• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
4  *
5  * Copyright: 2014 Raumfeld GmbH
6  * Author: Sven Brandau <info@brandau.biz>
7  *
8  * based on code from:
9  *	Raumfeld GmbH
10  *	  Johannes Stezenbach <js@sig21.net>
11  *	Wolfson Microelectronics PLC.
12  *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
13  *	Freescale Semiconductor, Inc.
14  *	  Timur Tabi <timur@freescale.com>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
18 
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/init.h>
22 #include <linux/delay.h>
23 #include <linux/pm.h>
24 #include <linux/i2c.h>
25 #include <linux/of_device.h>
26 #include <linux/of_gpio.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/gpio/consumer.h>
30 #include <linux/slab.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37 #include <sound/tlv.h>
38 
39 #include <sound/sta350.h>
40 #include "sta350.h"
41 
42 #define STA350_RATES (SNDRV_PCM_RATE_32000 | \
43 		      SNDRV_PCM_RATE_44100 | \
44 		      SNDRV_PCM_RATE_48000 | \
45 		      SNDRV_PCM_RATE_88200 | \
46 		      SNDRV_PCM_RATE_96000 | \
47 		      SNDRV_PCM_RATE_176400 | \
48 		      SNDRV_PCM_RATE_192000)
49 
50 #define STA350_FORMATS \
51 	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S16_BE  | \
52 	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
53 	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
54 	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
55 	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S24_BE  | \
56 	 SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_S32_BE)
57 
58 /* Power-up register defaults */
59 static const struct reg_default sta350_regs[] = {
60 	{  0x0, 0x63 },
61 	{  0x1, 0x80 },
62 	{  0x2, 0xdf },
63 	{  0x3, 0x40 },
64 	{  0x4, 0xc2 },
65 	{  0x5, 0x5c },
66 	{  0x6, 0x00 },
67 	{  0x7, 0xff },
68 	{  0x8, 0x60 },
69 	{  0x9, 0x60 },
70 	{  0xa, 0x60 },
71 	{  0xb, 0x00 },
72 	{  0xc, 0x00 },
73 	{  0xd, 0x00 },
74 	{  0xe, 0x00 },
75 	{  0xf, 0x40 },
76 	{ 0x10, 0x80 },
77 	{ 0x11, 0x77 },
78 	{ 0x12, 0x6a },
79 	{ 0x13, 0x69 },
80 	{ 0x14, 0x6a },
81 	{ 0x15, 0x69 },
82 	{ 0x16, 0x00 },
83 	{ 0x17, 0x00 },
84 	{ 0x18, 0x00 },
85 	{ 0x19, 0x00 },
86 	{ 0x1a, 0x00 },
87 	{ 0x1b, 0x00 },
88 	{ 0x1c, 0x00 },
89 	{ 0x1d, 0x00 },
90 	{ 0x1e, 0x00 },
91 	{ 0x1f, 0x00 },
92 	{ 0x20, 0x00 },
93 	{ 0x21, 0x00 },
94 	{ 0x22, 0x00 },
95 	{ 0x23, 0x00 },
96 	{ 0x24, 0x00 },
97 	{ 0x25, 0x00 },
98 	{ 0x26, 0x00 },
99 	{ 0x27, 0x2a },
100 	{ 0x28, 0xc0 },
101 	{ 0x29, 0xf3 },
102 	{ 0x2a, 0x33 },
103 	{ 0x2b, 0x00 },
104 	{ 0x2c, 0x0c },
105 	{ 0x31, 0x00 },
106 	{ 0x36, 0x00 },
107 	{ 0x37, 0x00 },
108 	{ 0x38, 0x00 },
109 	{ 0x39, 0x01 },
110 	{ 0x3a, 0xee },
111 	{ 0x3b, 0xff },
112 	{ 0x3c, 0x7e },
113 	{ 0x3d, 0xc0 },
114 	{ 0x3e, 0x26 },
115 	{ 0x3f, 0x00 },
116 	{ 0x48, 0x00 },
117 	{ 0x49, 0x00 },
118 	{ 0x4a, 0x00 },
119 	{ 0x4b, 0x04 },
120 	{ 0x4c, 0x00 },
121 };
122 
123 static const struct regmap_range sta350_write_regs_range[] = {
124 	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
125 	regmap_reg_range(STA350_C1CFG,  STA350_FDRC2),
126 	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
127 	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
128 };
129 
130 static const struct regmap_range sta350_read_regs_range[] = {
131 	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
132 	regmap_reg_range(STA350_C1CFG,  STA350_STATUS),
133 	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
134 	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
135 };
136 
137 static const struct regmap_range sta350_volatile_regs_range[] = {
138 	regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
139 	regmap_reg_range(STA350_STATUS,  STA350_STATUS),
140 };
141 
142 static const struct regmap_access_table sta350_write_regs = {
143 	.yes_ranges =	sta350_write_regs_range,
144 	.n_yes_ranges =	ARRAY_SIZE(sta350_write_regs_range),
145 };
146 
147 static const struct regmap_access_table sta350_read_regs = {
148 	.yes_ranges =	sta350_read_regs_range,
149 	.n_yes_ranges =	ARRAY_SIZE(sta350_read_regs_range),
150 };
151 
152 static const struct regmap_access_table sta350_volatile_regs = {
153 	.yes_ranges =	sta350_volatile_regs_range,
154 	.n_yes_ranges =	ARRAY_SIZE(sta350_volatile_regs_range),
155 };
156 
157 /* regulator power supply names */
158 static const char * const sta350_supply_names[] = {
159 	"vdd-dig",	/* digital supply, 3.3V */
160 	"vdd-pll",	/* pll supply, 3.3V */
161 	"vcc"		/* power amp supply, 5V - 26V */
162 };
163 
164 /* codec private data */
165 struct sta350_priv {
166 	struct regmap *regmap;
167 	struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
168 	struct sta350_platform_data *pdata;
169 
170 	unsigned int mclk;
171 	unsigned int format;
172 
173 	u32 coef_shadow[STA350_COEF_COUNT];
174 	int shutdown;
175 
176 	struct gpio_desc *gpiod_nreset;
177 	struct gpio_desc *gpiod_power_down;
178 
179 	struct mutex coeff_lock;
180 };
181 
182 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
183 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
184 static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
185 
186 static const char * const sta350_drc_ac[] = {
187 	"Anti-Clipping", "Dynamic Range Compression"
188 };
189 static const char * const sta350_auto_gc_mode[] = {
190 	"User", "AC no clipping", "AC limited clipping (10%)",
191 	"DRC nighttime listening mode"
192 };
193 static const char * const sta350_auto_xo_mode[] = {
194 	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
195 	"200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
196 	"340Hz", "360Hz"
197 };
198 static const char * const sta350_binary_output[] = {
199 	"FFX 3-state output - normal operation", "Binary output"
200 };
201 static const char * const sta350_limiter_select[] = {
202 	"Limiter Disabled", "Limiter #1", "Limiter #2"
203 };
204 static const char * const sta350_limiter_attack_rate[] = {
205 	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
206 	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
207 	"0.0645", "0.0564", "0.0501", "0.0451"
208 };
209 static const char * const sta350_limiter_release_rate[] = {
210 	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
211 	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
212 	"0.0134", "0.0117", "0.0110", "0.0104"
213 };
214 static const char * const sta350_noise_shaper_type[] = {
215 	"Third order", "Fourth order"
216 };
217 
218 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
219 	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
220 	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
221 );
222 
223 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
224 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
225 	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
226 	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
227 	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
228 	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
229 );
230 
231 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
232 	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
233 	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
234 	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
235 );
236 
237 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
238 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
239 	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
240 	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
241 	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
242 	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
243 );
244 
245 static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
246 			    STA350_CONFD, STA350_CONFD_DRC_SHIFT,
247 			    sta350_drc_ac);
248 static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
249 			    STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
250 			    sta350_noise_shaper_type);
251 static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
252 			    STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
253 			    sta350_auto_gc_mode);
254 static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
255 			    STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
256 			    sta350_auto_xo_mode);
257 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
258 			    STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
259 			    sta350_binary_output);
260 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
261 			    STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
262 			    sta350_binary_output);
263 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
264 			    STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
265 			    sta350_binary_output);
266 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
267 			    STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
268 			    sta350_limiter_select);
269 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
270 			    STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
271 			    sta350_limiter_select);
272 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
273 			    STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
274 			    sta350_limiter_select);
275 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
276 			    STA350_L1AR, STA350_LxA_SHIFT,
277 			    sta350_limiter_attack_rate);
278 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
279 			    STA350_L2AR, STA350_LxA_SHIFT,
280 			    sta350_limiter_attack_rate);
281 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
282 			    STA350_L1AR, STA350_LxR_SHIFT,
283 			    sta350_limiter_release_rate);
284 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
285 			    STA350_L2AR, STA350_LxR_SHIFT,
286 			    sta350_limiter_release_rate);
287 
288 /*
289  * byte array controls for setting biquad, mixer, scaling coefficients;
290  * for biquads all five coefficients need to be set in one go,
291  * mixer and pre/postscale coefs can be set individually;
292  * each coef is 24bit, the bytes are ordered in the same way
293  * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
294  */
295 
sta350_coefficient_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)296 static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
297 				   struct snd_ctl_elem_info *uinfo)
298 {
299 	int numcoef = kcontrol->private_value >> 16;
300 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
301 	uinfo->count = 3 * numcoef;
302 	return 0;
303 }
304 
sta350_coefficient_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)305 static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
306 				  struct snd_ctl_elem_value *ucontrol)
307 {
308 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
309 	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
310 	int numcoef = kcontrol->private_value >> 16;
311 	int index = kcontrol->private_value & 0xffff;
312 	unsigned int cfud, val;
313 	int i, ret = 0;
314 
315 	mutex_lock(&sta350->coeff_lock);
316 
317 	/* preserve reserved bits in STA350_CFUD */
318 	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
319 	cfud &= 0xf0;
320 	/*
321 	 * chip documentation does not say if the bits are self clearing,
322 	 * so do it explicitly
323 	 */
324 	regmap_write(sta350->regmap, STA350_CFUD, cfud);
325 
326 	regmap_write(sta350->regmap, STA350_CFADDR2, index);
327 	if (numcoef == 1) {
328 		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
329 	} else if (numcoef == 5) {
330 		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
331 	} else {
332 		ret = -EINVAL;
333 		goto exit_unlock;
334 	}
335 
336 	for (i = 0; i < 3 * numcoef; i++) {
337 		regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
338 		ucontrol->value.bytes.data[i] = val;
339 	}
340 
341 exit_unlock:
342 	mutex_unlock(&sta350->coeff_lock);
343 
344 	return ret;
345 }
346 
sta350_coefficient_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)347 static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
348 				  struct snd_ctl_elem_value *ucontrol)
349 {
350 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
351 	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
352 	int numcoef = kcontrol->private_value >> 16;
353 	int index = kcontrol->private_value & 0xffff;
354 	unsigned int cfud;
355 	int i;
356 
357 	/* preserve reserved bits in STA350_CFUD */
358 	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
359 	cfud &= 0xf0;
360 	/*
361 	 * chip documentation does not say if the bits are self clearing,
362 	 * so do it explicitly
363 	 */
364 	regmap_write(sta350->regmap, STA350_CFUD, cfud);
365 
366 	regmap_write(sta350->regmap, STA350_CFADDR2, index);
367 	for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
368 		sta350->coef_shadow[index + i] =
369 			  (ucontrol->value.bytes.data[3 * i] << 16)
370 			| (ucontrol->value.bytes.data[3 * i + 1] << 8)
371 			| (ucontrol->value.bytes.data[3 * i + 2]);
372 	for (i = 0; i < 3 * numcoef; i++)
373 		regmap_write(sta350->regmap, STA350_B1CF1 + i,
374 			     ucontrol->value.bytes.data[i]);
375 	if (numcoef == 1)
376 		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
377 	else if (numcoef == 5)
378 		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
379 	else
380 		return -EINVAL;
381 
382 	return 0;
383 }
384 
sta350_sync_coef_shadow(struct snd_soc_component * component)385 static int sta350_sync_coef_shadow(struct snd_soc_component *component)
386 {
387 	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
388 	unsigned int cfud;
389 	int i;
390 
391 	/* preserve reserved bits in STA350_CFUD */
392 	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
393 	cfud &= 0xf0;
394 
395 	for (i = 0; i < STA350_COEF_COUNT; i++) {
396 		regmap_write(sta350->regmap, STA350_CFADDR2, i);
397 		regmap_write(sta350->regmap, STA350_B1CF1,
398 			     (sta350->coef_shadow[i] >> 16) & 0xff);
399 		regmap_write(sta350->regmap, STA350_B1CF2,
400 			     (sta350->coef_shadow[i] >> 8) & 0xff);
401 		regmap_write(sta350->regmap, STA350_B1CF3,
402 			     (sta350->coef_shadow[i]) & 0xff);
403 		/*
404 		 * chip documentation does not say if the bits are
405 		 * self-clearing, so do it explicitly
406 		 */
407 		regmap_write(sta350->regmap, STA350_CFUD, cfud);
408 		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
409 	}
410 	return 0;
411 }
412 
sta350_cache_sync(struct snd_soc_component * component)413 static int sta350_cache_sync(struct snd_soc_component *component)
414 {
415 	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
416 	unsigned int mute;
417 	int rc;
418 
419 	/* mute during register sync */
420 	regmap_read(sta350->regmap, STA350_CFUD, &mute);
421 	regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
422 	sta350_sync_coef_shadow(component);
423 	rc = regcache_sync(sta350->regmap);
424 	regmap_write(sta350->regmap, STA350_MMUTE, mute);
425 	return rc;
426 }
427 
428 #define SINGLE_COEF(xname, index) \
429 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
430 	.info = sta350_coefficient_info, \
431 	.get = sta350_coefficient_get,\
432 	.put = sta350_coefficient_put, \
433 	.private_value = index | (1 << 16) }
434 
435 #define BIQUAD_COEFS(xname, index) \
436 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
437 	.info = sta350_coefficient_info, \
438 	.get = sta350_coefficient_get,\
439 	.put = sta350_coefficient_put, \
440 	.private_value = index | (5 << 16) }
441 
442 static const struct snd_kcontrol_new sta350_snd_controls[] = {
443 SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
444 /* VOL */
445 SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
446 SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
447 SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
448 /* CONFD */
449 SOC_SINGLE("High Pass Filter Bypass Switch",
450 	   STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
451 SOC_SINGLE("De-emphasis Filter Switch",
452 	   STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
453 SOC_SINGLE("DSP Bypass Switch",
454 	   STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
455 SOC_SINGLE("Post-scale Link Switch",
456 	   STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
457 SOC_SINGLE("Biquad Coefficient Link Switch",
458 	   STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
459 SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
460 SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
461 SOC_SINGLE("Zero-detect Mute Enable Switch",
462 	   STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
463 SOC_SINGLE("Submix Mode Switch",
464 	   STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
465 /* CONFE */
466 SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
467 SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
468 /* MUTE */
469 SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
470 SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
471 SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
472 SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
473 /* AUTOx */
474 SOC_ENUM("Automode GC", sta350_auto_gc_enum),
475 SOC_ENUM("Automode XO", sta350_auto_xo_enum),
476 /* CxCFG */
477 SOC_SINGLE("Ch1 Tone Control Bypass Switch",
478 	   STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
479 SOC_SINGLE("Ch2 Tone Control Bypass Switch",
480 	   STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
481 SOC_SINGLE("Ch1 EQ Bypass Switch",
482 	   STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
483 SOC_SINGLE("Ch2 EQ Bypass Switch",
484 	   STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
485 SOC_SINGLE("Ch1 Master Volume Bypass Switch",
486 	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
487 SOC_SINGLE("Ch2 Master Volume Bypass Switch",
488 	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
489 SOC_SINGLE("Ch3 Master Volume Bypass Switch",
490 	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
491 SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
492 SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
493 SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
494 SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
495 SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
496 SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
497 /* TONE */
498 SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
499 		     STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
500 SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
501 		     STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
502 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
503 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
504 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
505 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
506 
507 /*
508  * depending on mode, the attack/release thresholds have
509  * two different enum definitions; provide both
510  */
511 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
512 	       STA350_L1ATRT, STA350_LxA_SHIFT,
513 	       16, 0, sta350_limiter_ac_attack_tlv),
514 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
515 	       STA350_L2ATRT, STA350_LxA_SHIFT,
516 	       16, 0, sta350_limiter_ac_attack_tlv),
517 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
518 	       STA350_L1ATRT, STA350_LxR_SHIFT,
519 	       16, 0, sta350_limiter_ac_release_tlv),
520 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
521 	       STA350_L2ATRT, STA350_LxR_SHIFT,
522 	       16, 0, sta350_limiter_ac_release_tlv),
523 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
524 	       STA350_L1ATRT, STA350_LxA_SHIFT,
525 	       16, 0, sta350_limiter_drc_attack_tlv),
526 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
527 	       STA350_L2ATRT, STA350_LxA_SHIFT,
528 	       16, 0, sta350_limiter_drc_attack_tlv),
529 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
530 	       STA350_L1ATRT, STA350_LxR_SHIFT,
531 	       16, 0, sta350_limiter_drc_release_tlv),
532 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
533 	       STA350_L2ATRT, STA350_LxR_SHIFT,
534 	       16, 0, sta350_limiter_drc_release_tlv),
535 
536 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
537 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
538 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
539 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
540 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
541 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
542 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
543 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
544 BIQUAD_COEFS("High-pass", 40),
545 BIQUAD_COEFS("Low-pass", 45),
546 SINGLE_COEF("Ch1 - Prescale", 50),
547 SINGLE_COEF("Ch2 - Prescale", 51),
548 SINGLE_COEF("Ch1 - Postscale", 52),
549 SINGLE_COEF("Ch2 - Postscale", 53),
550 SINGLE_COEF("Ch3 - Postscale", 54),
551 SINGLE_COEF("Thermal warning - Postscale", 55),
552 SINGLE_COEF("Ch1 - Mix 1", 56),
553 SINGLE_COEF("Ch1 - Mix 2", 57),
554 SINGLE_COEF("Ch2 - Mix 1", 58),
555 SINGLE_COEF("Ch2 - Mix 2", 59),
556 SINGLE_COEF("Ch3 - Mix 1", 60),
557 SINGLE_COEF("Ch3 - Mix 2", 61),
558 };
559 
560 static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
561 SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
562 SND_SOC_DAPM_OUTPUT("LEFT"),
563 SND_SOC_DAPM_OUTPUT("RIGHT"),
564 SND_SOC_DAPM_OUTPUT("SUB"),
565 };
566 
567 static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
568 	{ "LEFT", NULL, "DAC" },
569 	{ "RIGHT", NULL, "DAC" },
570 	{ "SUB", NULL, "DAC" },
571 	{ "DAC", NULL, "Playback" },
572 };
573 
574 /* MCLK interpolation ratio per fs */
575 static struct {
576 	int fs;
577 	int ir;
578 } interpolation_ratios[] = {
579 	{ 32000, 0 },
580 	{ 44100, 0 },
581 	{ 48000, 0 },
582 	{ 88200, 1 },
583 	{ 96000, 1 },
584 	{ 176400, 2 },
585 	{ 192000, 2 },
586 };
587 
588 /* MCLK to fs clock ratios */
589 static int mcs_ratio_table[3][6] = {
590 	{ 768, 512, 384, 256, 128, 576 },
591 	{ 384, 256, 192, 128,  64,   0 },
592 	{ 192, 128,  96,  64,  32,   0 },
593 };
594 
595 /**
596  * sta350_set_dai_sysclk - configure MCLK
597  * @codec_dai: the codec DAI
598  * @clk_id: the clock ID (ignored)
599  * @freq: the MCLK input frequency
600  * @dir: the clock direction (ignored)
601  *
602  * The value of MCLK is used to determine which sample rates are supported
603  * by the STA350, based on the mcs_ratio_table.
604  *
605  * This function must be called by the machine driver's 'startup' function,
606  * otherwise the list of supported sample rates will not be available in
607  * time for ALSA.
608  */
sta350_set_dai_sysclk(struct snd_soc_dai * codec_dai,int clk_id,unsigned int freq,int dir)609 static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
610 				 int clk_id, unsigned int freq, int dir)
611 {
612 	struct snd_soc_component *component = codec_dai->component;
613 	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
614 
615 	dev_dbg(component->dev, "mclk=%u\n", freq);
616 	sta350->mclk = freq;
617 
618 	return 0;
619 }
620 
621 /**
622  * sta350_set_dai_fmt - configure the codec for the selected audio format
623  * @codec_dai: the codec DAI
624  * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
625  *
626  * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
627  * codec accordingly.
628  */
sta350_set_dai_fmt(struct snd_soc_dai * codec_dai,unsigned int fmt)629 static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
630 			      unsigned int fmt)
631 {
632 	struct snd_soc_component *component = codec_dai->component;
633 	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
634 	unsigned int confb = 0;
635 
636 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
637 	case SND_SOC_DAIFMT_CBS_CFS:
638 		break;
639 	default:
640 		return -EINVAL;
641 	}
642 
643 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
644 	case SND_SOC_DAIFMT_I2S:
645 	case SND_SOC_DAIFMT_RIGHT_J:
646 	case SND_SOC_DAIFMT_LEFT_J:
647 		sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
648 		break;
649 	default:
650 		return -EINVAL;
651 	}
652 
653 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
654 	case SND_SOC_DAIFMT_NB_NF:
655 		confb |= STA350_CONFB_C2IM;
656 		break;
657 	case SND_SOC_DAIFMT_NB_IF:
658 		confb |= STA350_CONFB_C1IM;
659 		break;
660 	default:
661 		return -EINVAL;
662 	}
663 
664 	return regmap_update_bits(sta350->regmap, STA350_CONFB,
665 				  STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
666 }
667 
668 /**
669  * sta350_hw_params - program the STA350 with the given hardware parameters.
670  * @substream: the audio stream
671  * @params: the hardware parameters to set
672  * @dai: the SOC DAI (ignored)
673  *
674  * This function programs the hardware with the values provided.
675  * Specifically, the sample rate and the data format.
676  */
sta350_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * dai)677 static int sta350_hw_params(struct snd_pcm_substream *substream,
678 			    struct snd_pcm_hw_params *params,
679 			    struct snd_soc_dai *dai)
680 {
681 	struct snd_soc_component *component = dai->component;
682 	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
683 	int i, mcs = -EINVAL, ir = -EINVAL;
684 	unsigned int confa, confb;
685 	unsigned int rate, ratio;
686 	int ret;
687 
688 	if (!sta350->mclk) {
689 		dev_err(component->dev,
690 			"sta350->mclk is unset. Unable to determine ratio\n");
691 		return -EIO;
692 	}
693 
694 	rate = params_rate(params);
695 	ratio = sta350->mclk / rate;
696 	dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
697 
698 	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
699 		if (interpolation_ratios[i].fs == rate) {
700 			ir = interpolation_ratios[i].ir;
701 			break;
702 		}
703 	}
704 
705 	if (ir < 0) {
706 		dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
707 		return -EINVAL;
708 	}
709 
710 	for (i = 0; i < 6; i++) {
711 		if (mcs_ratio_table[ir][i] == ratio) {
712 			mcs = i;
713 			break;
714 		}
715 	}
716 
717 	if (mcs < 0) {
718 		dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
719 		return -EINVAL;
720 	}
721 
722 	confa = (ir << STA350_CONFA_IR_SHIFT) |
723 		(mcs << STA350_CONFA_MCS_SHIFT);
724 	confb = 0;
725 
726 	switch (params_width(params)) {
727 	case 24:
728 		dev_dbg(component->dev, "24bit\n");
729 		fallthrough;
730 	case 32:
731 		dev_dbg(component->dev, "24bit or 32bit\n");
732 		switch (sta350->format) {
733 		case SND_SOC_DAIFMT_I2S:
734 			confb |= 0x0;
735 			break;
736 		case SND_SOC_DAIFMT_LEFT_J:
737 			confb |= 0x1;
738 			break;
739 		case SND_SOC_DAIFMT_RIGHT_J:
740 			confb |= 0x2;
741 			break;
742 		}
743 
744 		break;
745 	case 20:
746 		dev_dbg(component->dev, "20bit\n");
747 		switch (sta350->format) {
748 		case SND_SOC_DAIFMT_I2S:
749 			confb |= 0x4;
750 			break;
751 		case SND_SOC_DAIFMT_LEFT_J:
752 			confb |= 0x5;
753 			break;
754 		case SND_SOC_DAIFMT_RIGHT_J:
755 			confb |= 0x6;
756 			break;
757 		}
758 
759 		break;
760 	case 18:
761 		dev_dbg(component->dev, "18bit\n");
762 		switch (sta350->format) {
763 		case SND_SOC_DAIFMT_I2S:
764 			confb |= 0x8;
765 			break;
766 		case SND_SOC_DAIFMT_LEFT_J:
767 			confb |= 0x9;
768 			break;
769 		case SND_SOC_DAIFMT_RIGHT_J:
770 			confb |= 0xa;
771 			break;
772 		}
773 
774 		break;
775 	case 16:
776 		dev_dbg(component->dev, "16bit\n");
777 		switch (sta350->format) {
778 		case SND_SOC_DAIFMT_I2S:
779 			confb |= 0x0;
780 			break;
781 		case SND_SOC_DAIFMT_LEFT_J:
782 			confb |= 0xd;
783 			break;
784 		case SND_SOC_DAIFMT_RIGHT_J:
785 			confb |= 0xe;
786 			break;
787 		}
788 
789 		break;
790 	default:
791 		return -EINVAL;
792 	}
793 
794 	ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
795 				 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
796 				 confa);
797 	if (ret < 0)
798 		return ret;
799 
800 	ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
801 				 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
802 				 confb);
803 	if (ret < 0)
804 		return ret;
805 
806 	return 0;
807 }
808 
sta350_startup_sequence(struct sta350_priv * sta350)809 static int sta350_startup_sequence(struct sta350_priv *sta350)
810 {
811 	if (sta350->gpiod_power_down)
812 		gpiod_set_value(sta350->gpiod_power_down, 1);
813 
814 	if (sta350->gpiod_nreset) {
815 		gpiod_set_value(sta350->gpiod_nreset, 0);
816 		mdelay(1);
817 		gpiod_set_value(sta350->gpiod_nreset, 1);
818 		mdelay(1);
819 	}
820 
821 	return 0;
822 }
823 
824 /**
825  * sta350_set_bias_level - DAPM callback
826  * @component: the component device
827  * @level: DAPM power level
828  *
829  * This is called by ALSA to put the component into low power mode
830  * or to wake it up.  If the component is powered off completely
831  * all registers must be restored after power on.
832  */
sta350_set_bias_level(struct snd_soc_component * component,enum snd_soc_bias_level level)833 static int sta350_set_bias_level(struct snd_soc_component *component,
834 				 enum snd_soc_bias_level level)
835 {
836 	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
837 	int ret;
838 
839 	dev_dbg(component->dev, "level = %d\n", level);
840 	switch (level) {
841 	case SND_SOC_BIAS_ON:
842 		break;
843 
844 	case SND_SOC_BIAS_PREPARE:
845 		/* Full power on */
846 		regmap_update_bits(sta350->regmap, STA350_CONFF,
847 				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
848 				   STA350_CONFF_PWDN | STA350_CONFF_EAPD);
849 		break;
850 
851 	case SND_SOC_BIAS_STANDBY:
852 		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
853 			ret = regulator_bulk_enable(
854 				ARRAY_SIZE(sta350->supplies),
855 				sta350->supplies);
856 			if (ret < 0) {
857 				dev_err(component->dev,
858 					"Failed to enable supplies: %d\n",
859 					ret);
860 				return ret;
861 			}
862 			sta350_startup_sequence(sta350);
863 			sta350_cache_sync(component);
864 		}
865 
866 		/* Power down */
867 		regmap_update_bits(sta350->regmap, STA350_CONFF,
868 				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
869 				   0);
870 
871 		break;
872 
873 	case SND_SOC_BIAS_OFF:
874 		/* The chip runs through the power down sequence for us */
875 		regmap_update_bits(sta350->regmap, STA350_CONFF,
876 				   STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
877 
878 		/* power down: low */
879 		if (sta350->gpiod_power_down)
880 			gpiod_set_value(sta350->gpiod_power_down, 0);
881 
882 		if (sta350->gpiod_nreset)
883 			gpiod_set_value(sta350->gpiod_nreset, 0);
884 
885 		regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
886 				       sta350->supplies);
887 		break;
888 	}
889 	return 0;
890 }
891 
892 static const struct snd_soc_dai_ops sta350_dai_ops = {
893 	.hw_params	= sta350_hw_params,
894 	.set_sysclk	= sta350_set_dai_sysclk,
895 	.set_fmt	= sta350_set_dai_fmt,
896 };
897 
898 static struct snd_soc_dai_driver sta350_dai = {
899 	.name = "sta350-hifi",
900 	.playback = {
901 		.stream_name = "Playback",
902 		.channels_min = 2,
903 		.channels_max = 2,
904 		.rates = STA350_RATES,
905 		.formats = STA350_FORMATS,
906 	},
907 	.ops = &sta350_dai_ops,
908 };
909 
sta350_probe(struct snd_soc_component * component)910 static int sta350_probe(struct snd_soc_component *component)
911 {
912 	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
913 	struct sta350_platform_data *pdata = sta350->pdata;
914 	int i, ret = 0, thermal = 0;
915 
916 	ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
917 				    sta350->supplies);
918 	if (ret < 0) {
919 		dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
920 		return ret;
921 	}
922 
923 	ret = sta350_startup_sequence(sta350);
924 	if (ret < 0) {
925 		dev_err(component->dev, "Failed to startup device\n");
926 		return ret;
927 	}
928 
929 	/* CONFA */
930 	if (!pdata->thermal_warning_recovery)
931 		thermal |= STA350_CONFA_TWAB;
932 	if (!pdata->thermal_warning_adjustment)
933 		thermal |= STA350_CONFA_TWRB;
934 	if (!pdata->fault_detect_recovery)
935 		thermal |= STA350_CONFA_FDRB;
936 	regmap_update_bits(sta350->regmap, STA350_CONFA,
937 			   STA350_CONFA_TWAB | STA350_CONFA_TWRB |
938 			   STA350_CONFA_FDRB,
939 			   thermal);
940 
941 	/* CONFC */
942 	regmap_update_bits(sta350->regmap, STA350_CONFC,
943 			   STA350_CONFC_OM_MASK,
944 			   pdata->ffx_power_output_mode
945 				<< STA350_CONFC_OM_SHIFT);
946 	regmap_update_bits(sta350->regmap, STA350_CONFC,
947 			   STA350_CONFC_CSZ_MASK,
948 			   pdata->drop_compensation_ns
949 				<< STA350_CONFC_CSZ_SHIFT);
950 	regmap_update_bits(sta350->regmap,
951 			   STA350_CONFC,
952 			   STA350_CONFC_OCRB,
953 			   pdata->oc_warning_adjustment ?
954 				STA350_CONFC_OCRB : 0);
955 
956 	/* CONFE */
957 	regmap_update_bits(sta350->regmap, STA350_CONFE,
958 			   STA350_CONFE_MPCV,
959 			   pdata->max_power_use_mpcc ?
960 				STA350_CONFE_MPCV : 0);
961 	regmap_update_bits(sta350->regmap, STA350_CONFE,
962 			   STA350_CONFE_MPC,
963 			   pdata->max_power_correction ?
964 				STA350_CONFE_MPC : 0);
965 	regmap_update_bits(sta350->regmap, STA350_CONFE,
966 			   STA350_CONFE_AME,
967 			   pdata->am_reduction_mode ?
968 				STA350_CONFE_AME : 0);
969 	regmap_update_bits(sta350->regmap, STA350_CONFE,
970 			   STA350_CONFE_PWMS,
971 			   pdata->odd_pwm_speed_mode ?
972 				STA350_CONFE_PWMS : 0);
973 	regmap_update_bits(sta350->regmap, STA350_CONFE,
974 			   STA350_CONFE_DCCV,
975 			   pdata->distortion_compensation ?
976 				STA350_CONFE_DCCV : 0);
977 	/*  CONFF */
978 	regmap_update_bits(sta350->regmap, STA350_CONFF,
979 			   STA350_CONFF_IDE,
980 			   pdata->invalid_input_detect_mute ?
981 				STA350_CONFF_IDE : 0);
982 	regmap_update_bits(sta350->regmap, STA350_CONFF,
983 			   STA350_CONFF_OCFG_MASK,
984 			   pdata->output_conf
985 				<< STA350_CONFF_OCFG_SHIFT);
986 
987 	/* channel to output mapping */
988 	regmap_update_bits(sta350->regmap, STA350_C1CFG,
989 			   STA350_CxCFG_OM_MASK,
990 			   pdata->ch1_output_mapping
991 				<< STA350_CxCFG_OM_SHIFT);
992 	regmap_update_bits(sta350->regmap, STA350_C2CFG,
993 			   STA350_CxCFG_OM_MASK,
994 			   pdata->ch2_output_mapping
995 				<< STA350_CxCFG_OM_SHIFT);
996 	regmap_update_bits(sta350->regmap, STA350_C3CFG,
997 			   STA350_CxCFG_OM_MASK,
998 			   pdata->ch3_output_mapping
999 				<< STA350_CxCFG_OM_SHIFT);
1000 
1001 	/* miscellaneous registers */
1002 	regmap_update_bits(sta350->regmap, STA350_MISC1,
1003 			   STA350_MISC1_CPWMEN,
1004 			   pdata->activate_mute_output ?
1005 				STA350_MISC1_CPWMEN : 0);
1006 	regmap_update_bits(sta350->regmap, STA350_MISC1,
1007 			   STA350_MISC1_BRIDGOFF,
1008 			   pdata->bridge_immediate_off ?
1009 				STA350_MISC1_BRIDGOFF : 0);
1010 	regmap_update_bits(sta350->regmap, STA350_MISC1,
1011 			   STA350_MISC1_NSHHPEN,
1012 			   pdata->noise_shape_dc_cut ?
1013 				STA350_MISC1_NSHHPEN : 0);
1014 	regmap_update_bits(sta350->regmap, STA350_MISC1,
1015 			   STA350_MISC1_RPDNEN,
1016 			   pdata->powerdown_master_vol ?
1017 				STA350_MISC1_RPDNEN: 0);
1018 
1019 	regmap_update_bits(sta350->regmap, STA350_MISC2,
1020 			   STA350_MISC2_PNDLSL_MASK,
1021 			   pdata->powerdown_delay_divider
1022 				<< STA350_MISC2_PNDLSL_SHIFT);
1023 
1024 	/* initialize coefficient shadow RAM with reset values */
1025 	for (i = 4; i <= 49; i += 5)
1026 		sta350->coef_shadow[i] = 0x400000;
1027 	for (i = 50; i <= 54; i++)
1028 		sta350->coef_shadow[i] = 0x7fffff;
1029 	sta350->coef_shadow[55] = 0x5a9df7;
1030 	sta350->coef_shadow[56] = 0x7fffff;
1031 	sta350->coef_shadow[59] = 0x7fffff;
1032 	sta350->coef_shadow[60] = 0x400000;
1033 	sta350->coef_shadow[61] = 0x400000;
1034 
1035 	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
1036 	/* Bias level configuration will have done an extra enable */
1037 	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1038 
1039 	return 0;
1040 }
1041 
sta350_remove(struct snd_soc_component * component)1042 static void sta350_remove(struct snd_soc_component *component)
1043 {
1044 	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
1045 
1046 	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1047 }
1048 
1049 static const struct snd_soc_component_driver sta350_component = {
1050 	.probe			= sta350_probe,
1051 	.remove			= sta350_remove,
1052 	.set_bias_level		= sta350_set_bias_level,
1053 	.controls		= sta350_snd_controls,
1054 	.num_controls		= ARRAY_SIZE(sta350_snd_controls),
1055 	.dapm_widgets		= sta350_dapm_widgets,
1056 	.num_dapm_widgets	= ARRAY_SIZE(sta350_dapm_widgets),
1057 	.dapm_routes		= sta350_dapm_routes,
1058 	.num_dapm_routes	= ARRAY_SIZE(sta350_dapm_routes),
1059 	.suspend_bias_off	= 1,
1060 	.idle_bias_on		= 1,
1061 	.use_pmdown_time	= 1,
1062 	.endianness		= 1,
1063 	.non_legacy_dai_naming	= 1,
1064 };
1065 
1066 static const struct regmap_config sta350_regmap = {
1067 	.reg_bits =		8,
1068 	.val_bits =		8,
1069 	.max_register =		STA350_MISC2,
1070 	.reg_defaults =		sta350_regs,
1071 	.num_reg_defaults =	ARRAY_SIZE(sta350_regs),
1072 	.cache_type =		REGCACHE_RBTREE,
1073 	.wr_table =		&sta350_write_regs,
1074 	.rd_table =		&sta350_read_regs,
1075 	.volatile_table =	&sta350_volatile_regs,
1076 };
1077 
1078 #ifdef CONFIG_OF
1079 static const struct of_device_id st350_dt_ids[] = {
1080 	{ .compatible = "st,sta350", },
1081 	{ }
1082 };
1083 MODULE_DEVICE_TABLE(of, st350_dt_ids);
1084 
1085 static const char * const sta350_ffx_modes[] = {
1086 	[STA350_FFX_PM_DROP_COMP]		= "drop-compensation",
1087 	[STA350_FFX_PM_TAPERED_COMP]		= "tapered-compensation",
1088 	[STA350_FFX_PM_FULL_POWER]		= "full-power-mode",
1089 	[STA350_FFX_PM_VARIABLE_DROP_COMP]	= "variable-drop-compensation",
1090 };
1091 
sta350_probe_dt(struct device * dev,struct sta350_priv * sta350)1092 static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1093 {
1094 	struct device_node *np = dev->of_node;
1095 	struct sta350_platform_data *pdata;
1096 	const char *ffx_power_mode;
1097 	u16 tmp;
1098 	u8 tmp8;
1099 
1100 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1101 	if (!pdata)
1102 		return -ENOMEM;
1103 
1104 	of_property_read_u8(np, "st,output-conf",
1105 			    &pdata->output_conf);
1106 	of_property_read_u8(np, "st,ch1-output-mapping",
1107 			    &pdata->ch1_output_mapping);
1108 	of_property_read_u8(np, "st,ch2-output-mapping",
1109 			    &pdata->ch2_output_mapping);
1110 	of_property_read_u8(np, "st,ch3-output-mapping",
1111 			    &pdata->ch3_output_mapping);
1112 
1113 	if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1114 		pdata->thermal_warning_recovery = 1;
1115 	if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1116 		pdata->thermal_warning_adjustment = 1;
1117 	if (of_get_property(np, "st,fault-detect-recovery", NULL))
1118 		pdata->fault_detect_recovery = 1;
1119 
1120 	pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1121 	if (!of_property_read_string(np, "st,ffx-power-output-mode",
1122 				     &ffx_power_mode)) {
1123 		int i, mode = -EINVAL;
1124 
1125 		for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1126 			if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1127 				mode = i;
1128 
1129 		if (mode < 0)
1130 			dev_warn(dev, "Unsupported ffx output mode: %s\n",
1131 				 ffx_power_mode);
1132 		else
1133 			pdata->ffx_power_output_mode = mode;
1134 	}
1135 
1136 	tmp = 140;
1137 	of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1138 	pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1139 
1140 	if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL))
1141 		pdata->oc_warning_adjustment = 1;
1142 
1143 	/* CONFE */
1144 	if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1145 		pdata->max_power_use_mpcc = 1;
1146 
1147 	if (of_get_property(np, "st,max-power-correction", NULL))
1148 		pdata->max_power_correction = 1;
1149 
1150 	if (of_get_property(np, "st,am-reduction-mode", NULL))
1151 		pdata->am_reduction_mode = 1;
1152 
1153 	if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1154 		pdata->odd_pwm_speed_mode = 1;
1155 
1156 	if (of_get_property(np, "st,distortion-compensation", NULL))
1157 		pdata->distortion_compensation = 1;
1158 
1159 	/* CONFF */
1160 	if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1161 		pdata->invalid_input_detect_mute = 1;
1162 
1163 	/* MISC */
1164 	if (of_get_property(np, "st,activate-mute-output", NULL))
1165 		pdata->activate_mute_output = 1;
1166 
1167 	if (of_get_property(np, "st,bridge-immediate-off", NULL))
1168 		pdata->bridge_immediate_off = 1;
1169 
1170 	if (of_get_property(np, "st,noise-shape-dc-cut", NULL))
1171 		pdata->noise_shape_dc_cut = 1;
1172 
1173 	if (of_get_property(np, "st,powerdown-master-volume", NULL))
1174 		pdata->powerdown_master_vol = 1;
1175 
1176 	if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1177 		if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1178 			pdata->powerdown_delay_divider = ilog2(tmp8);
1179 		else
1180 			dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1181 				 tmp8);
1182 	}
1183 
1184 	sta350->pdata = pdata;
1185 
1186 	return 0;
1187 }
1188 #endif
1189 
sta350_i2c_probe(struct i2c_client * i2c,const struct i2c_device_id * id)1190 static int sta350_i2c_probe(struct i2c_client *i2c,
1191 			    const struct i2c_device_id *id)
1192 {
1193 	struct device *dev = &i2c->dev;
1194 	struct sta350_priv *sta350;
1195 	int ret, i;
1196 
1197 	sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1198 	if (!sta350)
1199 		return -ENOMEM;
1200 
1201 	mutex_init(&sta350->coeff_lock);
1202 	sta350->pdata = dev_get_platdata(dev);
1203 
1204 #ifdef CONFIG_OF
1205 	if (dev->of_node) {
1206 		ret = sta350_probe_dt(dev, sta350);
1207 		if (ret < 0)
1208 			return ret;
1209 	}
1210 #endif
1211 
1212 	/* GPIOs */
1213 	sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1214 						       GPIOD_OUT_LOW);
1215 	if (IS_ERR(sta350->gpiod_nreset))
1216 		return PTR_ERR(sta350->gpiod_nreset);
1217 
1218 	sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
1219 							   GPIOD_OUT_LOW);
1220 	if (IS_ERR(sta350->gpiod_power_down))
1221 		return PTR_ERR(sta350->gpiod_power_down);
1222 
1223 	/* regulators */
1224 	for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1225 		sta350->supplies[i].supply = sta350_supply_names[i];
1226 
1227 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1228 				      sta350->supplies);
1229 	if (ret < 0) {
1230 		dev_err(dev, "Failed to request supplies: %d\n", ret);
1231 		return ret;
1232 	}
1233 
1234 	sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1235 	if (IS_ERR(sta350->regmap)) {
1236 		ret = PTR_ERR(sta350->regmap);
1237 		dev_err(dev, "Failed to init regmap: %d\n", ret);
1238 		return ret;
1239 	}
1240 
1241 	i2c_set_clientdata(i2c, sta350);
1242 
1243 	ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1);
1244 	if (ret < 0)
1245 		dev_err(dev, "Failed to register component (%d)\n", ret);
1246 
1247 	return ret;
1248 }
1249 
sta350_i2c_remove(struct i2c_client * client)1250 static int sta350_i2c_remove(struct i2c_client *client)
1251 {
1252 	return 0;
1253 }
1254 
1255 static const struct i2c_device_id sta350_i2c_id[] = {
1256 	{ "sta350", 0 },
1257 	{ }
1258 };
1259 MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1260 
1261 static struct i2c_driver sta350_i2c_driver = {
1262 	.driver = {
1263 		.name = "sta350",
1264 		.of_match_table = of_match_ptr(st350_dt_ids),
1265 	},
1266 	.probe =    sta350_i2c_probe,
1267 	.remove =   sta350_i2c_remove,
1268 	.id_table = sta350_i2c_id,
1269 };
1270 
1271 module_i2c_driver(sta350_i2c_driver);
1272 
1273 MODULE_DESCRIPTION("ASoC STA350 driver");
1274 MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1275 MODULE_LICENSE("GPL");
1276