)
1678 * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1679 * -ENOKEK : the encryption has failed due to no key
1680 * -EKEYREVOKED : the encryption has failed due to key revoked
1681 * -ENOMEM : the encryption has failed due to no memory
1682 * < 0 : the encryption has failed due to other reasons
1683 */
tipc_crypto_xmit(struct net * net,struct sk_buff ** skb,struct tipc_bearer * b,struct tipc_media_addr * dst,struct tipc_node * __dnode)1684 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1685 struct tipc_bearer *b, struct tipc_media_addr *dst,
1686 struct tipc_node *__dnode)
1687 {
1688 struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1689 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1690 struct tipc_crypto_stats __percpu *stats = tx->stats;
1691 struct tipc_msg *hdr = buf_msg(*skb);
1692 struct tipc_key key = tx->key;
1693 struct tipc_aead *aead = NULL;
1694 u32 user = msg_user(hdr);
1695 u32 type = msg_type(hdr);
1696 int rc = -ENOKEY;
1697 u8 tx_key = 0;
1698
1699 /* No encryption? */
1700 if (!tx->working)
1701 return 0;
1702
1703 /* Pending key if peer has active on it or probing time */
1704 if (unlikely(key.pending)) {
1705 tx_key = key.pending;
1706 if (!tx->key_master && !key.active)
1707 goto encrypt;
1708 if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1709 goto encrypt;
1710 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1711 pr_debug("%s: probing for key[%d]\n", tx->name,
1712 key.pending);
1713 goto encrypt;
1714 }
1715 if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1716 tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1717 SKB_PROBING);
1718 }
1719
1720 /* Master key if this is a *vital* message or in grace period */
1721 if (tx->key_master) {
1722 tx_key = KEY_MASTER;
1723 if (!key.active)
1724 goto encrypt;
1725 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1726 pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1727 user, type);
1728 goto encrypt;
1729 }
1730 if (user == LINK_CONFIG ||
1731 (user == LINK_PROTOCOL && type == RESET_MSG) ||
1732 (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1733 time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1734 if (__rx && __rx->key_master &&
1735 !atomic_read(&__rx->peer_rx_active))
1736 goto encrypt;
1737 if (!__rx) {
1738 if (likely(!tx->legacy_user))
1739 goto encrypt;
1740 tipc_crypto_clone_msg(net, *skb, b, dst,
1741 __dnode, SKB_GRACING);
1742 }
1743 }
1744 }
1745
1746 /* Else, use the active key if any */
1747 if (likely(key.active)) {
1748 tx_key = key.active;
1749 goto encrypt;
1750 }
1751
1752 goto exit;
1753
1754 encrypt:
1755 aead = tipc_aead_get(tx->aead[tx_key]);
1756 if (unlikely(!aead))
1757 goto exit;
1758 rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1759 if (likely(rc > 0))
1760 rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1761
1762 exit:
1763 switch (rc) {
1764 case 0:
1765 this_cpu_inc(stats->stat[STAT_OK]);
1766 break;
1767 case -EINPROGRESS:
1768 case -EBUSY:
1769 this_cpu_inc(stats->stat[STAT_ASYNC]);
1770 *skb = NULL;
1771 return rc;
1772 default:
1773 this_cpu_inc(stats->stat[STAT_NOK]);
1774 if (rc == -ENOKEY)
1775 this_cpu_inc(stats->stat[STAT_NOKEYS]);
1776 else if (rc == -EKEYREVOKED)
1777 this_cpu_inc(stats->stat[STAT_BADKEYS]);
1778 kfree_skb(*skb);
1779 *skb = NULL;
1780 break;
1781 }
1782
1783 tipc_aead_put(aead);
1784 return rc;
1785 }
1786
1787 /**
1788 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1789 * @net: struct net
1790 * @rx: RX crypto handle
1791 * @skb: input/output message skb pointer
1792 * @b: bearer where the message has been received
1793 *
1794 * If the decryption is successful, the decrypted skb is returned directly or
1795 * as the callback, the encryption header and auth tag will be trimed out
1796 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1797 * Otherwise, the skb will be freed!
1798 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1799 * cluster key(s) can be taken for decryption (- recursive).
1800 *
1801 * Return:
1802 * 0 : the decryption has successfully completed
1803 * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1804 * -ENOKEY : the decryption has failed due to no key
1805 * -EBADMSG : the decryption has failed due to bad message
1806 * -ENOMEM : the decryption has failed due to no memory
1807 * < 0 : the decryption has failed due to other reasons
1808 */
tipc_crypto_rcv(struct net * net,struct tipc_crypto * rx,struct sk_buff ** skb,struct tipc_bearer * b)1809 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1810 struct sk_buff **skb, struct tipc_bearer *b)
1811 {
1812 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1813 struct tipc_crypto_stats __percpu *stats;
1814 struct tipc_aead *aead = NULL;
1815 struct tipc_key key;
1816 int rc = -ENOKEY;
1817 u8 tx_key, n;
1818
1819 tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1820
1821 /* New peer?
1822 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1823 */
1824 if (unlikely(!rx || tx_key == KEY_MASTER))
1825 goto pick_tx;
1826
1827 /* Pick RX key according to TX key if any */
1828 key = rx->key;
1829 if (tx_key == key.active || tx_key == key.pending ||
1830 tx_key == key.passive)
1831 goto decrypt;
1832
1833 /* Unknown key, let's try to align RX key(s) */
1834 if (tipc_crypto_key_try_align(rx, tx_key))
1835 goto decrypt;
1836
1837 pick_tx:
1838 /* No key suitable? Try to pick one from TX... */
1839 aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1840 if (aead)
1841 goto decrypt;
1842 goto exit;
1843
1844 decrypt:
1845 rcu_read_lock();
1846 if (!aead)
1847 aead = tipc_aead_get(rx->aead[tx_key]);
1848 rc = tipc_aead_decrypt(net, aead, *skb, b);
1849 rcu_read_unlock();
1850
1851 exit:
1852 stats = ((rx) ?: tx)->stats;
1853 switch (rc) {
1854 case 0:
1855 this_cpu_inc(stats->stat[STAT_OK]);
1856 break;
1857 case -EINPROGRESS:
1858 case -EBUSY:
1859 this_cpu_inc(stats->stat[STAT_ASYNC]);
1860 *skb = NULL;
1861 return rc;
1862 default:
1863 this_cpu_inc(stats->stat[STAT_NOK]);
1864 if (rc == -ENOKEY) {
1865 kfree_skb(*skb);
1866 *skb = NULL;
1867 if (rx) {
1868 /* Mark rx->nokey only if we dont have a
1869 * pending received session key, nor a newer
1870 * one i.e. in the next slot.
1871 */
1872 n = key_next(tx_key);
1873 rx->nokey = !(rx->skey ||
1874 rcu_access_pointer(rx->aead[n]));
1875 pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1876 rx->name, rx->nokey,
1877 tx_key, rx->key.keys);
1878 tipc_node_put(rx->node);
1879 }
1880 this_cpu_inc(stats->stat[STAT_NOKEYS]);
1881 return rc;
1882 } else if (rc == -EBADMSG) {
1883 this_cpu_inc(stats->stat[STAT_BADMSGS]);
1884 }
1885 break;
1886 }
1887
1888 tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1889 return rc;
1890 }
1891
tipc_crypto_rcv_complete(struct net * net,struct tipc_aead * aead,struct tipc_bearer * b,struct sk_buff ** skb,int err)1892 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1893 struct tipc_bearer *b,
1894 struct sk_buff **skb, int err)
1895 {
1896 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1897 struct tipc_crypto *rx = aead->crypto;
1898 struct tipc_aead *tmp = NULL;
1899 struct tipc_ehdr *ehdr;
1900 struct tipc_node *n;
1901
1902 /* Is this completed by TX? */
1903 if (unlikely(is_tx(aead->crypto))) {
1904 rx = skb_cb->tx_clone_ctx.rx;
1905 pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1906 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1907 (*skb)->next, skb_cb->flags);
1908 pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1909 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1910 aead->crypto->aead[1], aead->crypto->aead[2],
1911 aead->crypto->aead[3]);
1912 if (unlikely(err)) {
1913 if (err == -EBADMSG && (*skb)->next)
1914 tipc_rcv(net, (*skb)->next, b);
1915 goto free_skb;
1916 }
1917
1918 if (likely((*skb)->next)) {
1919 kfree_skb((*skb)->next);
1920 (*skb)->next = NULL;
1921 }
1922 ehdr = (struct tipc_ehdr *)(*skb)->data;
1923 if (!rx) {
1924 WARN_ON(ehdr->user != LINK_CONFIG);
1925 n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1926 true);
1927 rx = tipc_node_crypto_rx(n);
1928 if (unlikely(!rx))
1929 goto free_skb;
1930 }
1931
1932 /* Ignore cloning if it was TX master key */
1933 if (ehdr->tx_key == KEY_MASTER)
1934 goto rcv;
1935 if (tipc_aead_clone(&tmp, aead) < 0)
1936 goto rcv;
1937 WARN_ON(!refcount_inc_not_zero(&tmp->refcnt));
1938 if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1939 tipc_aead_free(&tmp->rcu);
1940 goto rcv;
1941 }
1942 tipc_aead_put(aead);
1943 aead = tmp;
1944 }
1945
1946 if (unlikely(err)) {
1947 tipc_aead_users_dec(aead, INT_MIN);
1948 goto free_skb;
1949 }
1950
1951 /* Set the RX key's user */
1952 tipc_aead_users_set(aead, 1);
1953
1954 /* Mark this point, RX works */
1955 rx->timer1 = jiffies;
1956
1957 rcv:
1958 /* Remove ehdr & auth. tag prior to tipc_rcv() */
1959 ehdr = (struct tipc_ehdr *)(*skb)->data;
1960
1961 /* Mark this point, RX passive still works */
1962 if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1963 rx->timer2 = jiffies;
1964
1965 skb_reset_network_header(*skb);
1966 skb_pull(*skb, tipc_ehdr_size(ehdr));
1967 pskb_trim(*skb, (*skb)->len - aead->authsize);
1968
1969 /* Validate TIPCv2 message */
1970 if (unlikely(!tipc_msg_validate(skb))) {
1971 pr_err_ratelimited("Packet dropped after decryption!\n");
1972 goto free_skb;
1973 }
1974
1975 /* Ok, everything's fine, try to synch own keys according to peers' */
1976 tipc_crypto_key_synch(rx, *skb);
1977
1978 /* Mark skb decrypted */
1979 skb_cb->decrypted = 1;
1980
1981 /* Clear clone cxt if any */
1982 if (likely(!skb_cb->tx_clone_deferred))
1983 goto exit;
1984 skb_cb->tx_clone_deferred = 0;
1985 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1986 goto exit;
1987
1988 free_skb:
1989 kfree_skb(*skb);
1990 *skb = NULL;
1991
1992 exit:
1993 tipc_aead_put(aead);
1994 if (rx)
1995 tipc_node_put(rx->node);
1996 }
1997
tipc_crypto_do_cmd(struct net * net,int cmd)1998 static void tipc_crypto_do_cmd(struct net *net, int cmd)
1999 {
2000 struct tipc_net *tn = tipc_net(net);
2001 struct tipc_crypto *tx = tn->crypto_tx, *rx;
2002 struct list_head *p;
2003 unsigned int stat;
2004 int i, j, cpu;
2005 char buf[200];
2006
2007 /* Currently only one command is supported */
2008 switch (cmd) {
2009 case 0xfff1:
2010 goto print_stats;
2011 default:
2012 return;
2013 }
2014
2015 print_stats:
2016 /* Print a header */
2017 pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2018
2019 /* Print key status */
2020 pr_info("Key status:\n");
2021 pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2022 tipc_crypto_key_dump(tx, buf));
2023
2024 rcu_read_lock();
2025 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2026 rx = tipc_node_crypto_rx_by_list(p);
2027 pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2028 tipc_crypto_key_dump(rx, buf));
2029 }
2030 rcu_read_unlock();
2031
2032 /* Print crypto statistics */
2033 for (i = 0, j = 0; i < MAX_STATS; i++)
2034 j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2035 pr_info("Counter %s", buf);
2036
2037 memset(buf, '-', 115);
2038 buf[115] = '\0';
2039 pr_info("%s\n", buf);
2040
2041 j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2042 for_each_possible_cpu(cpu) {
2043 for (i = 0; i < MAX_STATS; i++) {
2044 stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2045 j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2046 }
2047 pr_info("%s", buf);
2048 j = scnprintf(buf, 200, "%12s", " ");
2049 }
2050
2051 rcu_read_lock();
2052 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2053 rx = tipc_node_crypto_rx_by_list(p);
2054 j = scnprintf(buf, 200, "RX(%7.7s) ",
2055 tipc_node_get_id_str(rx->node));
2056 for_each_possible_cpu(cpu) {
2057 for (i = 0; i < MAX_STATS; i++) {
2058 stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2059 j += scnprintf(buf + j, 200 - j, "|%11d ",
2060 stat);
2061 }
2062 pr_info("%s", buf);
2063 j = scnprintf(buf, 200, "%12s", " ");
2064 }
2065 }
2066 rcu_read_unlock();
2067
2068 pr_info("\n======================== Done ========================\n");
2069 }
2070
tipc_crypto_key_dump(struct tipc_crypto * c,char * buf)2071 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2072 {
2073 struct tipc_key key = c->key;
2074 struct tipc_aead *aead;
2075 int k, i = 0;
2076 char *s;
2077
2078 for (k = KEY_MIN; k <= KEY_MAX; k++) {
2079 if (k == KEY_MASTER) {
2080 if (is_rx(c))
2081 continue;
2082 if (time_before(jiffies,
2083 c->timer2 + TIPC_TX_GRACE_PERIOD))
2084 s = "ACT";
2085 else
2086 s = "PAS";
2087 } else {
2088 if (k == key.passive)
2089 s = "PAS";
2090 else if (k == key.active)
2091 s = "ACT";
2092 else if (k == key.pending)
2093 s = "PEN";
2094 else
2095 s = "-";
2096 }
2097 i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2098
2099 rcu_read_lock();
2100 aead = rcu_dereference(c->aead[k]);
2101 if (aead)
2102 i += scnprintf(buf + i, 200 - i,
2103 "{\"0x...%s\", \"%s\"}/%d:%d",
2104 aead->hint,
2105 (aead->mode == CLUSTER_KEY) ? "c" : "p",
2106 atomic_read(&aead->users),
2107 refcount_read(&aead->refcnt));
2108 rcu_read_unlock();
2109 i += scnprintf(buf + i, 200 - i, "\n");
2110 }
2111
2112 if (is_rx(c))
2113 i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2114 atomic_read(&c->peer_rx_active));
2115
2116 return buf;
2117 }
2118
tipc_key_change_dump(struct tipc_key old,struct tipc_key new,char * buf)2119 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2120 char *buf)
2121 {
2122 struct tipc_key *key = &old;
2123 int k, i = 0;
2124 char *s;
2125
2126 /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2127 again:
2128 i += scnprintf(buf + i, 32 - i, "[");
2129 for (k = KEY_1; k <= KEY_3; k++) {
2130 if (k == key->passive)
2131 s = "pas";
2132 else if (k == key->active)
2133 s = "act";
2134 else if (k == key->pending)
2135 s = "pen";
2136 else
2137 s = "-";
2138 i += scnprintf(buf + i, 32 - i,
2139 (k != KEY_3) ? "%s " : "%s", s);
2140 }
2141 if (key != &new) {
2142 i += scnprintf(buf + i, 32 - i, "] -> ");
2143 key = &new;
2144 goto again;
2145 }
2146 i += scnprintf(buf + i, 32 - i, "]");
2147 return buf;
2148 }
2149
2150 /**
2151 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2152 * @net: the struct net
2153 * @skb: the receiving message buffer
2154 */
tipc_crypto_msg_rcv(struct net * net,struct sk_buff * skb)2155 void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2156 {
2157 struct tipc_crypto *rx;
2158 struct tipc_msg *hdr;
2159
2160 if (unlikely(skb_linearize(skb)))
2161 goto exit;
2162
2163 hdr = buf_msg(skb);
2164 rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2165 if (unlikely(!rx))
2166 goto exit;
2167
2168 switch (msg_type(hdr)) {
2169 case KEY_DISTR_MSG:
2170 if (tipc_crypto_key_rcv(rx, hdr))
2171 goto exit;
2172 break;
2173 default:
2174 break;
2175 }
2176
2177 tipc_node_put(rx->node);
2178
2179 exit:
2180 kfree_skb(skb);
2181 }
2182
2183 /**
2184 * tipc_crypto_key_distr - Distribute a TX key
2185 * @tx: the TX crypto
2186 * @key: the key's index
2187 * @dest: the destination tipc node, = NULL if distributing to all nodes
2188 *
2189 * Return: 0 in case of success, otherwise < 0
2190 */
tipc_crypto_key_distr(struct tipc_crypto * tx,u8 key,struct tipc_node * dest)2191 int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2192 struct tipc_node *dest)
2193 {
2194 struct tipc_aead *aead;
2195 u32 dnode = tipc_node_get_addr(dest);
2196 int rc = -ENOKEY;
2197
2198 if (!sysctl_tipc_key_exchange_enabled)
2199 return 0;
2200
2201 if (key) {
2202 rcu_read_lock();
2203 aead = tipc_aead_get(tx->aead[key]);
2204 if (likely(aead)) {
2205 rc = tipc_crypto_key_xmit(tx->net, aead->key,
2206 aead->gen, aead->mode,
2207 dnode);
2208 tipc_aead_put(aead);
2209 }
2210 rcu_read_unlock();
2211 }
2212
2213 return rc;
2214 }
2215
2216 /**
2217 * tipc_crypto_key_xmit - Send a session key
2218 * @net: the struct net
2219 * @skey: the session key to be sent
2220 * @gen: the key's generation
2221 * @mode: the key's mode
2222 * @dnode: the destination node address, = 0 if broadcasting to all nodes
2223 *
2224 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2225 * as its data section, then xmit-ed through the uc/bc link.
2226 *
2227 * Return: 0 in case of success, otherwise < 0
2228 */
tipc_crypto_key_xmit(struct net * net,struct tipc_aead_key * skey,u16 gen,u8 mode,u32 dnode)2229 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2230 u16 gen, u8 mode, u32 dnode)
2231 {
2232 struct sk_buff_head pkts;
2233 struct tipc_msg *hdr;
2234 struct sk_buff *skb;
2235 u16 size, cong_link_cnt;
2236 u8 *data;
2237 int rc;
2238
2239 size = tipc_aead_key_size(skey);
2240 skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2241 if (!skb)
2242 return -ENOMEM;
2243
2244 hdr = buf_msg(skb);
2245 tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2246 INT_H_SIZE, dnode);
2247 msg_set_size(hdr, INT_H_SIZE + size);
2248 msg_set_key_gen(hdr, gen);
2249 msg_set_key_mode(hdr, mode);
2250
2251 data = msg_data(hdr);
2252 *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2253 memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2254 memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2255 skey->keylen);
2256
2257 __skb_queue_head_init(&pkts);
2258 __skb_queue_tail(&pkts, skb);
2259 if (dnode)
2260 rc = tipc_node_xmit(net, &pkts, dnode, 0);
2261 else
2262 rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2263
2264 return rc;
2265 }
2266
2267 /**
2268 * tipc_crypto_key_rcv - Receive a session key
2269 * @rx: the RX crypto
2270 * @hdr: the TIPC v2 message incl. the receiving session key in its data
2271 *
2272 * This function retrieves the session key in the message from peer, then
2273 * schedules a RX work to attach the key to the corresponding RX crypto.
2274 *
2275 * Return: "true" if the key has been scheduled for attaching, otherwise
2276 * "false".
2277 */
tipc_crypto_key_rcv(struct tipc_crypto * rx,struct tipc_msg * hdr)2278 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2279 {
2280 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2281 struct tipc_aead_key *skey = NULL;
2282 u16 key_gen = msg_key_gen(hdr);
2283 u16 size = msg_data_sz(hdr);
2284 u8 *data = msg_data(hdr);
2285 unsigned int keylen;
2286
2287 /* Verify whether the size can exist in the packet */
2288 if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) {
2289 pr_debug("%s: message data size is too small\n", rx->name);
2290 goto exit;
2291 }
2292
2293 keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2294
2295 /* Verify the supplied size values */
2296 if (unlikely(size != keylen + sizeof(struct tipc_aead_key) ||
2297 keylen > TIPC_AEAD_KEY_SIZE_MAX)) {
2298 pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name);
2299 goto exit;
2300 }
2301
2302 spin_lock(&rx->lock);
2303 if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2304 pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2305 rx->skey, key_gen, rx->key_gen);
2306 goto exit_unlock;
2307 }
2308
2309 /* Allocate memory for the key */
2310 skey = kmalloc(size, GFP_ATOMIC);
2311 if (unlikely(!skey)) {
2312 pr_err("%s: unable to allocate memory for skey\n", rx->name);
2313 goto exit_unlock;
2314 }
2315
2316 /* Copy key from msg data */
2317 skey->keylen = keylen;
2318 memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2319 memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2320 skey->keylen);
2321
2322 rx->key_gen = key_gen;
2323 rx->skey_mode = msg_key_mode(hdr);
2324 rx->skey = skey;
2325 rx->nokey = 0;
2326 mb(); /* for nokey flag */
2327
2328 exit_unlock:
2329 spin_unlock(&rx->lock);
2330
2331 exit:
2332 /* Schedule the key attaching on this crypto */
2333 if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2334 return true;
2335
2336 return false;
2337 }
2338
2339 /**
2340 * tipc_crypto_work_rx - Scheduled RX works handler
2341 * @work: the struct RX work
2342 *
2343 * The function processes the previous scheduled works i.e. distributing TX key
2344 * or attaching a received session key on RX crypto.
2345 */
tipc_crypto_work_rx(struct work_struct * work)2346 static void tipc_crypto_work_rx(struct work_struct *work)
2347 {
2348 struct delayed_work *dwork = to_delayed_work(work);
2349 struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2350 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2351 unsigned long delay = msecs_to_jiffies(5000);
2352 bool resched = false;
2353 u8 key;
2354 int rc;
2355
2356 /* Case 1: Distribute TX key to peer if scheduled */
2357 if (atomic_cmpxchg(&rx->key_distr,
2358 KEY_DISTR_SCHED,
2359 KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2360 /* Always pick the newest one for distributing */
2361 key = tx->key.pending ?: tx->key.active;
2362 rc = tipc_crypto_key_distr(tx, key, rx->node);
2363 if (unlikely(rc))
2364 pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2365 tx->name, key, tipc_node_get_id_str(rx->node),
2366 rc);
2367
2368 /* Sched for key_distr releasing */
2369 resched = true;
2370 } else {
2371 atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2372 }
2373
2374 /* Case 2: Attach a pending received session key from peer if any */
2375 if (rx->skey) {
2376 rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2377 if (unlikely(rc < 0))
2378 pr_warn("%s: unable to attach received skey, err %d\n",
2379 rx->name, rc);
2380 switch (rc) {
2381 case -EBUSY:
2382 case -ENOMEM:
2383 /* Resched the key attaching */
2384 resched = true;
2385 break;
2386 default:
2387 synchronize_rcu();
2388 kfree(rx->skey);
2389 rx->skey = NULL;
2390 break;
2391 }
2392 }
2393
2394 if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2395 return;
2396
2397 tipc_node_put(rx->node);
2398 }
2399
2400 /**
2401 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2402 * @tx: TX crypto
2403 * @changed: if the rekeying needs to be rescheduled with new interval
2404 * @new_intv: new rekeying interval (when "changed" = true)
2405 */
tipc_crypto_rekeying_sched(struct tipc_crypto * tx,bool changed,u32 new_intv)2406 void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2407 u32 new_intv)
2408 {
2409 unsigned long delay;
2410 bool now = false;
2411
2412 if (changed) {
2413 if (new_intv == TIPC_REKEYING_NOW)
2414 now = true;
2415 else
2416 tx->rekeying_intv = new_intv;
2417 cancel_delayed_work_sync(&tx->work);
2418 }
2419
2420 if (tx->rekeying_intv || now) {
2421 delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2422 queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2423 }
2424 }
2425
2426 /**
2427 * tipc_crypto_work_tx - Scheduled TX works handler
2428 * @work: the struct TX work
2429 *
2430 * The function processes the previous scheduled work, i.e. key rekeying, by
2431 * generating a new session key based on current one, then attaching it to the
2432 * TX crypto and finally distributing it to peers. It also re-schedules the
2433 * rekeying if needed.
2434 */
tipc_crypto_work_tx(struct work_struct * work)2435 static void tipc_crypto_work_tx(struct work_struct *work)
2436 {
2437 struct delayed_work *dwork = to_delayed_work(work);
2438 struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2439 struct tipc_aead_key *skey = NULL;
2440 struct tipc_key key = tx->key;
2441 struct tipc_aead *aead;
2442 int rc = -ENOMEM;
2443
2444 if (unlikely(key.pending))
2445 goto resched;
2446
2447 /* Take current key as a template */
2448 rcu_read_lock();
2449 aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2450 if (unlikely(!aead)) {
2451 rcu_read_unlock();
2452 /* At least one key should exist for securing */
2453 return;
2454 }
2455
2456 /* Lets duplicate it first */
2457 skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2458 rcu_read_unlock();
2459
2460 /* Now, generate new key, initiate & distribute it */
2461 if (likely(skey)) {
2462 rc = tipc_aead_key_generate(skey) ?:
2463 tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2464 if (likely(rc > 0))
2465 rc = tipc_crypto_key_distr(tx, rc, NULL);
2466 kfree_sensitive(skey);
2467 }
2468
2469 if (unlikely(rc))
2470 pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2471
2472 resched:
2473 /* Re-schedule rekeying if any */
2474 tipc_crypto_rekeying_sched(tx, false, 0);
2475 }
2476