• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32 
33 #define MAX_LSM_EVM_XATTR	2
34 
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37 
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 	[LOCKDOWN_NONE] = "none",
46 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 	[LOCKDOWN_HIBERNATION] = "hibernation",
51 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 	[LOCKDOWN_IOPORT] = "raw io port access",
53 	[LOCKDOWN_MSR] = "raw MSR access",
54 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 	[LOCKDOWN_DEBUGFS] = "debugfs access",
60 	[LOCKDOWN_XMON_WR] = "xmon write access",
61 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
63 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
64 	[LOCKDOWN_KCORE] = "/proc/kcore access",
65 	[LOCKDOWN_KPROBES] = "use of kprobes",
66 	[LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
67 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
68 	[LOCKDOWN_PERF] = "unsafe use of perf",
69 	[LOCKDOWN_TRACEFS] = "use of tracefs",
70 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
71 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
72 };
73 
74 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
75 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
76 
77 static struct kmem_cache *lsm_file_cache;
78 static struct kmem_cache *lsm_inode_cache;
79 
80 char *lsm_names;
81 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
82 
83 /* Boot-time LSM user choice */
84 static __initdata const char *chosen_lsm_order;
85 static __initdata const char *chosen_major_lsm;
86 
87 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
88 
89 /* Ordered list of LSMs to initialize. */
90 static __initdata struct lsm_info **ordered_lsms;
91 static __initdata struct lsm_info *exclusive;
92 
93 static __initdata bool debug;
94 #define init_debug(...)						\
95 	do {							\
96 		if (debug)					\
97 			pr_info(__VA_ARGS__);			\
98 	} while (0)
99 
is_enabled(struct lsm_info * lsm)100 static bool __init is_enabled(struct lsm_info *lsm)
101 {
102 	if (!lsm->enabled)
103 		return false;
104 
105 	return *lsm->enabled;
106 }
107 
108 /* Mark an LSM's enabled flag. */
109 static int lsm_enabled_true __initdata = 1;
110 static int lsm_enabled_false __initdata = 0;
set_enabled(struct lsm_info * lsm,bool enabled)111 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
112 {
113 	/*
114 	 * When an LSM hasn't configured an enable variable, we can use
115 	 * a hard-coded location for storing the default enabled state.
116 	 */
117 	if (!lsm->enabled) {
118 		if (enabled)
119 			lsm->enabled = &lsm_enabled_true;
120 		else
121 			lsm->enabled = &lsm_enabled_false;
122 	} else if (lsm->enabled == &lsm_enabled_true) {
123 		if (!enabled)
124 			lsm->enabled = &lsm_enabled_false;
125 	} else if (lsm->enabled == &lsm_enabled_false) {
126 		if (enabled)
127 			lsm->enabled = &lsm_enabled_true;
128 	} else {
129 		*lsm->enabled = enabled;
130 	}
131 }
132 
133 /* Is an LSM already listed in the ordered LSMs list? */
exists_ordered_lsm(struct lsm_info * lsm)134 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
135 {
136 	struct lsm_info **check;
137 
138 	for (check = ordered_lsms; *check; check++)
139 		if (*check == lsm)
140 			return true;
141 
142 	return false;
143 }
144 
145 /* Append an LSM to the list of ordered LSMs to initialize. */
146 static int last_lsm __initdata;
append_ordered_lsm(struct lsm_info * lsm,const char * from)147 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
148 {
149 	/* Ignore duplicate selections. */
150 	if (exists_ordered_lsm(lsm))
151 		return;
152 
153 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
154 		return;
155 
156 	/* Enable this LSM, if it is not already set. */
157 	if (!lsm->enabled)
158 		lsm->enabled = &lsm_enabled_true;
159 	ordered_lsms[last_lsm++] = lsm;
160 
161 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
162 		   is_enabled(lsm) ? "en" : "dis");
163 }
164 
165 /* Is an LSM allowed to be initialized? */
lsm_allowed(struct lsm_info * lsm)166 static bool __init lsm_allowed(struct lsm_info *lsm)
167 {
168 	/* Skip if the LSM is disabled. */
169 	if (!is_enabled(lsm))
170 		return false;
171 
172 	/* Not allowed if another exclusive LSM already initialized. */
173 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
174 		init_debug("exclusive disabled: %s\n", lsm->name);
175 		return false;
176 	}
177 
178 	return true;
179 }
180 
lsm_set_blob_size(int * need,int * lbs)181 static void __init lsm_set_blob_size(int *need, int *lbs)
182 {
183 	int offset;
184 
185 	if (*need > 0) {
186 		offset = *lbs;
187 		*lbs += *need;
188 		*need = offset;
189 	}
190 }
191 
lsm_set_blob_sizes(struct lsm_blob_sizes * needed)192 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
193 {
194 	if (!needed)
195 		return;
196 
197 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
198 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
199 	/*
200 	 * The inode blob gets an rcu_head in addition to
201 	 * what the modules might need.
202 	 */
203 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
204 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
205 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
206 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
207 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
208 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
209 }
210 
211 /* Prepare LSM for initialization. */
prepare_lsm(struct lsm_info * lsm)212 static void __init prepare_lsm(struct lsm_info *lsm)
213 {
214 	int enabled = lsm_allowed(lsm);
215 
216 	/* Record enablement (to handle any following exclusive LSMs). */
217 	set_enabled(lsm, enabled);
218 
219 	/* If enabled, do pre-initialization work. */
220 	if (enabled) {
221 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
222 			exclusive = lsm;
223 			init_debug("exclusive chosen: %s\n", lsm->name);
224 		}
225 
226 		lsm_set_blob_sizes(lsm->blobs);
227 	}
228 }
229 
230 /* Initialize a given LSM, if it is enabled. */
initialize_lsm(struct lsm_info * lsm)231 static void __init initialize_lsm(struct lsm_info *lsm)
232 {
233 	if (is_enabled(lsm)) {
234 		int ret;
235 
236 		init_debug("initializing %s\n", lsm->name);
237 		ret = lsm->init();
238 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
239 	}
240 }
241 
242 /* Populate ordered LSMs list from comma-separated LSM name list. */
ordered_lsm_parse(const char * order,const char * origin)243 static void __init ordered_lsm_parse(const char *order, const char *origin)
244 {
245 	struct lsm_info *lsm;
246 	char *sep, *name, *next;
247 
248 	/* LSM_ORDER_FIRST is always first. */
249 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
250 		if (lsm->order == LSM_ORDER_FIRST)
251 			append_ordered_lsm(lsm, "first");
252 	}
253 
254 	/* Process "security=", if given. */
255 	if (chosen_major_lsm) {
256 		struct lsm_info *major;
257 
258 		/*
259 		 * To match the original "security=" behavior, this
260 		 * explicitly does NOT fallback to another Legacy Major
261 		 * if the selected one was separately disabled: disable
262 		 * all non-matching Legacy Major LSMs.
263 		 */
264 		for (major = __start_lsm_info; major < __end_lsm_info;
265 		     major++) {
266 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
267 			    strcmp(major->name, chosen_major_lsm) != 0) {
268 				set_enabled(major, false);
269 				init_debug("security=%s disabled: %s\n",
270 					   chosen_major_lsm, major->name);
271 			}
272 		}
273 	}
274 
275 	sep = kstrdup(order, GFP_KERNEL);
276 	next = sep;
277 	/* Walk the list, looking for matching LSMs. */
278 	while ((name = strsep(&next, ",")) != NULL) {
279 		bool found = false;
280 
281 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
282 			if (lsm->order == LSM_ORDER_MUTABLE &&
283 			    strcmp(lsm->name, name) == 0) {
284 				append_ordered_lsm(lsm, origin);
285 				found = true;
286 			}
287 		}
288 
289 		if (!found)
290 			init_debug("%s ignored: %s\n", origin, name);
291 	}
292 
293 	/* Process "security=", if given. */
294 	if (chosen_major_lsm) {
295 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
296 			if (exists_ordered_lsm(lsm))
297 				continue;
298 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
299 				append_ordered_lsm(lsm, "security=");
300 		}
301 	}
302 
303 	/* Disable all LSMs not in the ordered list. */
304 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
305 		if (exists_ordered_lsm(lsm))
306 			continue;
307 		set_enabled(lsm, false);
308 		init_debug("%s disabled: %s\n", origin, lsm->name);
309 	}
310 
311 	kfree(sep);
312 }
313 
314 static void __init lsm_early_cred(struct cred *cred);
315 static void __init lsm_early_task(struct task_struct *task);
316 
317 static int lsm_append(const char *new, char **result);
318 
ordered_lsm_init(void)319 static void __init ordered_lsm_init(void)
320 {
321 	struct lsm_info **lsm;
322 
323 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
324 				GFP_KERNEL);
325 
326 	if (chosen_lsm_order) {
327 		if (chosen_major_lsm) {
328 			pr_info("security= is ignored because it is superseded by lsm=\n");
329 			chosen_major_lsm = NULL;
330 		}
331 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
332 	} else
333 		ordered_lsm_parse(builtin_lsm_order, "builtin");
334 
335 	for (lsm = ordered_lsms; *lsm; lsm++)
336 		prepare_lsm(*lsm);
337 
338 	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
339 	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
340 	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
341 	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
342 	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
343 	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
344 
345 	/*
346 	 * Create any kmem_caches needed for blobs
347 	 */
348 	if (blob_sizes.lbs_file)
349 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
350 						   blob_sizes.lbs_file, 0,
351 						   SLAB_PANIC, NULL);
352 	if (blob_sizes.lbs_inode)
353 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
354 						    blob_sizes.lbs_inode, 0,
355 						    SLAB_PANIC, NULL);
356 
357 	lsm_early_cred((struct cred *) current->cred);
358 	lsm_early_task(current);
359 	for (lsm = ordered_lsms; *lsm; lsm++)
360 		initialize_lsm(*lsm);
361 
362 	kfree(ordered_lsms);
363 }
364 
early_security_init(void)365 int __init early_security_init(void)
366 {
367 	int i;
368 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
369 	struct lsm_info *lsm;
370 
371 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
372 	     i++)
373 		INIT_HLIST_HEAD(&list[i]);
374 
375 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
376 		if (!lsm->enabled)
377 			lsm->enabled = &lsm_enabled_true;
378 		prepare_lsm(lsm);
379 		initialize_lsm(lsm);
380 	}
381 
382 	return 0;
383 }
384 
385 /**
386  * security_init - initializes the security framework
387  *
388  * This should be called early in the kernel initialization sequence.
389  */
security_init(void)390 int __init security_init(void)
391 {
392 	struct lsm_info *lsm;
393 
394 	pr_info("Security Framework initializing\n");
395 
396 	/*
397 	 * Append the names of the early LSM modules now that kmalloc() is
398 	 * available
399 	 */
400 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
401 		if (lsm->enabled)
402 			lsm_append(lsm->name, &lsm_names);
403 	}
404 
405 	/* Load LSMs in specified order. */
406 	ordered_lsm_init();
407 
408 	return 0;
409 }
410 
411 /* Save user chosen LSM */
choose_major_lsm(char * str)412 static int __init choose_major_lsm(char *str)
413 {
414 	chosen_major_lsm = str;
415 	return 1;
416 }
417 __setup("security=", choose_major_lsm);
418 
419 /* Explicitly choose LSM initialization order. */
choose_lsm_order(char * str)420 static int __init choose_lsm_order(char *str)
421 {
422 	chosen_lsm_order = str;
423 	return 1;
424 }
425 __setup("lsm=", choose_lsm_order);
426 
427 /* Enable LSM order debugging. */
enable_debug(char * str)428 static int __init enable_debug(char *str)
429 {
430 	debug = true;
431 	return 1;
432 }
433 __setup("lsm.debug", enable_debug);
434 
match_last_lsm(const char * list,const char * lsm)435 static bool match_last_lsm(const char *list, const char *lsm)
436 {
437 	const char *last;
438 
439 	if (WARN_ON(!list || !lsm))
440 		return false;
441 	last = strrchr(list, ',');
442 	if (last)
443 		/* Pass the comma, strcmp() will check for '\0' */
444 		last++;
445 	else
446 		last = list;
447 	return !strcmp(last, lsm);
448 }
449 
lsm_append(const char * new,char ** result)450 static int lsm_append(const char *new, char **result)
451 {
452 	char *cp;
453 
454 	if (*result == NULL) {
455 		*result = kstrdup(new, GFP_KERNEL);
456 		if (*result == NULL)
457 			return -ENOMEM;
458 	} else {
459 		/* Check if it is the last registered name */
460 		if (match_last_lsm(*result, new))
461 			return 0;
462 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
463 		if (cp == NULL)
464 			return -ENOMEM;
465 		kfree(*result);
466 		*result = cp;
467 	}
468 	return 0;
469 }
470 
471 /**
472  * security_add_hooks - Add a modules hooks to the hook lists.
473  * @hooks: the hooks to add
474  * @count: the number of hooks to add
475  * @lsm: the name of the security module
476  *
477  * Each LSM has to register its hooks with the infrastructure.
478  */
security_add_hooks(struct security_hook_list * hooks,int count,char * lsm)479 void __init security_add_hooks(struct security_hook_list *hooks, int count,
480 				char *lsm)
481 {
482 	int i;
483 
484 	for (i = 0; i < count; i++) {
485 		hooks[i].lsm = lsm;
486 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
487 	}
488 
489 	/*
490 	 * Don't try to append during early_security_init(), we'll come back
491 	 * and fix this up afterwards.
492 	 */
493 	if (slab_is_available()) {
494 		if (lsm_append(lsm, &lsm_names) < 0)
495 			panic("%s - Cannot get early memory.\n", __func__);
496 	}
497 }
498 
call_blocking_lsm_notifier(enum lsm_event event,void * data)499 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
500 {
501 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
502 					    event, data);
503 }
504 EXPORT_SYMBOL(call_blocking_lsm_notifier);
505 
register_blocking_lsm_notifier(struct notifier_block * nb)506 int register_blocking_lsm_notifier(struct notifier_block *nb)
507 {
508 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
509 						nb);
510 }
511 EXPORT_SYMBOL(register_blocking_lsm_notifier);
512 
unregister_blocking_lsm_notifier(struct notifier_block * nb)513 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
514 {
515 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
516 						  nb);
517 }
518 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
519 
520 /**
521  * lsm_cred_alloc - allocate a composite cred blob
522  * @cred: the cred that needs a blob
523  * @gfp: allocation type
524  *
525  * Allocate the cred blob for all the modules
526  *
527  * Returns 0, or -ENOMEM if memory can't be allocated.
528  */
lsm_cred_alloc(struct cred * cred,gfp_t gfp)529 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
530 {
531 	if (blob_sizes.lbs_cred == 0) {
532 		cred->security = NULL;
533 		return 0;
534 	}
535 
536 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
537 	if (cred->security == NULL)
538 		return -ENOMEM;
539 	return 0;
540 }
541 
542 /**
543  * lsm_early_cred - during initialization allocate a composite cred blob
544  * @cred: the cred that needs a blob
545  *
546  * Allocate the cred blob for all the modules
547  */
lsm_early_cred(struct cred * cred)548 static void __init lsm_early_cred(struct cred *cred)
549 {
550 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
551 
552 	if (rc)
553 		panic("%s: Early cred alloc failed.\n", __func__);
554 }
555 
556 /**
557  * lsm_file_alloc - allocate a composite file blob
558  * @file: the file that needs a blob
559  *
560  * Allocate the file blob for all the modules
561  *
562  * Returns 0, or -ENOMEM if memory can't be allocated.
563  */
lsm_file_alloc(struct file * file)564 static int lsm_file_alloc(struct file *file)
565 {
566 	if (!lsm_file_cache) {
567 		file->f_security = NULL;
568 		return 0;
569 	}
570 
571 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
572 	if (file->f_security == NULL)
573 		return -ENOMEM;
574 	return 0;
575 }
576 
577 /**
578  * lsm_inode_alloc - allocate a composite inode blob
579  * @inode: the inode that needs a blob
580  *
581  * Allocate the inode blob for all the modules
582  *
583  * Returns 0, or -ENOMEM if memory can't be allocated.
584  */
lsm_inode_alloc(struct inode * inode)585 int lsm_inode_alloc(struct inode *inode)
586 {
587 	if (!lsm_inode_cache) {
588 		inode->i_security = NULL;
589 		return 0;
590 	}
591 
592 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
593 	if (inode->i_security == NULL)
594 		return -ENOMEM;
595 	return 0;
596 }
597 
598 /**
599  * lsm_task_alloc - allocate a composite task blob
600  * @task: the task that needs a blob
601  *
602  * Allocate the task blob for all the modules
603  *
604  * Returns 0, or -ENOMEM if memory can't be allocated.
605  */
lsm_task_alloc(struct task_struct * task)606 static int lsm_task_alloc(struct task_struct *task)
607 {
608 	if (blob_sizes.lbs_task == 0) {
609 		task->security = NULL;
610 		return 0;
611 	}
612 
613 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
614 	if (task->security == NULL)
615 		return -ENOMEM;
616 	return 0;
617 }
618 
619 /**
620  * lsm_ipc_alloc - allocate a composite ipc blob
621  * @kip: the ipc that needs a blob
622  *
623  * Allocate the ipc blob for all the modules
624  *
625  * Returns 0, or -ENOMEM if memory can't be allocated.
626  */
lsm_ipc_alloc(struct kern_ipc_perm * kip)627 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
628 {
629 	if (blob_sizes.lbs_ipc == 0) {
630 		kip->security = NULL;
631 		return 0;
632 	}
633 
634 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
635 	if (kip->security == NULL)
636 		return -ENOMEM;
637 	return 0;
638 }
639 
640 /**
641  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
642  * @mp: the msg_msg that needs a blob
643  *
644  * Allocate the ipc blob for all the modules
645  *
646  * Returns 0, or -ENOMEM if memory can't be allocated.
647  */
lsm_msg_msg_alloc(struct msg_msg * mp)648 static int lsm_msg_msg_alloc(struct msg_msg *mp)
649 {
650 	if (blob_sizes.lbs_msg_msg == 0) {
651 		mp->security = NULL;
652 		return 0;
653 	}
654 
655 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
656 	if (mp->security == NULL)
657 		return -ENOMEM;
658 	return 0;
659 }
660 
661 /**
662  * lsm_early_task - during initialization allocate a composite task blob
663  * @task: the task that needs a blob
664  *
665  * Allocate the task blob for all the modules
666  */
lsm_early_task(struct task_struct * task)667 static void __init lsm_early_task(struct task_struct *task)
668 {
669 	int rc = lsm_task_alloc(task);
670 
671 	if (rc)
672 		panic("%s: Early task alloc failed.\n", __func__);
673 }
674 
675 /*
676  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
677  * can be accessed with:
678  *
679  *	LSM_RET_DEFAULT(<hook_name>)
680  *
681  * The macros below define static constants for the default value of each
682  * LSM hook.
683  */
684 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
685 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
686 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
687 	static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
688 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
689 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
690 
691 #include <linux/lsm_hook_defs.h>
692 #undef LSM_HOOK
693 
694 /*
695  * Hook list operation macros.
696  *
697  * call_void_hook:
698  *	This is a hook that does not return a value.
699  *
700  * call_int_hook:
701  *	This is a hook that returns a value.
702  */
703 
704 #define call_void_hook(FUNC, ...)				\
705 	do {							\
706 		struct security_hook_list *P;			\
707 								\
708 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
709 			P->hook.FUNC(__VA_ARGS__);		\
710 	} while (0)
711 
712 #define call_int_hook(FUNC, IRC, ...) ({			\
713 	int RC = IRC;						\
714 	do {							\
715 		struct security_hook_list *P;			\
716 								\
717 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
718 			RC = P->hook.FUNC(__VA_ARGS__);		\
719 			if (RC != 0)				\
720 				break;				\
721 		}						\
722 	} while (0);						\
723 	RC;							\
724 })
725 
726 /* Security operations */
727 
security_binder_set_context_mgr(const struct cred * mgr)728 int security_binder_set_context_mgr(const struct cred *mgr)
729 {
730 	return call_int_hook(binder_set_context_mgr, 0, mgr);
731 }
732 
security_binder_transaction(const struct cred * from,const struct cred * to)733 int security_binder_transaction(const struct cred *from,
734 				const struct cred *to)
735 {
736 	return call_int_hook(binder_transaction, 0, from, to);
737 }
738 
security_binder_transfer_binder(const struct cred * from,const struct cred * to)739 int security_binder_transfer_binder(const struct cred *from,
740 				    const struct cred *to)
741 {
742 	return call_int_hook(binder_transfer_binder, 0, from, to);
743 }
744 
security_binder_transfer_file(const struct cred * from,const struct cred * to,struct file * file)745 int security_binder_transfer_file(const struct cred *from,
746 				  const struct cred *to, struct file *file)
747 {
748 	return call_int_hook(binder_transfer_file, 0, from, to, file);
749 }
750 
security_ptrace_access_check(struct task_struct * child,unsigned int mode)751 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
752 {
753 	return call_int_hook(ptrace_access_check, 0, child, mode);
754 }
755 
security_ptrace_traceme(struct task_struct * parent)756 int security_ptrace_traceme(struct task_struct *parent)
757 {
758 	return call_int_hook(ptrace_traceme, 0, parent);
759 }
760 
security_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)761 int security_capget(struct task_struct *target,
762 		     kernel_cap_t *effective,
763 		     kernel_cap_t *inheritable,
764 		     kernel_cap_t *permitted)
765 {
766 	return call_int_hook(capget, 0, target,
767 				effective, inheritable, permitted);
768 }
769 
security_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)770 int security_capset(struct cred *new, const struct cred *old,
771 		    const kernel_cap_t *effective,
772 		    const kernel_cap_t *inheritable,
773 		    const kernel_cap_t *permitted)
774 {
775 	return call_int_hook(capset, 0, new, old,
776 				effective, inheritable, permitted);
777 }
778 
security_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)779 int security_capable(const struct cred *cred,
780 		     struct user_namespace *ns,
781 		     int cap,
782 		     unsigned int opts)
783 {
784 	return call_int_hook(capable, 0, cred, ns, cap, opts);
785 }
786 
security_quotactl(int cmds,int type,int id,struct super_block * sb)787 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
788 {
789 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
790 }
791 
security_quota_on(struct dentry * dentry)792 int security_quota_on(struct dentry *dentry)
793 {
794 	return call_int_hook(quota_on, 0, dentry);
795 }
796 
security_syslog(int type)797 int security_syslog(int type)
798 {
799 	return call_int_hook(syslog, 0, type);
800 }
801 
security_settime64(const struct timespec64 * ts,const struct timezone * tz)802 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
803 {
804 	return call_int_hook(settime, 0, ts, tz);
805 }
806 
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)807 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
808 {
809 	struct security_hook_list *hp;
810 	int cap_sys_admin = 1;
811 	int rc;
812 
813 	/*
814 	 * The module will respond with a positive value if
815 	 * it thinks the __vm_enough_memory() call should be
816 	 * made with the cap_sys_admin set. If all of the modules
817 	 * agree that it should be set it will. If any module
818 	 * thinks it should not be set it won't.
819 	 */
820 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
821 		rc = hp->hook.vm_enough_memory(mm, pages);
822 		if (rc <= 0) {
823 			cap_sys_admin = 0;
824 			break;
825 		}
826 	}
827 	return __vm_enough_memory(mm, pages, cap_sys_admin);
828 }
829 
security_bprm_creds_for_exec(struct linux_binprm * bprm)830 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
831 {
832 	return call_int_hook(bprm_creds_for_exec, 0, bprm);
833 }
834 
security_bprm_creds_from_file(struct linux_binprm * bprm,struct file * file)835 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
836 {
837 	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
838 }
839 
security_bprm_check(struct linux_binprm * bprm)840 int security_bprm_check(struct linux_binprm *bprm)
841 {
842 	int ret;
843 
844 	ret = call_int_hook(bprm_check_security, 0, bprm);
845 	if (ret)
846 		return ret;
847 	return ima_bprm_check(bprm);
848 }
849 
security_bprm_committing_creds(struct linux_binprm * bprm)850 void security_bprm_committing_creds(struct linux_binprm *bprm)
851 {
852 	call_void_hook(bprm_committing_creds, bprm);
853 }
854 
security_bprm_committed_creds(struct linux_binprm * bprm)855 void security_bprm_committed_creds(struct linux_binprm *bprm)
856 {
857 	call_void_hook(bprm_committed_creds, bprm);
858 }
859 
security_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)860 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
861 {
862 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
863 }
864 
security_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)865 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
866 {
867 	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
868 }
869 
security_sb_alloc(struct super_block * sb)870 int security_sb_alloc(struct super_block *sb)
871 {
872 	return call_int_hook(sb_alloc_security, 0, sb);
873 }
874 
security_sb_free(struct super_block * sb)875 void security_sb_free(struct super_block *sb)
876 {
877 	call_void_hook(sb_free_security, sb);
878 }
879 
security_free_mnt_opts(void ** mnt_opts)880 void security_free_mnt_opts(void **mnt_opts)
881 {
882 	if (!*mnt_opts)
883 		return;
884 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
885 	*mnt_opts = NULL;
886 }
887 EXPORT_SYMBOL(security_free_mnt_opts);
888 
security_sb_eat_lsm_opts(char * options,void ** mnt_opts)889 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
890 {
891 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
892 }
893 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
894 
security_sb_remount(struct super_block * sb,void * mnt_opts)895 int security_sb_remount(struct super_block *sb,
896 			void *mnt_opts)
897 {
898 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
899 }
900 EXPORT_SYMBOL(security_sb_remount);
901 
security_sb_kern_mount(struct super_block * sb)902 int security_sb_kern_mount(struct super_block *sb)
903 {
904 	return call_int_hook(sb_kern_mount, 0, sb);
905 }
906 
security_sb_show_options(struct seq_file * m,struct super_block * sb)907 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
908 {
909 	return call_int_hook(sb_show_options, 0, m, sb);
910 }
911 
security_sb_statfs(struct dentry * dentry)912 int security_sb_statfs(struct dentry *dentry)
913 {
914 	return call_int_hook(sb_statfs, 0, dentry);
915 }
916 
security_sb_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)917 int security_sb_mount(const char *dev_name, const struct path *path,
918                        const char *type, unsigned long flags, void *data)
919 {
920 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
921 }
922 
security_sb_umount(struct vfsmount * mnt,int flags)923 int security_sb_umount(struct vfsmount *mnt, int flags)
924 {
925 	return call_int_hook(sb_umount, 0, mnt, flags);
926 }
927 
security_sb_pivotroot(const struct path * old_path,const struct path * new_path)928 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
929 {
930 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
931 }
932 
security_sb_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)933 int security_sb_set_mnt_opts(struct super_block *sb,
934 				void *mnt_opts,
935 				unsigned long kern_flags,
936 				unsigned long *set_kern_flags)
937 {
938 	return call_int_hook(sb_set_mnt_opts,
939 				mnt_opts ? -EOPNOTSUPP : 0, sb,
940 				mnt_opts, kern_flags, set_kern_flags);
941 }
942 EXPORT_SYMBOL(security_sb_set_mnt_opts);
943 
security_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)944 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
945 				struct super_block *newsb,
946 				unsigned long kern_flags,
947 				unsigned long *set_kern_flags)
948 {
949 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
950 				kern_flags, set_kern_flags);
951 }
952 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
953 
security_add_mnt_opt(const char * option,const char * val,int len,void ** mnt_opts)954 int security_add_mnt_opt(const char *option, const char *val, int len,
955 			 void **mnt_opts)
956 {
957 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
958 					option, val, len, mnt_opts);
959 }
960 EXPORT_SYMBOL(security_add_mnt_opt);
961 
security_move_mount(const struct path * from_path,const struct path * to_path)962 int security_move_mount(const struct path *from_path, const struct path *to_path)
963 {
964 	return call_int_hook(move_mount, 0, from_path, to_path);
965 }
966 
security_path_notify(const struct path * path,u64 mask,unsigned int obj_type)967 int security_path_notify(const struct path *path, u64 mask,
968 				unsigned int obj_type)
969 {
970 	return call_int_hook(path_notify, 0, path, mask, obj_type);
971 }
972 
security_inode_alloc(struct inode * inode)973 int security_inode_alloc(struct inode *inode)
974 {
975 	int rc = lsm_inode_alloc(inode);
976 
977 	if (unlikely(rc))
978 		return rc;
979 	rc = call_int_hook(inode_alloc_security, 0, inode);
980 	if (unlikely(rc))
981 		security_inode_free(inode);
982 	return rc;
983 }
984 
inode_free_by_rcu(struct rcu_head * head)985 static void inode_free_by_rcu(struct rcu_head *head)
986 {
987 	/*
988 	 * The rcu head is at the start of the inode blob
989 	 */
990 	kmem_cache_free(lsm_inode_cache, head);
991 }
992 
security_inode_free(struct inode * inode)993 void security_inode_free(struct inode *inode)
994 {
995 	integrity_inode_free(inode);
996 	call_void_hook(inode_free_security, inode);
997 	/*
998 	 * The inode may still be referenced in a path walk and
999 	 * a call to security_inode_permission() can be made
1000 	 * after inode_free_security() is called. Ideally, the VFS
1001 	 * wouldn't do this, but fixing that is a much harder
1002 	 * job. For now, simply free the i_security via RCU, and
1003 	 * leave the current inode->i_security pointer intact.
1004 	 * The inode will be freed after the RCU grace period too.
1005 	 */
1006 	if (inode->i_security)
1007 		call_rcu((struct rcu_head *)inode->i_security,
1008 				inode_free_by_rcu);
1009 }
1010 
security_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,void ** ctx,u32 * ctxlen)1011 int security_dentry_init_security(struct dentry *dentry, int mode,
1012 					const struct qstr *name, void **ctx,
1013 					u32 *ctxlen)
1014 {
1015 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1016 				name, ctx, ctxlen);
1017 }
1018 EXPORT_SYMBOL(security_dentry_init_security);
1019 
security_dentry_create_files_as(struct dentry * dentry,int mode,struct qstr * name,const struct cred * old,struct cred * new)1020 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1021 				    struct qstr *name,
1022 				    const struct cred *old, struct cred *new)
1023 {
1024 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1025 				name, old, new);
1026 }
1027 EXPORT_SYMBOL(security_dentry_create_files_as);
1028 
security_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const initxattrs initxattrs,void * fs_data)1029 int security_inode_init_security(struct inode *inode, struct inode *dir,
1030 				 const struct qstr *qstr,
1031 				 const initxattrs initxattrs, void *fs_data)
1032 {
1033 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1034 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1035 	int ret;
1036 
1037 	if (unlikely(IS_PRIVATE(inode)))
1038 		return 0;
1039 
1040 	if (!initxattrs)
1041 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1042 				     dir, qstr, NULL, NULL, NULL);
1043 	memset(new_xattrs, 0, sizeof(new_xattrs));
1044 	lsm_xattr = new_xattrs;
1045 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1046 						&lsm_xattr->name,
1047 						&lsm_xattr->value,
1048 						&lsm_xattr->value_len);
1049 	if (ret)
1050 		goto out;
1051 
1052 	evm_xattr = lsm_xattr + 1;
1053 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1054 	if (ret)
1055 		goto out;
1056 	ret = initxattrs(inode, new_xattrs, fs_data);
1057 out:
1058 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1059 		kfree(xattr->value);
1060 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1061 }
1062 EXPORT_SYMBOL(security_inode_init_security);
1063 
security_old_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const char ** name,void ** value,size_t * len)1064 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1065 				     const struct qstr *qstr, const char **name,
1066 				     void **value, size_t *len)
1067 {
1068 	if (unlikely(IS_PRIVATE(inode)))
1069 		return -EOPNOTSUPP;
1070 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1071 			     qstr, name, value, len);
1072 }
1073 EXPORT_SYMBOL(security_old_inode_init_security);
1074 
1075 #ifdef CONFIG_SECURITY_PATH
security_path_mknod(const struct path * dir,struct dentry * dentry,umode_t mode,unsigned int dev)1076 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1077 			unsigned int dev)
1078 {
1079 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1080 		return 0;
1081 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1082 }
1083 EXPORT_SYMBOL(security_path_mknod);
1084 
security_path_mkdir(const struct path * dir,struct dentry * dentry,umode_t mode)1085 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1086 {
1087 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1088 		return 0;
1089 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1090 }
1091 EXPORT_SYMBOL(security_path_mkdir);
1092 
security_path_rmdir(const struct path * dir,struct dentry * dentry)1093 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1094 {
1095 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1096 		return 0;
1097 	return call_int_hook(path_rmdir, 0, dir, dentry);
1098 }
1099 
security_path_unlink(const struct path * dir,struct dentry * dentry)1100 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1101 {
1102 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1103 		return 0;
1104 	return call_int_hook(path_unlink, 0, dir, dentry);
1105 }
1106 EXPORT_SYMBOL(security_path_unlink);
1107 
security_path_symlink(const struct path * dir,struct dentry * dentry,const char * old_name)1108 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1109 			  const char *old_name)
1110 {
1111 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1112 		return 0;
1113 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1114 }
1115 
security_path_link(struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry)1116 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1117 		       struct dentry *new_dentry)
1118 {
1119 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1120 		return 0;
1121 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1122 }
1123 
security_path_rename(const struct path * old_dir,struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry,unsigned int flags)1124 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1125 			 const struct path *new_dir, struct dentry *new_dentry,
1126 			 unsigned int flags)
1127 {
1128 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1129 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1130 		return 0;
1131 
1132 	if (flags & RENAME_EXCHANGE) {
1133 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1134 					old_dir, old_dentry);
1135 		if (err)
1136 			return err;
1137 	}
1138 
1139 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1140 				new_dentry);
1141 }
1142 EXPORT_SYMBOL(security_path_rename);
1143 
security_path_truncate(const struct path * path)1144 int security_path_truncate(const struct path *path)
1145 {
1146 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1147 		return 0;
1148 	return call_int_hook(path_truncate, 0, path);
1149 }
1150 
security_path_chmod(const struct path * path,umode_t mode)1151 int security_path_chmod(const struct path *path, umode_t mode)
1152 {
1153 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1154 		return 0;
1155 	return call_int_hook(path_chmod, 0, path, mode);
1156 }
1157 
security_path_chown(const struct path * path,kuid_t uid,kgid_t gid)1158 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1159 {
1160 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1161 		return 0;
1162 	return call_int_hook(path_chown, 0, path, uid, gid);
1163 }
1164 
security_path_chroot(const struct path * path)1165 int security_path_chroot(const struct path *path)
1166 {
1167 	return call_int_hook(path_chroot, 0, path);
1168 }
1169 #endif
1170 
security_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)1171 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1172 {
1173 	if (unlikely(IS_PRIVATE(dir)))
1174 		return 0;
1175 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1176 }
1177 EXPORT_SYMBOL_GPL(security_inode_create);
1178 
security_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)1179 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1180 			 struct dentry *new_dentry)
1181 {
1182 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1183 		return 0;
1184 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1185 }
1186 
security_inode_unlink(struct inode * dir,struct dentry * dentry)1187 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1188 {
1189 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1190 		return 0;
1191 	return call_int_hook(inode_unlink, 0, dir, dentry);
1192 }
1193 
security_inode_symlink(struct inode * dir,struct dentry * dentry,const char * old_name)1194 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1195 			    const char *old_name)
1196 {
1197 	if (unlikely(IS_PRIVATE(dir)))
1198 		return 0;
1199 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1200 }
1201 
security_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1202 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1203 {
1204 	if (unlikely(IS_PRIVATE(dir)))
1205 		return 0;
1206 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1207 }
1208 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1209 
security_inode_rmdir(struct inode * dir,struct dentry * dentry)1210 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1211 {
1212 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1213 		return 0;
1214 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1215 }
1216 
security_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)1217 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1218 {
1219 	if (unlikely(IS_PRIVATE(dir)))
1220 		return 0;
1221 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1222 }
1223 
security_inode_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1224 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1225 			   struct inode *new_dir, struct dentry *new_dentry,
1226 			   unsigned int flags)
1227 {
1228         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1229             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1230 		return 0;
1231 
1232 	if (flags & RENAME_EXCHANGE) {
1233 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1234 						     old_dir, old_dentry);
1235 		if (err)
1236 			return err;
1237 	}
1238 
1239 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1240 					   new_dir, new_dentry);
1241 }
1242 
security_inode_readlink(struct dentry * dentry)1243 int security_inode_readlink(struct dentry *dentry)
1244 {
1245 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1246 		return 0;
1247 	return call_int_hook(inode_readlink, 0, dentry);
1248 }
1249 
security_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)1250 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1251 			       bool rcu)
1252 {
1253 	if (unlikely(IS_PRIVATE(inode)))
1254 		return 0;
1255 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1256 }
1257 
security_inode_permission(struct inode * inode,int mask)1258 int security_inode_permission(struct inode *inode, int mask)
1259 {
1260 	if (unlikely(IS_PRIVATE(inode)))
1261 		return 0;
1262 	return call_int_hook(inode_permission, 0, inode, mask);
1263 }
1264 
security_inode_setattr(struct dentry * dentry,struct iattr * attr)1265 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1266 {
1267 	int ret;
1268 
1269 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1270 		return 0;
1271 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1272 	if (ret)
1273 		return ret;
1274 	return evm_inode_setattr(dentry, attr);
1275 }
1276 EXPORT_SYMBOL_GPL(security_inode_setattr);
1277 
security_inode_getattr(const struct path * path)1278 int security_inode_getattr(const struct path *path)
1279 {
1280 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1281 		return 0;
1282 	return call_int_hook(inode_getattr, 0, path);
1283 }
1284 
security_inode_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1285 int security_inode_setxattr(struct dentry *dentry, const char *name,
1286 			    const void *value, size_t size, int flags)
1287 {
1288 	int ret;
1289 
1290 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1291 		return 0;
1292 	/*
1293 	 * SELinux and Smack integrate the cap call,
1294 	 * so assume that all LSMs supplying this call do so.
1295 	 */
1296 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1297 				flags);
1298 
1299 	if (ret == 1)
1300 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1301 	if (ret)
1302 		return ret;
1303 	ret = ima_inode_setxattr(dentry, name, value, size);
1304 	if (ret)
1305 		return ret;
1306 	return evm_inode_setxattr(dentry, name, value, size);
1307 }
1308 
security_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1309 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1310 				  const void *value, size_t size, int flags)
1311 {
1312 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1313 		return;
1314 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1315 	evm_inode_post_setxattr(dentry, name, value, size);
1316 }
1317 
security_inode_getxattr(struct dentry * dentry,const char * name)1318 int security_inode_getxattr(struct dentry *dentry, const char *name)
1319 {
1320 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1321 		return 0;
1322 	return call_int_hook(inode_getxattr, 0, dentry, name);
1323 }
1324 
security_inode_listxattr(struct dentry * dentry)1325 int security_inode_listxattr(struct dentry *dentry)
1326 {
1327 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1328 		return 0;
1329 	return call_int_hook(inode_listxattr, 0, dentry);
1330 }
1331 
security_inode_removexattr(struct dentry * dentry,const char * name)1332 int security_inode_removexattr(struct dentry *dentry, const char *name)
1333 {
1334 	int ret;
1335 
1336 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1337 		return 0;
1338 	/*
1339 	 * SELinux and Smack integrate the cap call,
1340 	 * so assume that all LSMs supplying this call do so.
1341 	 */
1342 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1343 	if (ret == 1)
1344 		ret = cap_inode_removexattr(dentry, name);
1345 	if (ret)
1346 		return ret;
1347 	ret = ima_inode_removexattr(dentry, name);
1348 	if (ret)
1349 		return ret;
1350 	return evm_inode_removexattr(dentry, name);
1351 }
1352 
security_inode_need_killpriv(struct dentry * dentry)1353 int security_inode_need_killpriv(struct dentry *dentry)
1354 {
1355 	return call_int_hook(inode_need_killpriv, 0, dentry);
1356 }
1357 
security_inode_killpriv(struct dentry * dentry)1358 int security_inode_killpriv(struct dentry *dentry)
1359 {
1360 	return call_int_hook(inode_killpriv, 0, dentry);
1361 }
1362 
security_inode_getsecurity(struct inode * inode,const char * name,void ** buffer,bool alloc)1363 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1364 {
1365 	struct security_hook_list *hp;
1366 	int rc;
1367 
1368 	if (unlikely(IS_PRIVATE(inode)))
1369 		return LSM_RET_DEFAULT(inode_getsecurity);
1370 	/*
1371 	 * Only one module will provide an attribute with a given name.
1372 	 */
1373 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1374 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1375 		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1376 			return rc;
1377 	}
1378 	return LSM_RET_DEFAULT(inode_getsecurity);
1379 }
1380 
security_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)1381 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1382 {
1383 	struct security_hook_list *hp;
1384 	int rc;
1385 
1386 	if (unlikely(IS_PRIVATE(inode)))
1387 		return LSM_RET_DEFAULT(inode_setsecurity);
1388 	/*
1389 	 * Only one module will provide an attribute with a given name.
1390 	 */
1391 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1392 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1393 								flags);
1394 		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1395 			return rc;
1396 	}
1397 	return LSM_RET_DEFAULT(inode_setsecurity);
1398 }
1399 
security_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)1400 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1401 {
1402 	if (unlikely(IS_PRIVATE(inode)))
1403 		return 0;
1404 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1405 }
1406 EXPORT_SYMBOL(security_inode_listsecurity);
1407 
security_inode_getsecid(struct inode * inode,u32 * secid)1408 void security_inode_getsecid(struct inode *inode, u32 *secid)
1409 {
1410 	call_void_hook(inode_getsecid, inode, secid);
1411 }
1412 
security_inode_copy_up(struct dentry * src,struct cred ** new)1413 int security_inode_copy_up(struct dentry *src, struct cred **new)
1414 {
1415 	return call_int_hook(inode_copy_up, 0, src, new);
1416 }
1417 EXPORT_SYMBOL(security_inode_copy_up);
1418 
security_inode_copy_up_xattr(const char * name)1419 int security_inode_copy_up_xattr(const char *name)
1420 {
1421 	struct security_hook_list *hp;
1422 	int rc;
1423 
1424 	/*
1425 	 * The implementation can return 0 (accept the xattr), 1 (discard the
1426 	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1427 	 * any other error code incase of an error.
1428 	 */
1429 	hlist_for_each_entry(hp,
1430 		&security_hook_heads.inode_copy_up_xattr, list) {
1431 		rc = hp->hook.inode_copy_up_xattr(name);
1432 		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1433 			return rc;
1434 	}
1435 
1436 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1437 }
1438 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1439 
security_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)1440 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1441 				  struct kernfs_node *kn)
1442 {
1443 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1444 }
1445 
security_file_permission(struct file * file,int mask)1446 int security_file_permission(struct file *file, int mask)
1447 {
1448 	int ret;
1449 
1450 	ret = call_int_hook(file_permission, 0, file, mask);
1451 	if (ret)
1452 		return ret;
1453 
1454 	return fsnotify_perm(file, mask);
1455 }
1456 
security_file_alloc(struct file * file)1457 int security_file_alloc(struct file *file)
1458 {
1459 	int rc = lsm_file_alloc(file);
1460 
1461 	if (rc)
1462 		return rc;
1463 	rc = call_int_hook(file_alloc_security, 0, file);
1464 	if (unlikely(rc))
1465 		security_file_free(file);
1466 	return rc;
1467 }
1468 
security_file_free(struct file * file)1469 void security_file_free(struct file *file)
1470 {
1471 	void *blob;
1472 
1473 	call_void_hook(file_free_security, file);
1474 
1475 	blob = file->f_security;
1476 	if (blob) {
1477 		file->f_security = NULL;
1478 		kmem_cache_free(lsm_file_cache, blob);
1479 	}
1480 }
1481 
security_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1482 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1483 {
1484 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1485 }
1486 EXPORT_SYMBOL_GPL(security_file_ioctl);
1487 
mmap_prot(struct file * file,unsigned long prot)1488 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1489 {
1490 	/*
1491 	 * Does we have PROT_READ and does the application expect
1492 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1493 	 */
1494 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1495 		return prot;
1496 	if (!(current->personality & READ_IMPLIES_EXEC))
1497 		return prot;
1498 	/*
1499 	 * if that's an anonymous mapping, let it.
1500 	 */
1501 	if (!file)
1502 		return prot | PROT_EXEC;
1503 	/*
1504 	 * ditto if it's not on noexec mount, except that on !MMU we need
1505 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1506 	 */
1507 	if (!path_noexec(&file->f_path)) {
1508 #ifndef CONFIG_MMU
1509 		if (file->f_op->mmap_capabilities) {
1510 			unsigned caps = file->f_op->mmap_capabilities(file);
1511 			if (!(caps & NOMMU_MAP_EXEC))
1512 				return prot;
1513 		}
1514 #endif
1515 		return prot | PROT_EXEC;
1516 	}
1517 	/* anything on noexec mount won't get PROT_EXEC */
1518 	return prot;
1519 }
1520 
security_mmap_file(struct file * file,unsigned long prot,unsigned long flags)1521 int security_mmap_file(struct file *file, unsigned long prot,
1522 			unsigned long flags)
1523 {
1524 	int ret;
1525 	ret = call_int_hook(mmap_file, 0, file, prot,
1526 					mmap_prot(file, prot), flags);
1527 	if (ret)
1528 		return ret;
1529 	return ima_file_mmap(file, prot);
1530 }
1531 
security_mmap_addr(unsigned long addr)1532 int security_mmap_addr(unsigned long addr)
1533 {
1534 	return call_int_hook(mmap_addr, 0, addr);
1535 }
1536 
security_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)1537 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1538 			    unsigned long prot)
1539 {
1540 	int ret;
1541 
1542 	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1543 	if (ret)
1544 		return ret;
1545 	return ima_file_mprotect(vma, prot);
1546 }
1547 
security_file_lock(struct file * file,unsigned int cmd)1548 int security_file_lock(struct file *file, unsigned int cmd)
1549 {
1550 	return call_int_hook(file_lock, 0, file, cmd);
1551 }
1552 
security_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1553 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1554 {
1555 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1556 }
1557 
security_file_set_fowner(struct file * file)1558 void security_file_set_fowner(struct file *file)
1559 {
1560 	call_void_hook(file_set_fowner, file);
1561 }
1562 
security_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int sig)1563 int security_file_send_sigiotask(struct task_struct *tsk,
1564 				  struct fown_struct *fown, int sig)
1565 {
1566 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1567 }
1568 
security_file_receive(struct file * file)1569 int security_file_receive(struct file *file)
1570 {
1571 	return call_int_hook(file_receive, 0, file);
1572 }
1573 
security_file_open(struct file * file)1574 int security_file_open(struct file *file)
1575 {
1576 	int ret;
1577 
1578 	ret = call_int_hook(file_open, 0, file);
1579 	if (ret)
1580 		return ret;
1581 
1582 	return fsnotify_perm(file, MAY_OPEN);
1583 }
1584 
security_task_alloc(struct task_struct * task,unsigned long clone_flags)1585 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1586 {
1587 	int rc = lsm_task_alloc(task);
1588 
1589 	if (rc)
1590 		return rc;
1591 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1592 	if (unlikely(rc))
1593 		security_task_free(task);
1594 	return rc;
1595 }
1596 
security_task_free(struct task_struct * task)1597 void security_task_free(struct task_struct *task)
1598 {
1599 	call_void_hook(task_free, task);
1600 
1601 	kfree(task->security);
1602 	task->security = NULL;
1603 }
1604 
security_cred_alloc_blank(struct cred * cred,gfp_t gfp)1605 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1606 {
1607 	int rc = lsm_cred_alloc(cred, gfp);
1608 
1609 	if (rc)
1610 		return rc;
1611 
1612 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1613 	if (unlikely(rc))
1614 		security_cred_free(cred);
1615 	return rc;
1616 }
1617 
security_cred_free(struct cred * cred)1618 void security_cred_free(struct cred *cred)
1619 {
1620 	/*
1621 	 * There is a failure case in prepare_creds() that
1622 	 * may result in a call here with ->security being NULL.
1623 	 */
1624 	if (unlikely(cred->security == NULL))
1625 		return;
1626 
1627 	call_void_hook(cred_free, cred);
1628 
1629 	kfree(cred->security);
1630 	cred->security = NULL;
1631 }
1632 
security_prepare_creds(struct cred * new,const struct cred * old,gfp_t gfp)1633 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1634 {
1635 	int rc = lsm_cred_alloc(new, gfp);
1636 
1637 	if (rc)
1638 		return rc;
1639 
1640 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1641 	if (unlikely(rc))
1642 		security_cred_free(new);
1643 	return rc;
1644 }
1645 
security_transfer_creds(struct cred * new,const struct cred * old)1646 void security_transfer_creds(struct cred *new, const struct cred *old)
1647 {
1648 	call_void_hook(cred_transfer, new, old);
1649 }
1650 
security_cred_getsecid(const struct cred * c,u32 * secid)1651 void security_cred_getsecid(const struct cred *c, u32 *secid)
1652 {
1653 	*secid = 0;
1654 	call_void_hook(cred_getsecid, c, secid);
1655 }
1656 EXPORT_SYMBOL(security_cred_getsecid);
1657 
security_kernel_act_as(struct cred * new,u32 secid)1658 int security_kernel_act_as(struct cred *new, u32 secid)
1659 {
1660 	return call_int_hook(kernel_act_as, 0, new, secid);
1661 }
1662 
security_kernel_create_files_as(struct cred * new,struct inode * inode)1663 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1664 {
1665 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1666 }
1667 
security_kernel_module_request(char * kmod_name)1668 int security_kernel_module_request(char *kmod_name)
1669 {
1670 	int ret;
1671 
1672 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1673 	if (ret)
1674 		return ret;
1675 	return integrity_kernel_module_request(kmod_name);
1676 }
1677 
security_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)1678 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1679 			      bool contents)
1680 {
1681 	int ret;
1682 
1683 	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1684 	if (ret)
1685 		return ret;
1686 	return ima_read_file(file, id, contents);
1687 }
1688 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1689 
security_kernel_post_read_file(struct file * file,char * buf,loff_t size,enum kernel_read_file_id id)1690 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1691 				   enum kernel_read_file_id id)
1692 {
1693 	int ret;
1694 
1695 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1696 	if (ret)
1697 		return ret;
1698 	return ima_post_read_file(file, buf, size, id);
1699 }
1700 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1701 
security_kernel_load_data(enum kernel_load_data_id id,bool contents)1702 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1703 {
1704 	int ret;
1705 
1706 	ret = call_int_hook(kernel_load_data, 0, id, contents);
1707 	if (ret)
1708 		return ret;
1709 	return ima_load_data(id, contents);
1710 }
1711 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1712 
security_kernel_post_load_data(char * buf,loff_t size,enum kernel_load_data_id id,char * description)1713 int security_kernel_post_load_data(char *buf, loff_t size,
1714 				   enum kernel_load_data_id id,
1715 				   char *description)
1716 {
1717 	int ret;
1718 
1719 	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1720 			    description);
1721 	if (ret)
1722 		return ret;
1723 	return ima_post_load_data(buf, size, id, description);
1724 }
1725 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1726 
security_task_fix_setuid(struct cred * new,const struct cred * old,int flags)1727 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1728 			     int flags)
1729 {
1730 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1731 }
1732 
security_task_fix_setgid(struct cred * new,const struct cred * old,int flags)1733 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1734 				 int flags)
1735 {
1736 	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1737 }
1738 
security_task_setpgid(struct task_struct * p,pid_t pgid)1739 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1740 {
1741 	return call_int_hook(task_setpgid, 0, p, pgid);
1742 }
1743 
security_task_getpgid(struct task_struct * p)1744 int security_task_getpgid(struct task_struct *p)
1745 {
1746 	return call_int_hook(task_getpgid, 0, p);
1747 }
1748 
security_task_getsid(struct task_struct * p)1749 int security_task_getsid(struct task_struct *p)
1750 {
1751 	return call_int_hook(task_getsid, 0, p);
1752 }
1753 
security_task_getsecid(struct task_struct * p,u32 * secid)1754 void security_task_getsecid(struct task_struct *p, u32 *secid)
1755 {
1756 	*secid = 0;
1757 	call_void_hook(task_getsecid, p, secid);
1758 }
1759 EXPORT_SYMBOL(security_task_getsecid);
1760 
security_task_setnice(struct task_struct * p,int nice)1761 int security_task_setnice(struct task_struct *p, int nice)
1762 {
1763 	return call_int_hook(task_setnice, 0, p, nice);
1764 }
1765 
security_task_setioprio(struct task_struct * p,int ioprio)1766 int security_task_setioprio(struct task_struct *p, int ioprio)
1767 {
1768 	return call_int_hook(task_setioprio, 0, p, ioprio);
1769 }
1770 
security_task_getioprio(struct task_struct * p)1771 int security_task_getioprio(struct task_struct *p)
1772 {
1773 	return call_int_hook(task_getioprio, 0, p);
1774 }
1775 
security_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)1776 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1777 			  unsigned int flags)
1778 {
1779 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1780 }
1781 
security_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)1782 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1783 		struct rlimit *new_rlim)
1784 {
1785 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1786 }
1787 
security_task_setscheduler(struct task_struct * p)1788 int security_task_setscheduler(struct task_struct *p)
1789 {
1790 	return call_int_hook(task_setscheduler, 0, p);
1791 }
1792 
security_task_getscheduler(struct task_struct * p)1793 int security_task_getscheduler(struct task_struct *p)
1794 {
1795 	return call_int_hook(task_getscheduler, 0, p);
1796 }
1797 
security_task_movememory(struct task_struct * p)1798 int security_task_movememory(struct task_struct *p)
1799 {
1800 	return call_int_hook(task_movememory, 0, p);
1801 }
1802 
security_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)1803 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1804 			int sig, const struct cred *cred)
1805 {
1806 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1807 }
1808 
security_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)1809 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1810 			 unsigned long arg4, unsigned long arg5)
1811 {
1812 	int thisrc;
1813 	int rc = LSM_RET_DEFAULT(task_prctl);
1814 	struct security_hook_list *hp;
1815 
1816 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1817 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1818 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1819 			rc = thisrc;
1820 			if (thisrc != 0)
1821 				break;
1822 		}
1823 	}
1824 	return rc;
1825 }
1826 
security_task_to_inode(struct task_struct * p,struct inode * inode)1827 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1828 {
1829 	call_void_hook(task_to_inode, p, inode);
1830 }
1831 
security_ipc_permission(struct kern_ipc_perm * ipcp,short flag)1832 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1833 {
1834 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1835 }
1836 
security_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)1837 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1838 {
1839 	*secid = 0;
1840 	call_void_hook(ipc_getsecid, ipcp, secid);
1841 }
1842 
security_msg_msg_alloc(struct msg_msg * msg)1843 int security_msg_msg_alloc(struct msg_msg *msg)
1844 {
1845 	int rc = lsm_msg_msg_alloc(msg);
1846 
1847 	if (unlikely(rc))
1848 		return rc;
1849 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1850 	if (unlikely(rc))
1851 		security_msg_msg_free(msg);
1852 	return rc;
1853 }
1854 
security_msg_msg_free(struct msg_msg * msg)1855 void security_msg_msg_free(struct msg_msg *msg)
1856 {
1857 	call_void_hook(msg_msg_free_security, msg);
1858 	kfree(msg->security);
1859 	msg->security = NULL;
1860 }
1861 
security_msg_queue_alloc(struct kern_ipc_perm * msq)1862 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1863 {
1864 	int rc = lsm_ipc_alloc(msq);
1865 
1866 	if (unlikely(rc))
1867 		return rc;
1868 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1869 	if (unlikely(rc))
1870 		security_msg_queue_free(msq);
1871 	return rc;
1872 }
1873 
security_msg_queue_free(struct kern_ipc_perm * msq)1874 void security_msg_queue_free(struct kern_ipc_perm *msq)
1875 {
1876 	call_void_hook(msg_queue_free_security, msq);
1877 	kfree(msq->security);
1878 	msq->security = NULL;
1879 }
1880 
security_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)1881 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1882 {
1883 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1884 }
1885 
security_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)1886 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1887 {
1888 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1889 }
1890 
security_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)1891 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1892 			       struct msg_msg *msg, int msqflg)
1893 {
1894 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1895 }
1896 
security_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)1897 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1898 			       struct task_struct *target, long type, int mode)
1899 {
1900 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1901 }
1902 
security_shm_alloc(struct kern_ipc_perm * shp)1903 int security_shm_alloc(struct kern_ipc_perm *shp)
1904 {
1905 	int rc = lsm_ipc_alloc(shp);
1906 
1907 	if (unlikely(rc))
1908 		return rc;
1909 	rc = call_int_hook(shm_alloc_security, 0, shp);
1910 	if (unlikely(rc))
1911 		security_shm_free(shp);
1912 	return rc;
1913 }
1914 
security_shm_free(struct kern_ipc_perm * shp)1915 void security_shm_free(struct kern_ipc_perm *shp)
1916 {
1917 	call_void_hook(shm_free_security, shp);
1918 	kfree(shp->security);
1919 	shp->security = NULL;
1920 }
1921 
security_shm_associate(struct kern_ipc_perm * shp,int shmflg)1922 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1923 {
1924 	return call_int_hook(shm_associate, 0, shp, shmflg);
1925 }
1926 
security_shm_shmctl(struct kern_ipc_perm * shp,int cmd)1927 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1928 {
1929 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1930 }
1931 
security_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)1932 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1933 {
1934 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1935 }
1936 
security_sem_alloc(struct kern_ipc_perm * sma)1937 int security_sem_alloc(struct kern_ipc_perm *sma)
1938 {
1939 	int rc = lsm_ipc_alloc(sma);
1940 
1941 	if (unlikely(rc))
1942 		return rc;
1943 	rc = call_int_hook(sem_alloc_security, 0, sma);
1944 	if (unlikely(rc))
1945 		security_sem_free(sma);
1946 	return rc;
1947 }
1948 
security_sem_free(struct kern_ipc_perm * sma)1949 void security_sem_free(struct kern_ipc_perm *sma)
1950 {
1951 	call_void_hook(sem_free_security, sma);
1952 	kfree(sma->security);
1953 	sma->security = NULL;
1954 }
1955 
security_sem_associate(struct kern_ipc_perm * sma,int semflg)1956 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1957 {
1958 	return call_int_hook(sem_associate, 0, sma, semflg);
1959 }
1960 
security_sem_semctl(struct kern_ipc_perm * sma,int cmd)1961 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1962 {
1963 	return call_int_hook(sem_semctl, 0, sma, cmd);
1964 }
1965 
security_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)1966 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1967 			unsigned nsops, int alter)
1968 {
1969 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1970 }
1971 
security_d_instantiate(struct dentry * dentry,struct inode * inode)1972 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1973 {
1974 	if (unlikely(inode && IS_PRIVATE(inode)))
1975 		return;
1976 	call_void_hook(d_instantiate, dentry, inode);
1977 }
1978 EXPORT_SYMBOL(security_d_instantiate);
1979 
security_getprocattr(struct task_struct * p,const char * lsm,char * name,char ** value)1980 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1981 				char **value)
1982 {
1983 	struct security_hook_list *hp;
1984 
1985 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1986 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1987 			continue;
1988 		return hp->hook.getprocattr(p, name, value);
1989 	}
1990 	return LSM_RET_DEFAULT(getprocattr);
1991 }
1992 
security_setprocattr(const char * lsm,const char * name,void * value,size_t size)1993 int security_setprocattr(const char *lsm, const char *name, void *value,
1994 			 size_t size)
1995 {
1996 	struct security_hook_list *hp;
1997 
1998 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1999 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2000 			continue;
2001 		return hp->hook.setprocattr(name, value, size);
2002 	}
2003 	return LSM_RET_DEFAULT(setprocattr);
2004 }
2005 
security_netlink_send(struct sock * sk,struct sk_buff * skb)2006 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2007 {
2008 	return call_int_hook(netlink_send, 0, sk, skb);
2009 }
2010 
security_ismaclabel(const char * name)2011 int security_ismaclabel(const char *name)
2012 {
2013 	return call_int_hook(ismaclabel, 0, name);
2014 }
2015 EXPORT_SYMBOL(security_ismaclabel);
2016 
security_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)2017 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2018 {
2019 	struct security_hook_list *hp;
2020 	int rc;
2021 
2022 	/*
2023 	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2024 	 * LSM hook is not "stackable").
2025 	 */
2026 	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2027 		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2028 		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2029 			return rc;
2030 	}
2031 
2032 	return LSM_RET_DEFAULT(secid_to_secctx);
2033 }
2034 EXPORT_SYMBOL(security_secid_to_secctx);
2035 
security_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)2036 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2037 {
2038 	*secid = 0;
2039 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2040 }
2041 EXPORT_SYMBOL(security_secctx_to_secid);
2042 
security_release_secctx(char * secdata,u32 seclen)2043 void security_release_secctx(char *secdata, u32 seclen)
2044 {
2045 	call_void_hook(release_secctx, secdata, seclen);
2046 }
2047 EXPORT_SYMBOL(security_release_secctx);
2048 
security_inode_invalidate_secctx(struct inode * inode)2049 void security_inode_invalidate_secctx(struct inode *inode)
2050 {
2051 	call_void_hook(inode_invalidate_secctx, inode);
2052 }
2053 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2054 
security_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)2055 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2056 {
2057 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2058 }
2059 EXPORT_SYMBOL(security_inode_notifysecctx);
2060 
security_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)2061 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2062 {
2063 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2064 }
2065 EXPORT_SYMBOL(security_inode_setsecctx);
2066 
security_inode_getsecctx(struct inode * inode,void ** ctx,u32 * ctxlen)2067 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2068 {
2069 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2070 }
2071 EXPORT_SYMBOL(security_inode_getsecctx);
2072 
2073 #ifdef CONFIG_WATCH_QUEUE
security_post_notification(const struct cred * w_cred,const struct cred * cred,struct watch_notification * n)2074 int security_post_notification(const struct cred *w_cred,
2075 			       const struct cred *cred,
2076 			       struct watch_notification *n)
2077 {
2078 	return call_int_hook(post_notification, 0, w_cred, cred, n);
2079 }
2080 #endif /* CONFIG_WATCH_QUEUE */
2081 
2082 #ifdef CONFIG_KEY_NOTIFICATIONS
security_watch_key(struct key * key)2083 int security_watch_key(struct key *key)
2084 {
2085 	return call_int_hook(watch_key, 0, key);
2086 }
2087 #endif
2088 
2089 #ifdef CONFIG_SECURITY_NETWORK
2090 
security_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)2091 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2092 {
2093 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2094 }
2095 EXPORT_SYMBOL(security_unix_stream_connect);
2096 
security_unix_may_send(struct socket * sock,struct socket * other)2097 int security_unix_may_send(struct socket *sock,  struct socket *other)
2098 {
2099 	return call_int_hook(unix_may_send, 0, sock, other);
2100 }
2101 EXPORT_SYMBOL(security_unix_may_send);
2102 
security_socket_create(int family,int type,int protocol,int kern)2103 int security_socket_create(int family, int type, int protocol, int kern)
2104 {
2105 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2106 }
2107 
security_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)2108 int security_socket_post_create(struct socket *sock, int family,
2109 				int type, int protocol, int kern)
2110 {
2111 	return call_int_hook(socket_post_create, 0, sock, family, type,
2112 						protocol, kern);
2113 }
2114 
security_socket_socketpair(struct socket * socka,struct socket * sockb)2115 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2116 {
2117 	return call_int_hook(socket_socketpair, 0, socka, sockb);
2118 }
2119 EXPORT_SYMBOL(security_socket_socketpair);
2120 
security_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)2121 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2122 {
2123 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2124 }
2125 
security_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)2126 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2127 {
2128 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2129 }
2130 
security_socket_listen(struct socket * sock,int backlog)2131 int security_socket_listen(struct socket *sock, int backlog)
2132 {
2133 	return call_int_hook(socket_listen, 0, sock, backlog);
2134 }
2135 
security_socket_accept(struct socket * sock,struct socket * newsock)2136 int security_socket_accept(struct socket *sock, struct socket *newsock)
2137 {
2138 	return call_int_hook(socket_accept, 0, sock, newsock);
2139 }
2140 
security_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)2141 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2142 {
2143 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2144 }
2145 
security_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)2146 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2147 			    int size, int flags)
2148 {
2149 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2150 }
2151 
security_socket_getsockname(struct socket * sock)2152 int security_socket_getsockname(struct socket *sock)
2153 {
2154 	return call_int_hook(socket_getsockname, 0, sock);
2155 }
2156 
security_socket_getpeername(struct socket * sock)2157 int security_socket_getpeername(struct socket *sock)
2158 {
2159 	return call_int_hook(socket_getpeername, 0, sock);
2160 }
2161 
security_socket_getsockopt(struct socket * sock,int level,int optname)2162 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2163 {
2164 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2165 }
2166 
security_socket_setsockopt(struct socket * sock,int level,int optname)2167 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2168 {
2169 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2170 }
2171 
security_socket_shutdown(struct socket * sock,int how)2172 int security_socket_shutdown(struct socket *sock, int how)
2173 {
2174 	return call_int_hook(socket_shutdown, 0, sock, how);
2175 }
2176 
security_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)2177 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2178 {
2179 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2180 }
2181 EXPORT_SYMBOL(security_sock_rcv_skb);
2182 
security_socket_getpeersec_stream(struct socket * sock,char __user * optval,int __user * optlen,unsigned len)2183 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2184 				      int __user *optlen, unsigned len)
2185 {
2186 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2187 				optval, optlen, len);
2188 }
2189 
security_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)2190 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2191 {
2192 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2193 			     skb, secid);
2194 }
2195 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2196 
security_sk_alloc(struct sock * sk,int family,gfp_t priority)2197 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2198 {
2199 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2200 }
2201 
security_sk_free(struct sock * sk)2202 void security_sk_free(struct sock *sk)
2203 {
2204 	call_void_hook(sk_free_security, sk);
2205 }
2206 
security_sk_clone(const struct sock * sk,struct sock * newsk)2207 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2208 {
2209 	call_void_hook(sk_clone_security, sk, newsk);
2210 }
2211 EXPORT_SYMBOL(security_sk_clone);
2212 
security_sk_classify_flow(struct sock * sk,struct flowi * fl)2213 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2214 {
2215 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2216 }
2217 EXPORT_SYMBOL(security_sk_classify_flow);
2218 
security_req_classify_flow(const struct request_sock * req,struct flowi * fl)2219 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2220 {
2221 	call_void_hook(req_classify_flow, req, fl);
2222 }
2223 EXPORT_SYMBOL(security_req_classify_flow);
2224 
security_sock_graft(struct sock * sk,struct socket * parent)2225 void security_sock_graft(struct sock *sk, struct socket *parent)
2226 {
2227 	call_void_hook(sock_graft, sk, parent);
2228 }
2229 EXPORT_SYMBOL(security_sock_graft);
2230 
security_inet_conn_request(struct sock * sk,struct sk_buff * skb,struct request_sock * req)2231 int security_inet_conn_request(struct sock *sk,
2232 			struct sk_buff *skb, struct request_sock *req)
2233 {
2234 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2235 }
2236 EXPORT_SYMBOL(security_inet_conn_request);
2237 
security_inet_csk_clone(struct sock * newsk,const struct request_sock * req)2238 void security_inet_csk_clone(struct sock *newsk,
2239 			const struct request_sock *req)
2240 {
2241 	call_void_hook(inet_csk_clone, newsk, req);
2242 }
2243 
security_inet_conn_established(struct sock * sk,struct sk_buff * skb)2244 void security_inet_conn_established(struct sock *sk,
2245 			struct sk_buff *skb)
2246 {
2247 	call_void_hook(inet_conn_established, sk, skb);
2248 }
2249 EXPORT_SYMBOL(security_inet_conn_established);
2250 
security_secmark_relabel_packet(u32 secid)2251 int security_secmark_relabel_packet(u32 secid)
2252 {
2253 	return call_int_hook(secmark_relabel_packet, 0, secid);
2254 }
2255 EXPORT_SYMBOL(security_secmark_relabel_packet);
2256 
security_secmark_refcount_inc(void)2257 void security_secmark_refcount_inc(void)
2258 {
2259 	call_void_hook(secmark_refcount_inc);
2260 }
2261 EXPORT_SYMBOL(security_secmark_refcount_inc);
2262 
security_secmark_refcount_dec(void)2263 void security_secmark_refcount_dec(void)
2264 {
2265 	call_void_hook(secmark_refcount_dec);
2266 }
2267 EXPORT_SYMBOL(security_secmark_refcount_dec);
2268 
security_tun_dev_alloc_security(void ** security)2269 int security_tun_dev_alloc_security(void **security)
2270 {
2271 	return call_int_hook(tun_dev_alloc_security, 0, security);
2272 }
2273 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2274 
security_tun_dev_free_security(void * security)2275 void security_tun_dev_free_security(void *security)
2276 {
2277 	call_void_hook(tun_dev_free_security, security);
2278 }
2279 EXPORT_SYMBOL(security_tun_dev_free_security);
2280 
security_tun_dev_create(void)2281 int security_tun_dev_create(void)
2282 {
2283 	return call_int_hook(tun_dev_create, 0);
2284 }
2285 EXPORT_SYMBOL(security_tun_dev_create);
2286 
security_tun_dev_attach_queue(void * security)2287 int security_tun_dev_attach_queue(void *security)
2288 {
2289 	return call_int_hook(tun_dev_attach_queue, 0, security);
2290 }
2291 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2292 
security_tun_dev_attach(struct sock * sk,void * security)2293 int security_tun_dev_attach(struct sock *sk, void *security)
2294 {
2295 	return call_int_hook(tun_dev_attach, 0, sk, security);
2296 }
2297 EXPORT_SYMBOL(security_tun_dev_attach);
2298 
security_tun_dev_open(void * security)2299 int security_tun_dev_open(void *security)
2300 {
2301 	return call_int_hook(tun_dev_open, 0, security);
2302 }
2303 EXPORT_SYMBOL(security_tun_dev_open);
2304 
security_sctp_assoc_request(struct sctp_endpoint * ep,struct sk_buff * skb)2305 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2306 {
2307 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2308 }
2309 EXPORT_SYMBOL(security_sctp_assoc_request);
2310 
security_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)2311 int security_sctp_bind_connect(struct sock *sk, int optname,
2312 			       struct sockaddr *address, int addrlen)
2313 {
2314 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2315 			     address, addrlen);
2316 }
2317 EXPORT_SYMBOL(security_sctp_bind_connect);
2318 
security_sctp_sk_clone(struct sctp_endpoint * ep,struct sock * sk,struct sock * newsk)2319 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2320 			    struct sock *newsk)
2321 {
2322 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2323 }
2324 EXPORT_SYMBOL(security_sctp_sk_clone);
2325 
2326 #endif	/* CONFIG_SECURITY_NETWORK */
2327 
2328 #ifdef CONFIG_SECURITY_INFINIBAND
2329 
security_ib_pkey_access(void * sec,u64 subnet_prefix,u16 pkey)2330 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2331 {
2332 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2333 }
2334 EXPORT_SYMBOL(security_ib_pkey_access);
2335 
security_ib_endport_manage_subnet(void * sec,const char * dev_name,u8 port_num)2336 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2337 {
2338 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2339 }
2340 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2341 
security_ib_alloc_security(void ** sec)2342 int security_ib_alloc_security(void **sec)
2343 {
2344 	return call_int_hook(ib_alloc_security, 0, sec);
2345 }
2346 EXPORT_SYMBOL(security_ib_alloc_security);
2347 
security_ib_free_security(void * sec)2348 void security_ib_free_security(void *sec)
2349 {
2350 	call_void_hook(ib_free_security, sec);
2351 }
2352 EXPORT_SYMBOL(security_ib_free_security);
2353 #endif	/* CONFIG_SECURITY_INFINIBAND */
2354 
2355 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2356 
security_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * sec_ctx,gfp_t gfp)2357 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2358 			       struct xfrm_user_sec_ctx *sec_ctx,
2359 			       gfp_t gfp)
2360 {
2361 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2362 }
2363 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2364 
security_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)2365 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2366 			      struct xfrm_sec_ctx **new_ctxp)
2367 {
2368 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2369 }
2370 
security_xfrm_policy_free(struct xfrm_sec_ctx * ctx)2371 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2372 {
2373 	call_void_hook(xfrm_policy_free_security, ctx);
2374 }
2375 EXPORT_SYMBOL(security_xfrm_policy_free);
2376 
security_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)2377 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2378 {
2379 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2380 }
2381 
security_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * sec_ctx)2382 int security_xfrm_state_alloc(struct xfrm_state *x,
2383 			      struct xfrm_user_sec_ctx *sec_ctx)
2384 {
2385 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2386 }
2387 EXPORT_SYMBOL(security_xfrm_state_alloc);
2388 
security_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)2389 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2390 				      struct xfrm_sec_ctx *polsec, u32 secid)
2391 {
2392 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2393 }
2394 
security_xfrm_state_delete(struct xfrm_state * x)2395 int security_xfrm_state_delete(struct xfrm_state *x)
2396 {
2397 	return call_int_hook(xfrm_state_delete_security, 0, x);
2398 }
2399 EXPORT_SYMBOL(security_xfrm_state_delete);
2400 
security_xfrm_state_free(struct xfrm_state * x)2401 void security_xfrm_state_free(struct xfrm_state *x)
2402 {
2403 	call_void_hook(xfrm_state_free_security, x);
2404 }
2405 
security_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid,u8 dir)2406 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2407 {
2408 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2409 }
2410 
security_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi * fl)2411 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2412 				       struct xfrm_policy *xp,
2413 				       const struct flowi *fl)
2414 {
2415 	struct security_hook_list *hp;
2416 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2417 
2418 	/*
2419 	 * Since this function is expected to return 0 or 1, the judgment
2420 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2421 	 * we can use the first LSM's judgment because currently only SELinux
2422 	 * supplies this call.
2423 	 *
2424 	 * For speed optimization, we explicitly break the loop rather than
2425 	 * using the macro
2426 	 */
2427 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2428 				list) {
2429 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2430 		break;
2431 	}
2432 	return rc;
2433 }
2434 
security_xfrm_decode_session(struct sk_buff * skb,u32 * secid)2435 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2436 {
2437 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2438 }
2439 
security_skb_classify_flow(struct sk_buff * skb,struct flowi * fl)2440 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2441 {
2442 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2443 				0);
2444 
2445 	BUG_ON(rc);
2446 }
2447 EXPORT_SYMBOL(security_skb_classify_flow);
2448 
2449 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2450 
2451 #ifdef CONFIG_KEYS
2452 
security_key_alloc(struct key * key,const struct cred * cred,unsigned long flags)2453 int security_key_alloc(struct key *key, const struct cred *cred,
2454 		       unsigned long flags)
2455 {
2456 	return call_int_hook(key_alloc, 0, key, cred, flags);
2457 }
2458 
security_key_free(struct key * key)2459 void security_key_free(struct key *key)
2460 {
2461 	call_void_hook(key_free, key);
2462 }
2463 
security_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)2464 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2465 			    enum key_need_perm need_perm)
2466 {
2467 	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2468 }
2469 
security_key_getsecurity(struct key * key,char ** _buffer)2470 int security_key_getsecurity(struct key *key, char **_buffer)
2471 {
2472 	*_buffer = NULL;
2473 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2474 }
2475 
2476 #endif	/* CONFIG_KEYS */
2477 
2478 #ifdef CONFIG_AUDIT
2479 
security_audit_rule_init(u32 field,u32 op,char * rulestr,void ** lsmrule)2480 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2481 {
2482 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2483 }
2484 
security_audit_rule_known(struct audit_krule * krule)2485 int security_audit_rule_known(struct audit_krule *krule)
2486 {
2487 	return call_int_hook(audit_rule_known, 0, krule);
2488 }
2489 
security_audit_rule_free(void * lsmrule)2490 void security_audit_rule_free(void *lsmrule)
2491 {
2492 	call_void_hook(audit_rule_free, lsmrule);
2493 }
2494 
security_audit_rule_match(u32 secid,u32 field,u32 op,void * lsmrule)2495 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2496 {
2497 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2498 }
2499 #endif /* CONFIG_AUDIT */
2500 
2501 #ifdef CONFIG_BPF_SYSCALL
security_bpf(int cmd,union bpf_attr * attr,unsigned int size)2502 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2503 {
2504 	return call_int_hook(bpf, 0, cmd, attr, size);
2505 }
security_bpf_map(struct bpf_map * map,fmode_t fmode)2506 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2507 {
2508 	return call_int_hook(bpf_map, 0, map, fmode);
2509 }
security_bpf_prog(struct bpf_prog * prog)2510 int security_bpf_prog(struct bpf_prog *prog)
2511 {
2512 	return call_int_hook(bpf_prog, 0, prog);
2513 }
security_bpf_map_alloc(struct bpf_map * map)2514 int security_bpf_map_alloc(struct bpf_map *map)
2515 {
2516 	return call_int_hook(bpf_map_alloc_security, 0, map);
2517 }
security_bpf_prog_alloc(struct bpf_prog_aux * aux)2518 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2519 {
2520 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2521 }
security_bpf_map_free(struct bpf_map * map)2522 void security_bpf_map_free(struct bpf_map *map)
2523 {
2524 	call_void_hook(bpf_map_free_security, map);
2525 }
security_bpf_prog_free(struct bpf_prog_aux * aux)2526 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2527 {
2528 	call_void_hook(bpf_prog_free_security, aux);
2529 }
2530 #endif /* CONFIG_BPF_SYSCALL */
2531 
security_locked_down(enum lockdown_reason what)2532 int security_locked_down(enum lockdown_reason what)
2533 {
2534 	return call_int_hook(locked_down, 0, what);
2535 }
2536 EXPORT_SYMBOL(security_locked_down);
2537 
2538 #ifdef CONFIG_PERF_EVENTS
security_perf_event_open(struct perf_event_attr * attr,int type)2539 int security_perf_event_open(struct perf_event_attr *attr, int type)
2540 {
2541 	return call_int_hook(perf_event_open, 0, attr, type);
2542 }
2543 
security_perf_event_alloc(struct perf_event * event)2544 int security_perf_event_alloc(struct perf_event *event)
2545 {
2546 	return call_int_hook(perf_event_alloc, 0, event);
2547 }
2548 
security_perf_event_free(struct perf_event * event)2549 void security_perf_event_free(struct perf_event *event)
2550 {
2551 	call_void_hook(perf_event_free, event);
2552 }
2553 
security_perf_event_read(struct perf_event * event)2554 int security_perf_event_read(struct perf_event *event)
2555 {
2556 	return call_int_hook(perf_event_read, 0, event);
2557 }
2558 
security_perf_event_write(struct perf_event * event)2559 int security_perf_event_write(struct perf_event *event)
2560 {
2561 	return call_int_hook(perf_event_write, 0, event);
2562 }
2563 #endif /* CONFIG_PERF_EVENTS */
2564