• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/uniform_real_distribution.h"
16 
17 #include <cmath>
18 #include <cstdint>
19 #include <iterator>
20 #include <random>
21 #include <sstream>
22 #include <string>
23 #include <vector>
24 
25 #include "gmock/gmock.h"
26 #include "gtest/gtest.h"
27 #include "absl/base/internal/raw_logging.h"
28 #include "absl/random/internal/chi_square.h"
29 #include "absl/random/internal/distribution_test_util.h"
30 #include "absl/random/internal/pcg_engine.h"
31 #include "absl/random/internal/sequence_urbg.h"
32 #include "absl/random/random.h"
33 #include "absl/strings/str_cat.h"
34 
35 // NOTES:
36 // * Some documentation on generating random real values suggests that
37 //   it is possible to use std::nextafter(b, DBL_MAX) to generate a value on
38 //   the closed range [a, b]. Unfortunately, that technique is not universally
39 //   reliable due to floating point quantization.
40 //
41 // * absl::uniform_real_distribution<float> generates between 2^28 and 2^29
42 //   distinct floating point values in the range [0, 1).
43 //
44 // * absl::uniform_real_distribution<float> generates at least 2^23 distinct
45 //   floating point values in the range [1, 2). This should be the same as
46 //   any other range covered by a single exponent in IEEE 754.
47 //
48 // * absl::uniform_real_distribution<double> generates more than 2^52 distinct
49 //   values in the range [0, 1), and should generate at least 2^52 distinct
50 //   values in the range of [1, 2).
51 //
52 
53 namespace {
54 
55 template <typename RealType>
56 class UniformRealDistributionTest : public ::testing::Test {};
57 
58 #if defined(__EMSCRIPTEN__)
59 using RealTypes = ::testing::Types<float, double>;
60 #else
61 using RealTypes = ::testing::Types<float, double, long double>;
62 #endif  // defined(__EMSCRIPTEN__)
63 
64 TYPED_TEST_SUITE(UniformRealDistributionTest, RealTypes);
65 
TYPED_TEST(UniformRealDistributionTest,ParamSerializeTest)66 TYPED_TEST(UniformRealDistributionTest, ParamSerializeTest) {
67   using param_type =
68       typename absl::uniform_real_distribution<TypeParam>::param_type;
69 
70   constexpr const TypeParam a{1152921504606846976};
71 
72   constexpr int kCount = 1000;
73   absl::InsecureBitGen gen;
74   for (const auto& param : {
75            param_type(),
76            param_type(TypeParam(2.0), TypeParam(2.0)),  // Same
77            param_type(TypeParam(-0.1), TypeParam(0.1)),
78            param_type(TypeParam(0.05), TypeParam(0.12)),
79            param_type(TypeParam(-0.05), TypeParam(0.13)),
80            param_type(TypeParam(-0.05), TypeParam(-0.02)),
81            // double range = 0
82            // 2^60 , 2^60 + 2^6
83            param_type(a, TypeParam(1152921504606847040)),
84            // 2^60 , 2^60 + 2^7
85            param_type(a, TypeParam(1152921504606847104)),
86            // double range = 2^8
87            // 2^60 , 2^60 + 2^8
88            param_type(a, TypeParam(1152921504606847232)),
89            // float range = 0
90            // 2^60 , 2^60 + 2^36
91            param_type(a, TypeParam(1152921573326323712)),
92            // 2^60 , 2^60 + 2^37
93            param_type(a, TypeParam(1152921642045800448)),
94            // float range = 2^38
95            // 2^60 , 2^60 + 2^38
96            param_type(a, TypeParam(1152921779484753920)),
97            // Limits
98            param_type(0, std::numeric_limits<TypeParam>::max()),
99            param_type(std::numeric_limits<TypeParam>::lowest(), 0),
100            param_type(0, std::numeric_limits<TypeParam>::epsilon()),
101            param_type(-std::numeric_limits<TypeParam>::epsilon(),
102                       std::numeric_limits<TypeParam>::epsilon()),
103            param_type(std::numeric_limits<TypeParam>::epsilon(),
104                       2 * std::numeric_limits<TypeParam>::epsilon()),
105        }) {
106     // Validate parameters.
107     const auto a = param.a();
108     const auto b = param.b();
109     absl::uniform_real_distribution<TypeParam> before(a, b);
110     EXPECT_EQ(before.a(), param.a());
111     EXPECT_EQ(before.b(), param.b());
112 
113     {
114       absl::uniform_real_distribution<TypeParam> via_param(param);
115       EXPECT_EQ(via_param, before);
116     }
117 
118     std::stringstream ss;
119     ss << before;
120     absl::uniform_real_distribution<TypeParam> after(TypeParam(1.0),
121                                                      TypeParam(3.1));
122 
123     EXPECT_NE(before.a(), after.a());
124     EXPECT_NE(before.b(), after.b());
125     EXPECT_NE(before.param(), after.param());
126     EXPECT_NE(before, after);
127 
128     ss >> after;
129 
130     EXPECT_EQ(before.a(), after.a());
131     EXPECT_EQ(before.b(), after.b());
132     EXPECT_EQ(before.param(), after.param());
133     EXPECT_EQ(before, after);
134 
135     // Smoke test.
136     auto sample_min = after.max();
137     auto sample_max = after.min();
138     for (int i = 0; i < kCount; i++) {
139       auto sample = after(gen);
140       // Failure here indicates a bug in uniform_real_distribution::operator(),
141       // or bad parameters--range too large, etc.
142       if (after.min() == after.max()) {
143         EXPECT_EQ(sample, after.min());
144       } else {
145         EXPECT_GE(sample, after.min());
146         EXPECT_LT(sample, after.max());
147       }
148       if (sample > sample_max) {
149         sample_max = sample;
150       }
151       if (sample < sample_min) {
152         sample_min = sample;
153       }
154     }
155 
156     if (!std::is_same<TypeParam, long double>::value) {
157       // static_cast<double>(long double) can overflow.
158       std::string msg = absl::StrCat("Range: ", static_cast<double>(sample_min),
159                                      ", ", static_cast<double>(sample_max));
160       ABSL_RAW_LOG(INFO, "%s", msg.c_str());
161     }
162   }
163 }
164 
165 #ifdef _MSC_VER
166 #pragma warning(push)
167 #pragma warning(disable:4756)  // Constant arithmetic overflow.
168 #endif
TYPED_TEST(UniformRealDistributionTest,ViolatesPreconditionsDeathTest)169 TYPED_TEST(UniformRealDistributionTest, ViolatesPreconditionsDeathTest) {
170 #if GTEST_HAS_DEATH_TEST
171   // Hi < Lo
172   EXPECT_DEBUG_DEATH(
173       { absl::uniform_real_distribution<TypeParam> dist(10.0, 1.0); }, "");
174 
175   // Hi - Lo > numeric_limits<>::max()
176   EXPECT_DEBUG_DEATH(
177       {
178         absl::uniform_real_distribution<TypeParam> dist(
179             std::numeric_limits<TypeParam>::lowest(),
180             std::numeric_limits<TypeParam>::max());
181       },
182       "");
183 #endif  // GTEST_HAS_DEATH_TEST
184 #if defined(NDEBUG)
185   // opt-mode, for invalid parameters, will generate a garbage value,
186   // but should not enter an infinite loop.
187   absl::InsecureBitGen gen;
188   {
189     absl::uniform_real_distribution<TypeParam> dist(10.0, 1.0);
190     auto x = dist(gen);
191     EXPECT_FALSE(std::isnan(x)) << x;
192   }
193   {
194     absl::uniform_real_distribution<TypeParam> dist(
195         std::numeric_limits<TypeParam>::lowest(),
196         std::numeric_limits<TypeParam>::max());
197     auto x = dist(gen);
198     // Infinite result.
199     EXPECT_FALSE(std::isfinite(x)) << x;
200   }
201 #endif  // NDEBUG
202 }
203 #ifdef _MSC_VER
204 #pragma warning(pop)  // warning(disable:4756)
205 #endif
206 
TYPED_TEST(UniformRealDistributionTest,TestMoments)207 TYPED_TEST(UniformRealDistributionTest, TestMoments) {
208   constexpr int kSize = 1000000;
209   std::vector<double> values(kSize);
210 
211   // We use a fixed bit generator for distribution accuracy tests.  This allows
212   // these tests to be deterministic, while still testing the qualify of the
213   // implementation.
214   absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};
215 
216   absl::uniform_real_distribution<TypeParam> dist;
217   for (int i = 0; i < kSize; i++) {
218     values[i] = dist(rng);
219   }
220 
221   const auto moments =
222       absl::random_internal::ComputeDistributionMoments(values);
223   EXPECT_NEAR(0.5, moments.mean, 0.01);
224   EXPECT_NEAR(1 / 12.0, moments.variance, 0.015);
225   EXPECT_NEAR(0.0, moments.skewness, 0.02);
226   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.015);
227 }
228 
TYPED_TEST(UniformRealDistributionTest,ChiSquaredTest50)229 TYPED_TEST(UniformRealDistributionTest, ChiSquaredTest50) {
230   using absl::random_internal::kChiSquared;
231   using param_type =
232       typename absl::uniform_real_distribution<TypeParam>::param_type;
233 
234   constexpr size_t kTrials = 100000;
235   constexpr int kBuckets = 50;
236   constexpr double kExpected =
237       static_cast<double>(kTrials) / static_cast<double>(kBuckets);
238 
239   // 1-in-100000 threshold, but remember, there are about 8 tests
240   // in this file. And the test could fail for other reasons.
241   // Empirically validated with --runs_per_test=10000.
242   const int kThreshold =
243       absl::random_internal::ChiSquareValue(kBuckets - 1, 0.999999);
244 
245   // We use a fixed bit generator for distribution accuracy tests.  This allows
246   // these tests to be deterministic, while still testing the qualify of the
247   // implementation.
248   absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};
249 
250   for (const auto& param : {param_type(0, 1), param_type(5, 12),
251                             param_type(-5, 13), param_type(-5, -2)}) {
252     const double min_val = param.a();
253     const double max_val = param.b();
254     const double factor = kBuckets / (max_val - min_val);
255 
256     std::vector<int32_t> counts(kBuckets, 0);
257     absl::uniform_real_distribution<TypeParam> dist(param);
258     for (size_t i = 0; i < kTrials; i++) {
259       auto x = dist(rng);
260       auto bucket = static_cast<size_t>((x - min_val) * factor);
261       counts[bucket]++;
262     }
263 
264     double chi_square = absl::random_internal::ChiSquareWithExpected(
265         std::begin(counts), std::end(counts), kExpected);
266     if (chi_square > kThreshold) {
267       double p_value =
268           absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
269 
270       // Chi-squared test failed. Output does not appear to be uniform.
271       std::string msg;
272       for (const auto& a : counts) {
273         absl::StrAppend(&msg, a, "\n");
274       }
275       absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
276       absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
277                       kThreshold);
278       ABSL_RAW_LOG(INFO, "%s", msg.c_str());
279       FAIL() << msg;
280     }
281   }
282 }
283 
TYPED_TEST(UniformRealDistributionTest,StabilityTest)284 TYPED_TEST(UniformRealDistributionTest, StabilityTest) {
285   // absl::uniform_real_distribution stability relies only on
286   // random_internal::RandU64ToDouble and random_internal::RandU64ToFloat.
287   absl::random_internal::sequence_urbg urbg(
288       {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
289        0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
290        0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
291        0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
292 
293   std::vector<int> output(12);
294 
295   absl::uniform_real_distribution<TypeParam> dist;
296   std::generate(std::begin(output), std::end(output), [&] {
297     return static_cast<int>(TypeParam(1000000) * dist(urbg));
298   });
299 
300   EXPECT_THAT(
301       output,  //
302       testing::ElementsAre(59, 999246, 762494, 395876, 167716, 82545, 925251,
303                            77341, 12527, 708791, 834451, 932808));
304 }
305 
TEST(UniformRealDistributionTest,AlgorithmBounds)306 TEST(UniformRealDistributionTest, AlgorithmBounds) {
307   absl::uniform_real_distribution<double> dist;
308 
309   {
310     // This returns the smallest value >0 from absl::uniform_real_distribution.
311     absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});
312     double a = dist(urbg);
313     EXPECT_EQ(a, 5.42101086242752217004e-20);
314   }
315 
316   {
317     // This returns a value very near 0.5 from absl::uniform_real_distribution.
318     absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});
319     double a = dist(urbg);
320     EXPECT_EQ(a, 0.499999999999999944489);
321   }
322   {
323     // This returns a value very near 0.5 from absl::uniform_real_distribution.
324     absl::random_internal::sequence_urbg urbg({0x8000000000000000ull});
325     double a = dist(urbg);
326     EXPECT_EQ(a, 0.5);
327   }
328 
329   {
330     // This returns the largest value <1 from absl::uniform_real_distribution.
331     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFEFull});
332     double a = dist(urbg);
333     EXPECT_EQ(a, 0.999999999999999888978);
334   }
335   {
336     // This *ALSO* returns the largest value <1.
337     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});
338     double a = dist(urbg);
339     EXPECT_EQ(a, 0.999999999999999888978);
340   }
341 }
342 
343 }  // namespace
344