• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/synchronization/mutex.h"
16 
17 #ifdef _WIN32
18 #include <windows.h>
19 #ifdef ERROR
20 #undef ERROR
21 #endif
22 #else
23 #include <fcntl.h>
24 #include <pthread.h>
25 #include <sched.h>
26 #include <sys/time.h>
27 #endif
28 
29 #include <assert.h>
30 #include <errno.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <time.h>
35 
36 #include <algorithm>
37 #include <atomic>
38 #include <cinttypes>
39 #include <thread>  // NOLINT(build/c++11)
40 
41 #include "absl/base/attributes.h"
42 #include "absl/base/call_once.h"
43 #include "absl/base/config.h"
44 #include "absl/base/dynamic_annotations.h"
45 #include "absl/base/internal/atomic_hook.h"
46 #include "absl/base/internal/cycleclock.h"
47 #include "absl/base/internal/hide_ptr.h"
48 #include "absl/base/internal/low_level_alloc.h"
49 #include "absl/base/internal/raw_logging.h"
50 #include "absl/base/internal/spinlock.h"
51 #include "absl/base/internal/sysinfo.h"
52 #include "absl/base/internal/thread_identity.h"
53 #include "absl/base/internal/tsan_mutex_interface.h"
54 #include "absl/base/port.h"
55 #include "absl/debugging/stacktrace.h"
56 #include "absl/debugging/symbolize.h"
57 #include "absl/synchronization/internal/graphcycles.h"
58 #include "absl/synchronization/internal/per_thread_sem.h"
59 #include "absl/time/time.h"
60 
61 using absl::base_internal::CurrentThreadIdentityIfPresent;
62 using absl::base_internal::PerThreadSynch;
63 using absl::base_internal::SchedulingGuard;
64 using absl::base_internal::ThreadIdentity;
65 using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity;
66 using absl::synchronization_internal::GraphCycles;
67 using absl::synchronization_internal::GraphId;
68 using absl::synchronization_internal::InvalidGraphId;
69 using absl::synchronization_internal::KernelTimeout;
70 using absl::synchronization_internal::PerThreadSem;
71 
72 extern "C" {
AbslInternalMutexYield()73 ABSL_ATTRIBUTE_WEAK void AbslInternalMutexYield() { std::this_thread::yield(); }
74 }  // extern "C"
75 
76 namespace absl {
77 ABSL_NAMESPACE_BEGIN
78 
79 namespace {
80 
81 #if defined(ABSL_HAVE_THREAD_SANITIZER)
82 constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore;
83 #else
84 constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort;
85 #endif
86 
87 ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection(
88     kDeadlockDetectionDefault);
89 ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false);
90 
91 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
92     absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
93         submit_profile_data;
94 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<void (*)(
95     const char *msg, const void *obj, int64_t wait_cycles)>
96     mutex_tracer;
97 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
98     absl::base_internal::AtomicHook<void (*)(const char *msg, const void *cv)>
99         cond_var_tracer;
100 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<
101     bool (*)(const void *pc, char *out, int out_size)>
102     symbolizer(absl::Symbolize);
103 
104 }  // namespace
105 
106 static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
107                                           bool locking, bool trylock,
108                                           bool read_lock);
109 
RegisterMutexProfiler(void (* fn)(int64_t wait_timestamp))110 void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)) {
111   submit_profile_data.Store(fn);
112 }
113 
RegisterMutexTracer(void (* fn)(const char * msg,const void * obj,int64_t wait_cycles))114 void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
115                                     int64_t wait_cycles)) {
116   mutex_tracer.Store(fn);
117 }
118 
RegisterCondVarTracer(void (* fn)(const char * msg,const void * cv))119 void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)) {
120   cond_var_tracer.Store(fn);
121 }
122 
RegisterSymbolizer(bool (* fn)(const void * pc,char * out,int out_size))123 void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)) {
124   symbolizer.Store(fn);
125 }
126 
127 struct ABSL_CACHELINE_ALIGNED MutexGlobals {
128   absl::once_flag once;
129   int num_cpus = 0;
130   int spinloop_iterations = 0;
131 };
132 
GetMutexGlobals()133 static const MutexGlobals& GetMutexGlobals() {
134   ABSL_CONST_INIT static MutexGlobals data;
135   absl::base_internal::LowLevelCallOnce(&data.once, [&]() {
136     data.num_cpus = absl::base_internal::NumCPUs();
137     data.spinloop_iterations = data.num_cpus > 1 ? 1500 : 0;
138   });
139   return data;
140 }
141 
142 // Spinlock delay on iteration c.  Returns new c.
143 namespace {
144   enum DelayMode { AGGRESSIVE, GENTLE };
145 };
146 
147 namespace synchronization_internal {
MutexDelay(int32_t c,int mode)148 int MutexDelay(int32_t c, int mode) {
149   // If this a uniprocessor, only yield/sleep.  Otherwise, if the mode is
150   // aggressive then spin many times before yielding.  If the mode is
151   // gentle then spin only a few times before yielding.  Aggressive spinning is
152   // used to ensure that an Unlock() call, which  must get the spin lock for
153   // any thread to make progress gets it without undue delay.
154   const int32_t limit =
155       GetMutexGlobals().num_cpus > 1 ? (mode == AGGRESSIVE ? 5000 : 250) : 0;
156   if (c < limit) {
157     // Spin.
158     c++;
159   } else {
160     SchedulingGuard::ScopedEnable enable_rescheduling;
161     ABSL_TSAN_MUTEX_PRE_DIVERT(nullptr, 0);
162     if (c == limit) {
163       // Yield once.
164       AbslInternalMutexYield();
165       c++;
166     } else {
167       // Then wait.
168       absl::SleepFor(absl::Microseconds(10));
169       c = 0;
170     }
171     ABSL_TSAN_MUTEX_POST_DIVERT(nullptr, 0);
172   }
173   return c;
174 }
175 }  // namespace synchronization_internal
176 
177 // --------------------------Generic atomic ops
178 // Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to
179 // "*pv | bits" if necessary.  Wait until (*pv & wait_until_clear)==0
180 // before making any change.
181 // This is used to set flags in mutex and condition variable words.
AtomicSetBits(std::atomic<intptr_t> * pv,intptr_t bits,intptr_t wait_until_clear)182 static void AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits,
183                           intptr_t wait_until_clear) {
184   intptr_t v;
185   do {
186     v = pv->load(std::memory_order_relaxed);
187   } while ((v & bits) != bits &&
188            ((v & wait_until_clear) != 0 ||
189             !pv->compare_exchange_weak(v, v | bits,
190                                        std::memory_order_release,
191                                        std::memory_order_relaxed)));
192 }
193 
194 // Ensure that "(*pv & bits) == 0" by doing an atomic update of "*pv" to
195 // "*pv & ~bits" if necessary.  Wait until (*pv & wait_until_clear)==0
196 // before making any change.
197 // This is used to unset flags in mutex and condition variable words.
AtomicClearBits(std::atomic<intptr_t> * pv,intptr_t bits,intptr_t wait_until_clear)198 static void AtomicClearBits(std::atomic<intptr_t>* pv, intptr_t bits,
199                             intptr_t wait_until_clear) {
200   intptr_t v;
201   do {
202     v = pv->load(std::memory_order_relaxed);
203   } while ((v & bits) != 0 &&
204            ((v & wait_until_clear) != 0 ||
205             !pv->compare_exchange_weak(v, v & ~bits,
206                                        std::memory_order_release,
207                                        std::memory_order_relaxed)));
208 }
209 
210 //------------------------------------------------------------------
211 
212 // Data for doing deadlock detection.
213 ABSL_CONST_INIT static absl::base_internal::SpinLock deadlock_graph_mu(
214     absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
215 
216 // Graph used to detect deadlocks.
217 ABSL_CONST_INIT static GraphCycles *deadlock_graph
218     ABSL_GUARDED_BY(deadlock_graph_mu) ABSL_PT_GUARDED_BY(deadlock_graph_mu);
219 
220 //------------------------------------------------------------------
221 // An event mechanism for debugging mutex use.
222 // It also allows mutexes to be given names for those who can't handle
223 // addresses, and instead like to give their data structures names like
224 // "Henry", "Fido", or "Rupert IV, King of Yondavia".
225 
226 namespace {  // to prevent name pollution
227 enum {       // Mutex and CondVar events passed as "ev" to PostSynchEvent
228              // Mutex events
229   SYNCH_EV_TRYLOCK_SUCCESS,
230   SYNCH_EV_TRYLOCK_FAILED,
231   SYNCH_EV_READERTRYLOCK_SUCCESS,
232   SYNCH_EV_READERTRYLOCK_FAILED,
233   SYNCH_EV_LOCK,
234   SYNCH_EV_LOCK_RETURNING,
235   SYNCH_EV_READERLOCK,
236   SYNCH_EV_READERLOCK_RETURNING,
237   SYNCH_EV_UNLOCK,
238   SYNCH_EV_READERUNLOCK,
239 
240   // CondVar events
241   SYNCH_EV_WAIT,
242   SYNCH_EV_WAIT_RETURNING,
243   SYNCH_EV_SIGNAL,
244   SYNCH_EV_SIGNALALL,
245 };
246 
247 enum {                    // Event flags
248   SYNCH_F_R = 0x01,       // reader event
249   SYNCH_F_LCK = 0x02,     // PostSynchEvent called with mutex held
250   SYNCH_F_TRY = 0x04,     // TryLock or ReaderTryLock
251   SYNCH_F_UNLOCK = 0x08,  // Unlock or ReaderUnlock
252 
253   SYNCH_F_LCK_W = SYNCH_F_LCK,
254   SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R,
255 };
256 }  // anonymous namespace
257 
258 // Properties of the events.
259 static const struct {
260   int flags;
261   const char *msg;
262 } event_properties[] = {
263     {SYNCH_F_LCK_W | SYNCH_F_TRY, "TryLock succeeded "},
264     {0, "TryLock failed "},
265     {SYNCH_F_LCK_R | SYNCH_F_TRY, "ReaderTryLock succeeded "},
266     {0, "ReaderTryLock failed "},
267     {0, "Lock blocking "},
268     {SYNCH_F_LCK_W, "Lock returning "},
269     {0, "ReaderLock blocking "},
270     {SYNCH_F_LCK_R, "ReaderLock returning "},
271     {SYNCH_F_LCK_W | SYNCH_F_UNLOCK, "Unlock "},
272     {SYNCH_F_LCK_R | SYNCH_F_UNLOCK, "ReaderUnlock "},
273     {0, "Wait on "},
274     {0, "Wait unblocked "},
275     {0, "Signal on "},
276     {0, "SignalAll on "},
277 };
278 
279 ABSL_CONST_INIT static absl::base_internal::SpinLock synch_event_mu(
280     absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
281 
282 // Hash table size; should be prime > 2.
283 // Can't be too small, as it's used for deadlock detection information.
284 static constexpr uint32_t kNSynchEvent = 1031;
285 
286 static struct SynchEvent {     // this is a trivial hash table for the events
287   // struct is freed when refcount reaches 0
288   int refcount ABSL_GUARDED_BY(synch_event_mu);
289 
290   // buckets have linear, 0-terminated  chains
291   SynchEvent *next ABSL_GUARDED_BY(synch_event_mu);
292 
293   // Constant after initialization
294   uintptr_t masked_addr;  // object at this address is called "name"
295 
296   // No explicit synchronization used.  Instead we assume that the
297   // client who enables/disables invariants/logging on a Mutex does so
298   // while the Mutex is not being concurrently accessed by others.
299   void (*invariant)(void *arg);  // called on each event
300   void *arg;            // first arg to (*invariant)()
301   bool log;             // logging turned on
302 
303   // Constant after initialization
304   char name[1];         // actually longer---NUL-terminated string
305 } * synch_event[kNSynchEvent] ABSL_GUARDED_BY(synch_event_mu);
306 
307 // Ensure that the object at "addr" has a SynchEvent struct associated with it,
308 // set "bits" in the word there (waiting until lockbit is clear before doing
309 // so), and return a refcounted reference that will remain valid until
310 // UnrefSynchEvent() is called.  If a new SynchEvent is allocated,
311 // the string name is copied into it.
312 // When used with a mutex, the caller should also ensure that kMuEvent
313 // is set in the mutex word, and similarly for condition variables and kCVEvent.
EnsureSynchEvent(std::atomic<intptr_t> * addr,const char * name,intptr_t bits,intptr_t lockbit)314 static SynchEvent *EnsureSynchEvent(std::atomic<intptr_t> *addr,
315                                     const char *name, intptr_t bits,
316                                     intptr_t lockbit) {
317   uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
318   SynchEvent *e;
319   // first look for existing SynchEvent struct..
320   synch_event_mu.Lock();
321   for (e = synch_event[h];
322        e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
323        e = e->next) {
324   }
325   if (e == nullptr) {  // no SynchEvent struct found; make one.
326     if (name == nullptr) {
327       name = "";
328     }
329     size_t l = strlen(name);
330     e = reinterpret_cast<SynchEvent *>(
331         base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l));
332     e->refcount = 2;    // one for return value, one for linked list
333     e->masked_addr = base_internal::HidePtr(addr);
334     e->invariant = nullptr;
335     e->arg = nullptr;
336     e->log = false;
337     strcpy(e->name, name);  // NOLINT(runtime/printf)
338     e->next = synch_event[h];
339     AtomicSetBits(addr, bits, lockbit);
340     synch_event[h] = e;
341   } else {
342     e->refcount++;      // for return value
343   }
344   synch_event_mu.Unlock();
345   return e;
346 }
347 
348 // Deallocate the SynchEvent *e, whose refcount has fallen to zero.
DeleteSynchEvent(SynchEvent * e)349 static void DeleteSynchEvent(SynchEvent *e) {
350   base_internal::LowLevelAlloc::Free(e);
351 }
352 
353 // Decrement the reference count of *e, or do nothing if e==null.
UnrefSynchEvent(SynchEvent * e)354 static void UnrefSynchEvent(SynchEvent *e) {
355   if (e != nullptr) {
356     synch_event_mu.Lock();
357     bool del = (--(e->refcount) == 0);
358     synch_event_mu.Unlock();
359     if (del) {
360       DeleteSynchEvent(e);
361     }
362   }
363 }
364 
365 // Forget the mapping from the object (Mutex or CondVar) at address addr
366 // to SynchEvent object, and clear "bits" in its word (waiting until lockbit
367 // is clear before doing so).
ForgetSynchEvent(std::atomic<intptr_t> * addr,intptr_t bits,intptr_t lockbit)368 static void ForgetSynchEvent(std::atomic<intptr_t> *addr, intptr_t bits,
369                              intptr_t lockbit) {
370   uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
371   SynchEvent **pe;
372   SynchEvent *e;
373   synch_event_mu.Lock();
374   for (pe = &synch_event[h];
375        (e = *pe) != nullptr && e->masked_addr != base_internal::HidePtr(addr);
376        pe = &e->next) {
377   }
378   bool del = false;
379   if (e != nullptr) {
380     *pe = e->next;
381     del = (--(e->refcount) == 0);
382   }
383   AtomicClearBits(addr, bits, lockbit);
384   synch_event_mu.Unlock();
385   if (del) {
386     DeleteSynchEvent(e);
387   }
388 }
389 
390 // Return a refcounted reference to the SynchEvent of the object at address
391 // "addr", if any.  The pointer returned is valid until the UnrefSynchEvent() is
392 // called.
GetSynchEvent(const void * addr)393 static SynchEvent *GetSynchEvent(const void *addr) {
394   uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
395   SynchEvent *e;
396   synch_event_mu.Lock();
397   for (e = synch_event[h];
398        e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
399        e = e->next) {
400   }
401   if (e != nullptr) {
402     e->refcount++;
403   }
404   synch_event_mu.Unlock();
405   return e;
406 }
407 
408 // Called when an event "ev" occurs on a Mutex of CondVar "obj"
409 // if event recording is on
PostSynchEvent(void * obj,int ev)410 static void PostSynchEvent(void *obj, int ev) {
411   SynchEvent *e = GetSynchEvent(obj);
412   // logging is on if event recording is on and either there's no event struct,
413   // or it explicitly says to log
414   if (e == nullptr || e->log) {
415     void *pcs[40];
416     int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1);
417     // A buffer with enough space for the ASCII for all the PCs, even on a
418     // 64-bit machine.
419     char buffer[ABSL_ARRAYSIZE(pcs) * 24];
420     int pos = snprintf(buffer, sizeof (buffer), " @");
421     for (int i = 0; i != n; i++) {
422       pos += snprintf(&buffer[pos], sizeof (buffer) - pos, " %p", pcs[i]);
423     }
424     ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj,
425                  (e == nullptr ? "" : e->name), buffer);
426   }
427   const int flags = event_properties[ev].flags;
428   if ((flags & SYNCH_F_LCK) != 0 && e != nullptr && e->invariant != nullptr) {
429     // Calling the invariant as is causes problems under ThreadSanitizer.
430     // We are currently inside of Mutex Lock/Unlock and are ignoring all
431     // memory accesses and synchronization. If the invariant transitively
432     // synchronizes something else and we ignore the synchronization, we will
433     // get false positive race reports later.
434     // Reuse EvalConditionAnnotated to properly call into user code.
435     struct local {
436       static bool pred(SynchEvent *ev) {
437         (*ev->invariant)(ev->arg);
438         return false;
439       }
440     };
441     Condition cond(&local::pred, e);
442     Mutex *mu = static_cast<Mutex *>(obj);
443     const bool locking = (flags & SYNCH_F_UNLOCK) == 0;
444     const bool trylock = (flags & SYNCH_F_TRY) != 0;
445     const bool read_lock = (flags & SYNCH_F_R) != 0;
446     EvalConditionAnnotated(&cond, mu, locking, trylock, read_lock);
447   }
448   UnrefSynchEvent(e);
449 }
450 
451 //------------------------------------------------------------------
452 
453 // The SynchWaitParams struct encapsulates the way in which a thread is waiting:
454 // whether it has a timeout, the condition, exclusive/shared, and whether a
455 // condition variable wait has an associated Mutex (as opposed to another
456 // type of lock).  It also points to the PerThreadSynch struct of its thread.
457 // cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue().
458 //
459 // This structure is held on the stack rather than directly in
460 // PerThreadSynch because a thread can be waiting on multiple Mutexes if,
461 // while waiting on one Mutex, the implementation calls a client callback
462 // (such as a Condition function) that acquires another Mutex. We don't
463 // strictly need to allow this, but programmers become confused if we do not
464 // allow them to use functions such a LOG() within Condition functions.  The
465 // PerThreadSynch struct points at the most recent SynchWaitParams struct when
466 // the thread is on a Mutex's waiter queue.
467 struct SynchWaitParams {
SynchWaitParamsabsl::SynchWaitParams468   SynchWaitParams(Mutex::MuHow how_arg, const Condition *cond_arg,
469                   KernelTimeout timeout_arg, Mutex *cvmu_arg,
470                   PerThreadSynch *thread_arg,
471                   std::atomic<intptr_t> *cv_word_arg)
472       : how(how_arg),
473         cond(cond_arg),
474         timeout(timeout_arg),
475         cvmu(cvmu_arg),
476         thread(thread_arg),
477         cv_word(cv_word_arg),
478         contention_start_cycles(base_internal::CycleClock::Now()) {}
479 
480   const Mutex::MuHow how;  // How this thread needs to wait.
481   const Condition *cond;  // The condition that this thread is waiting for.
482                           // In Mutex, this field is set to zero if a timeout
483                           // expires.
484   KernelTimeout timeout;  // timeout expiry---absolute time
485                           // In Mutex, this field is set to zero if a timeout
486                           // expires.
487   Mutex *const cvmu;      // used for transfer from cond var to mutex
488   PerThreadSynch *const thread;  // thread that is waiting
489 
490   // If not null, thread should be enqueued on the CondVar whose state
491   // word is cv_word instead of queueing normally on the Mutex.
492   std::atomic<intptr_t> *cv_word;
493 
494   int64_t contention_start_cycles;  // Time (in cycles) when this thread started
495                                   // to contend for the mutex.
496 };
497 
498 struct SynchLocksHeld {
499   int n;              // number of valid entries in locks[]
500   bool overflow;      // true iff we overflowed the array at some point
501   struct {
502     Mutex *mu;        // lock acquired
503     int32_t count;      // times acquired
504     GraphId id;       // deadlock_graph id of acquired lock
505   } locks[40];
506   // If a thread overfills the array during deadlock detection, we
507   // continue, discarding information as needed.  If no overflow has
508   // taken place, we can provide more error checking, such as
509   // detecting when a thread releases a lock it does not hold.
510 };
511 
512 // A sentinel value in lists that is not 0.
513 // A 0 value is used to mean "not on a list".
514 static PerThreadSynch *const kPerThreadSynchNull =
515   reinterpret_cast<PerThreadSynch *>(1);
516 
LocksHeldAlloc()517 static SynchLocksHeld *LocksHeldAlloc() {
518   SynchLocksHeld *ret = reinterpret_cast<SynchLocksHeld *>(
519       base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld)));
520   ret->n = 0;
521   ret->overflow = false;
522   return ret;
523 }
524 
525 // Return the PerThreadSynch-struct for this thread.
Synch_GetPerThread()526 static PerThreadSynch *Synch_GetPerThread() {
527   ThreadIdentity *identity = GetOrCreateCurrentThreadIdentity();
528   return &identity->per_thread_synch;
529 }
530 
Synch_GetPerThreadAnnotated(Mutex * mu)531 static PerThreadSynch *Synch_GetPerThreadAnnotated(Mutex *mu) {
532   if (mu) {
533     ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
534   }
535   PerThreadSynch *w = Synch_GetPerThread();
536   if (mu) {
537     ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
538   }
539   return w;
540 }
541 
Synch_GetAllLocks()542 static SynchLocksHeld *Synch_GetAllLocks() {
543   PerThreadSynch *s = Synch_GetPerThread();
544   if (s->all_locks == nullptr) {
545     s->all_locks = LocksHeldAlloc();  // Freed by ReclaimThreadIdentity.
546   }
547   return s->all_locks;
548 }
549 
550 // Post on "w"'s associated PerThreadSem.
IncrementSynchSem(Mutex * mu,PerThreadSynch * w)551 inline void Mutex::IncrementSynchSem(Mutex *mu, PerThreadSynch *w) {
552   if (mu) {
553     ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
554   }
555   PerThreadSem::Post(w->thread_identity());
556   if (mu) {
557     ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
558   }
559 }
560 
561 // Wait on "w"'s associated PerThreadSem; returns false if timeout expired.
DecrementSynchSem(Mutex * mu,PerThreadSynch * w,KernelTimeout t)562 bool Mutex::DecrementSynchSem(Mutex *mu, PerThreadSynch *w, KernelTimeout t) {
563   if (mu) {
564     ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
565   }
566   assert(w == Synch_GetPerThread());
567   static_cast<void>(w);
568   bool res = PerThreadSem::Wait(t);
569   if (mu) {
570     ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
571   }
572   return res;
573 }
574 
575 // We're in a fatal signal handler that hopes to use Mutex and to get
576 // lucky by not deadlocking.  We try to improve its chances of success
577 // by effectively disabling some of the consistency checks.  This will
578 // prevent certain ABSL_RAW_CHECK() statements from being triggered when
579 // re-rentry is detected.  The ABSL_RAW_CHECK() statements are those in the
580 // Mutex code checking that the "waitp" field has not been reused.
InternalAttemptToUseMutexInFatalSignalHandler()581 void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() {
582   // Fix the per-thread state only if it exists.
583   ThreadIdentity *identity = CurrentThreadIdentityIfPresent();
584   if (identity != nullptr) {
585     identity->per_thread_synch.suppress_fatal_errors = true;
586   }
587   // Don't do deadlock detection when we are already failing.
588   synch_deadlock_detection.store(OnDeadlockCycle::kIgnore,
589                                  std::memory_order_release);
590 }
591 
592 // --------------------------time support
593 
594 // Return the current time plus the timeout.  Use the same clock as
595 // PerThreadSem::Wait() for consistency.  Unfortunately, we don't have
596 // such a choice when a deadline is given directly.
DeadlineFromTimeout(absl::Duration timeout)597 static absl::Time DeadlineFromTimeout(absl::Duration timeout) {
598 #ifndef _WIN32
599   struct timeval tv;
600   gettimeofday(&tv, nullptr);
601   return absl::TimeFromTimeval(tv) + timeout;
602 #else
603   return absl::Now() + timeout;
604 #endif
605 }
606 
607 // --------------------------Mutexes
608 
609 // In the layout below, the msb of the bottom byte is currently unused.  Also,
610 // the following constraints were considered in choosing the layout:
611 //  o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and
612 //    0xcd) are illegal: reader and writer lock both held.
613 //  o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the
614 //    bit-twiddling trick in Mutex::Unlock().
615 //  o kMuWriter / kMuReader == kMuWrWait / kMuWait,
616 //    to enable the bit-twiddling trick in CheckForMutexCorruption().
617 static const intptr_t kMuReader      = 0x0001L;  // a reader holds the lock
618 static const intptr_t kMuDesig       = 0x0002L;  // there's a designated waker
619 static const intptr_t kMuWait        = 0x0004L;  // threads are waiting
620 static const intptr_t kMuWriter      = 0x0008L;  // a writer holds the lock
621 static const intptr_t kMuEvent       = 0x0010L;  // record this mutex's events
622 // INVARIANT1:  there's a thread that was blocked on the mutex, is
623 // no longer, yet has not yet acquired the mutex.  If there's a
624 // designated waker, all threads can avoid taking the slow path in
625 // unlock because the designated waker will subsequently acquire
626 // the lock and wake someone.  To maintain INVARIANT1 the bit is
627 // set when a thread is unblocked(INV1a), and threads that were
628 // unblocked reset the bit when they either acquire or re-block
629 // (INV1b).
630 static const intptr_t kMuWrWait      = 0x0020L;  // runnable writer is waiting
631                                                  // for a reader
632 static const intptr_t kMuSpin        = 0x0040L;  // spinlock protects wait list
633 static const intptr_t kMuLow         = 0x00ffL;  // mask all mutex bits
634 static const intptr_t kMuHigh        = ~kMuLow;  // mask pointer/reader count
635 
636 // Hack to make constant values available to gdb pretty printer
637 enum {
638   kGdbMuSpin = kMuSpin,
639   kGdbMuEvent = kMuEvent,
640   kGdbMuWait = kMuWait,
641   kGdbMuWriter = kMuWriter,
642   kGdbMuDesig = kMuDesig,
643   kGdbMuWrWait = kMuWrWait,
644   kGdbMuReader = kMuReader,
645   kGdbMuLow = kMuLow,
646 };
647 
648 // kMuWrWait implies kMuWait.
649 // kMuReader and kMuWriter are mutually exclusive.
650 // If kMuReader is zero, there are no readers.
651 // Otherwise, if kMuWait is zero, the high order bits contain a count of the
652 // number of readers.  Otherwise, the reader count is held in
653 // PerThreadSynch::readers of the most recently queued waiter, again in the
654 // bits above kMuLow.
655 static const intptr_t kMuOne = 0x0100;  // a count of one reader
656 
657 // flags passed to Enqueue and LockSlow{,WithTimeout,Loop}
658 static const int kMuHasBlocked = 0x01;  // already blocked (MUST == 1)
659 static const int kMuIsCond = 0x02;      // conditional waiter (CV or Condition)
660 
661 static_assert(PerThreadSynch::kAlignment > kMuLow,
662               "PerThreadSynch::kAlignment must be greater than kMuLow");
663 
664 // This struct contains various bitmasks to be used in
665 // acquiring and releasing a mutex in a particular mode.
666 struct MuHowS {
667   // if all the bits in fast_need_zero are zero, the lock can be acquired by
668   // adding fast_add and oring fast_or.  The bit kMuDesig should be reset iff
669   // this is the designated waker.
670   intptr_t fast_need_zero;
671   intptr_t fast_or;
672   intptr_t fast_add;
673 
674   intptr_t slow_need_zero;  // fast_need_zero with events (e.g. logging)
675 
676   intptr_t slow_inc_need_zero;  // if all the bits in slow_inc_need_zero are
677                                 // zero a reader can acquire a read share by
678                                 // setting the reader bit and incrementing
679                                 // the reader count (in last waiter since
680                                 // we're now slow-path).  kMuWrWait be may
681                                 // be ignored if we already waited once.
682 };
683 
684 static const MuHowS kSharedS = {
685     // shared or read lock
686     kMuWriter | kMuWait | kMuEvent,   // fast_need_zero
687     kMuReader,                        // fast_or
688     kMuOne,                           // fast_add
689     kMuWriter | kMuWait,              // slow_need_zero
690     kMuSpin | kMuWriter | kMuWrWait,  // slow_inc_need_zero
691 };
692 static const MuHowS kExclusiveS = {
693     // exclusive or write lock
694     kMuWriter | kMuReader | kMuEvent,  // fast_need_zero
695     kMuWriter,                         // fast_or
696     0,                                 // fast_add
697     kMuWriter | kMuReader,             // slow_need_zero
698     ~static_cast<intptr_t>(0),         // slow_inc_need_zero
699 };
700 static const Mutex::MuHow kShared = &kSharedS;        // shared lock
701 static const Mutex::MuHow kExclusive = &kExclusiveS;  // exclusive lock
702 
703 #ifdef NDEBUG
704 static constexpr bool kDebugMode = false;
705 #else
706 static constexpr bool kDebugMode = true;
707 #endif
708 
709 #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE
TsanFlags(Mutex::MuHow how)710 static unsigned TsanFlags(Mutex::MuHow how) {
711   return how == kShared ? __tsan_mutex_read_lock : 0;
712 }
713 #endif
714 
DebugOnlyIsExiting()715 static bool DebugOnlyIsExiting() {
716   return false;
717 }
718 
~Mutex()719 Mutex::~Mutex() {
720   intptr_t v = mu_.load(std::memory_order_relaxed);
721   if ((v & kMuEvent) != 0 && !DebugOnlyIsExiting()) {
722     ForgetSynchEvent(&this->mu_, kMuEvent, kMuSpin);
723   }
724   if (kDebugMode) {
725     this->ForgetDeadlockInfo();
726   }
727   ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static);
728 }
729 
EnableDebugLog(const char * name)730 void Mutex::EnableDebugLog(const char *name) {
731   SynchEvent *e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin);
732   e->log = true;
733   UnrefSynchEvent(e);
734 }
735 
EnableMutexInvariantDebugging(bool enabled)736 void EnableMutexInvariantDebugging(bool enabled) {
737   synch_check_invariants.store(enabled, std::memory_order_release);
738 }
739 
EnableInvariantDebugging(void (* invariant)(void *),void * arg)740 void Mutex::EnableInvariantDebugging(void (*invariant)(void *),
741                                      void *arg) {
742   if (synch_check_invariants.load(std::memory_order_acquire) &&
743       invariant != nullptr) {
744     SynchEvent *e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin);
745     e->invariant = invariant;
746     e->arg = arg;
747     UnrefSynchEvent(e);
748   }
749 }
750 
SetMutexDeadlockDetectionMode(OnDeadlockCycle mode)751 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) {
752   synch_deadlock_detection.store(mode, std::memory_order_release);
753 }
754 
755 // Return true iff threads x and y are waiting on the same condition for the
756 // same type of lock.  Requires that x and y be waiting on the same Mutex
757 // queue.
MuSameCondition(PerThreadSynch * x,PerThreadSynch * y)758 static bool MuSameCondition(PerThreadSynch *x, PerThreadSynch *y) {
759   return x->waitp->how == y->waitp->how &&
760          Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond);
761 }
762 
763 // Given the contents of a mutex word containing a PerThreadSynch pointer,
764 // return the pointer.
GetPerThreadSynch(intptr_t v)765 static inline PerThreadSynch *GetPerThreadSynch(intptr_t v) {
766   return reinterpret_cast<PerThreadSynch *>(v & kMuHigh);
767 }
768 
769 // The next several routines maintain the per-thread next and skip fields
770 // used in the Mutex waiter queue.
771 // The queue is a circular singly-linked list, of which the "head" is the
772 // last element, and head->next if the first element.
773 // The skip field has the invariant:
774 //   For thread x, x->skip is one of:
775 //     - invalid (iff x is not in a Mutex wait queue),
776 //     - null, or
777 //     - a pointer to a distinct thread waiting later in the same Mutex queue
778 //       such that all threads in [x, x->skip] have the same condition and
779 //       lock type (MuSameCondition() is true for all pairs in [x, x->skip]).
780 // In addition, if x->skip is  valid, (x->may_skip || x->skip == null)
781 //
782 // By the spec of MuSameCondition(), it is not necessary when removing the
783 // first runnable thread y from the front a Mutex queue to adjust the skip
784 // field of another thread x because if x->skip==y, x->skip must (have) become
785 // invalid before y is removed.  The function TryRemove can remove a specified
786 // thread from an arbitrary position in the queue whether runnable or not, so
787 // it fixes up skip fields that would otherwise be left dangling.
788 // The statement
789 //     if (x->may_skip && MuSameCondition(x, x->next)) { x->skip = x->next; }
790 // maintains the invariant provided x is not the last waiter in a Mutex queue
791 // The statement
792 //          if (x->skip != null) { x->skip = x->skip->skip; }
793 // maintains the invariant.
794 
795 // Returns the last thread y in a mutex waiter queue such that all threads in
796 // [x, y] inclusive share the same condition.  Sets skip fields of some threads
797 // in that range to optimize future evaluation of Skip() on x values in
798 // the range.  Requires thread x is in a mutex waiter queue.
799 // The locking is unusual.  Skip() is called under these conditions:
800 //   - spinlock is held in call from Enqueue(), with maybe_unlocking == false
801 //   - Mutex is held in call from UnlockSlow() by last unlocker, with
802 //     maybe_unlocking == true
803 //   - both Mutex and spinlock are held in call from DequeueAllWakeable() (from
804 //     UnlockSlow()) and TryRemove()
805 // These cases are mutually exclusive, so Skip() never runs concurrently
806 // with itself on the same Mutex.   The skip chain is used in these other places
807 // that cannot occur concurrently:
808 //   - FixSkip() (from TryRemove()) - spinlock and Mutex are held)
809 //   - Dequeue() (with spinlock and Mutex held)
810 //   - UnlockSlow() (with spinlock and Mutex held)
811 // A more complex case is Enqueue()
812 //   - Enqueue() (with spinlock held and maybe_unlocking == false)
813 //               This is the first case in which Skip is called, above.
814 //   - Enqueue() (without spinlock held; but queue is empty and being freshly
815 //                formed)
816 //   - Enqueue() (with spinlock held and maybe_unlocking == true)
817 // The first case has mutual exclusion, and the second isolation through
818 // working on an otherwise unreachable data structure.
819 // In the last case, Enqueue() is required to change no skip/next pointers
820 // except those in the added node and the former "head" node.  This implies
821 // that the new node is added after head, and so must be the new head or the
822 // new front of the queue.
Skip(PerThreadSynch * x)823 static PerThreadSynch *Skip(PerThreadSynch *x) {
824   PerThreadSynch *x0 = nullptr;
825   PerThreadSynch *x1 = x;
826   PerThreadSynch *x2 = x->skip;
827   if (x2 != nullptr) {
828     // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence
829     // such that   x1 == x0->skip && x2 == x1->skip
830     while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) {
831       x0->skip = x2;      // short-circuit skip from x0 to x2
832     }
833     x->skip = x1;         // short-circuit skip from x to result
834   }
835   return x1;
836 }
837 
838 // "ancestor" appears before "to_be_removed" in the same Mutex waiter queue.
839 // The latter is going to be removed out of order, because of a timeout.
840 // Check whether "ancestor" has a skip field pointing to "to_be_removed",
841 // and fix it if it does.
FixSkip(PerThreadSynch * ancestor,PerThreadSynch * to_be_removed)842 static void FixSkip(PerThreadSynch *ancestor, PerThreadSynch *to_be_removed) {
843   if (ancestor->skip == to_be_removed) {  // ancestor->skip left dangling
844     if (to_be_removed->skip != nullptr) {
845       ancestor->skip = to_be_removed->skip;  // can skip past to_be_removed
846     } else if (ancestor->next != to_be_removed) {  // they are not adjacent
847       ancestor->skip = ancestor->next;             // can skip one past ancestor
848     } else {
849       ancestor->skip = nullptr;  // can't skip at all
850     }
851   }
852 }
853 
854 static void CondVarEnqueue(SynchWaitParams *waitp);
855 
856 // Enqueue thread "waitp->thread" on a waiter queue.
857 // Called with mutex spinlock held if head != nullptr
858 // If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is
859 // idempotent; it alters no state associated with the existing (empty)
860 // queue.
861 //
862 // If waitp->cv_word == nullptr, queue the thread at either the front or
863 // the end (according to its priority) of the circular mutex waiter queue whose
864 // head is "head", and return the new head.  mu is the previous mutex state,
865 // which contains the reader count (perhaps adjusted for the operation in
866 // progress) if the list was empty and a read lock held, and the holder hint if
867 // the list was empty and a write lock held.  (flags & kMuIsCond) indicates
868 // whether this thread was transferred from a CondVar or is waiting for a
869 // non-trivial condition.  In this case, Enqueue() never returns nullptr
870 //
871 // If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is
872 // returned. This mechanism is used by CondVar to queue a thread on the
873 // condition variable queue instead of the mutex queue in implementing Wait().
874 // In this case, Enqueue() can return nullptr (if head==nullptr).
Enqueue(PerThreadSynch * head,SynchWaitParams * waitp,intptr_t mu,int flags)875 static PerThreadSynch *Enqueue(PerThreadSynch *head,
876                                SynchWaitParams *waitp, intptr_t mu, int flags) {
877   // If we have been given a cv_word, call CondVarEnqueue() and return
878   // the previous head of the Mutex waiter queue.
879   if (waitp->cv_word != nullptr) {
880     CondVarEnqueue(waitp);
881     return head;
882   }
883 
884   PerThreadSynch *s = waitp->thread;
885   ABSL_RAW_CHECK(
886       s->waitp == nullptr ||    // normal case
887           s->waitp == waitp ||  // Fer()---transfer from condition variable
888           s->suppress_fatal_errors,
889       "detected illegal recursion into Mutex code");
890   s->waitp = waitp;
891   s->skip = nullptr;             // maintain skip invariant (see above)
892   s->may_skip = true;            // always true on entering queue
893   s->wake = false;               // not being woken
894   s->cond_waiter = ((flags & kMuIsCond) != 0);
895   if (head == nullptr) {         // s is the only waiter
896     s->next = s;                 // it's the only entry in the cycle
897     s->readers = mu;             // reader count is from mu word
898     s->maybe_unlocking = false;  // no one is searching an empty list
899     head = s;                    // s is new head
900   } else {
901     PerThreadSynch *enqueue_after = nullptr;  // we'll put s after this element
902 #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
903     int64_t now_cycles = base_internal::CycleClock::Now();
904     if (s->next_priority_read_cycles < now_cycles) {
905       // Every so often, update our idea of the thread's priority.
906       // pthread_getschedparam() is 5% of the block/wakeup time;
907       // base_internal::CycleClock::Now() is 0.5%.
908       int policy;
909       struct sched_param param;
910       const int err = pthread_getschedparam(pthread_self(), &policy, &param);
911       if (err != 0) {
912         ABSL_RAW_LOG(ERROR, "pthread_getschedparam failed: %d", err);
913       } else {
914         s->priority = param.sched_priority;
915         s->next_priority_read_cycles =
916             now_cycles +
917             static_cast<int64_t>(base_internal::CycleClock::Frequency());
918       }
919     }
920     if (s->priority > head->priority) {  // s's priority is above head's
921       // try to put s in priority-fifo order, or failing that at the front.
922       if (!head->maybe_unlocking) {
923         // No unlocker can be scanning the queue, so we can insert between
924         // skip-chains, and within a skip-chain if it has the same condition as
925         // s.  We insert in priority-fifo order, examining the end of every
926         // skip-chain, plus every element with the same condition as s.
927         PerThreadSynch *advance_to = head;    // next value of enqueue_after
928         PerThreadSynch *cur;                  // successor of enqueue_after
929         do {
930           enqueue_after = advance_to;
931           cur = enqueue_after->next;  // this advance ensures progress
932           advance_to = Skip(cur);   // normally, advance to end of skip chain
933                                     // (side-effect: optimizes skip chain)
934           if (advance_to != cur && s->priority > advance_to->priority &&
935               MuSameCondition(s, cur)) {
936             // but this skip chain is not a singleton, s has higher priority
937             // than its tail and has the same condition as the chain,
938             // so we can insert within the skip-chain
939             advance_to = cur;         // advance by just one
940           }
941         } while (s->priority <= advance_to->priority);
942               // termination guaranteed because s->priority > head->priority
943               // and head is the end of a skip chain
944       } else if (waitp->how == kExclusive &&
945                  Condition::GuaranteedEqual(waitp->cond, nullptr)) {
946         // An unlocker could be scanning the queue, but we know it will recheck
947         // the queue front for writers that have no condition, which is what s
948         // is, so an insert at front is safe.
949         enqueue_after = head;       // add after head, at front
950       }
951     }
952 #endif
953     if (enqueue_after != nullptr) {
954       s->next = enqueue_after->next;
955       enqueue_after->next = s;
956 
957       // enqueue_after can be: head, Skip(...), or cur.
958       // The first two imply enqueue_after->skip == nullptr, and
959       // the last is used only if MuSameCondition(s, cur).
960       // We require this because clearing enqueue_after->skip
961       // is impossible; enqueue_after's predecessors might also
962       // incorrectly skip over s if we were to allow other
963       // insertion points.
964       ABSL_RAW_CHECK(
965           enqueue_after->skip == nullptr || MuSameCondition(enqueue_after, s),
966           "Mutex Enqueue failure");
967 
968       if (enqueue_after != head && enqueue_after->may_skip &&
969           MuSameCondition(enqueue_after, enqueue_after->next)) {
970         // enqueue_after can skip to its new successor, s
971         enqueue_after->skip = enqueue_after->next;
972       }
973       if (MuSameCondition(s, s->next)) {  // s->may_skip is known to be true
974         s->skip = s->next;                // s may skip to its successor
975       }
976     } else {   // enqueue not done any other way, so
977                // we're inserting s at the back
978       // s will become new head; copy data from head into it
979       s->next = head->next;        // add s after head
980       head->next = s;
981       s->readers = head->readers;  // reader count is from previous head
982       s->maybe_unlocking = head->maybe_unlocking;  // same for unlock hint
983       if (head->may_skip && MuSameCondition(head, s)) {
984         // head now has successor; may skip
985         head->skip = s;
986       }
987       head = s;  // s is new head
988     }
989   }
990   s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed);
991   return head;
992 }
993 
994 // Dequeue the successor pw->next of thread pw from the Mutex waiter queue
995 // whose last element is head.  The new head element is returned, or null
996 // if the list is made empty.
997 // Dequeue is called with both spinlock and Mutex held.
Dequeue(PerThreadSynch * head,PerThreadSynch * pw)998 static PerThreadSynch *Dequeue(PerThreadSynch *head, PerThreadSynch *pw) {
999   PerThreadSynch *w = pw->next;
1000   pw->next = w->next;         // snip w out of list
1001   if (head == w) {            // we removed the head
1002     head = (pw == w) ? nullptr : pw;  // either emptied list, or pw is new head
1003   } else if (pw != head && MuSameCondition(pw, pw->next)) {
1004     // pw can skip to its new successor
1005     if (pw->next->skip !=
1006         nullptr) {  // either skip to its successors skip target
1007       pw->skip = pw->next->skip;
1008     } else {                   // or to pw's successor
1009       pw->skip = pw->next;
1010     }
1011   }
1012   return head;
1013 }
1014 
1015 // Traverse the elements [ pw->next, h] of the circular list whose last element
1016 // is head.
1017 // Remove all elements with wake==true and place them in the
1018 // singly-linked list wake_list in the order found.   Assumes that
1019 // there is only one such element if the element has how == kExclusive.
1020 // Return the new head.
DequeueAllWakeable(PerThreadSynch * head,PerThreadSynch * pw,PerThreadSynch ** wake_tail)1021 static PerThreadSynch *DequeueAllWakeable(PerThreadSynch *head,
1022                                           PerThreadSynch *pw,
1023                                           PerThreadSynch **wake_tail) {
1024   PerThreadSynch *orig_h = head;
1025   PerThreadSynch *w = pw->next;
1026   bool skipped = false;
1027   do {
1028     if (w->wake) {                    // remove this element
1029       ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable");
1030       // we're removing pw's successor so either pw->skip is zero or we should
1031       // already have removed pw since if pw->skip!=null, pw has the same
1032       // condition as w.
1033       head = Dequeue(head, pw);
1034       w->next = *wake_tail;           // keep list terminated
1035       *wake_tail = w;                 // add w to wake_list;
1036       wake_tail = &w->next;           // next addition to end
1037       if (w->waitp->how == kExclusive) {  // wake at most 1 writer
1038         break;
1039       }
1040     } else {                // not waking this one; skip
1041       pw = Skip(w);       // skip as much as possible
1042       skipped = true;
1043     }
1044     w = pw->next;
1045     // We want to stop processing after we've considered the original head,
1046     // orig_h.  We can't test for w==orig_h in the loop because w may skip over
1047     // it; we are guaranteed only that w's predecessor will not skip over
1048     // orig_h.  When we've considered orig_h, either we've processed it and
1049     // removed it (so orig_h != head), or we considered it and skipped it (so
1050     // skipped==true && pw == head because skipping from head always skips by
1051     // just one, leaving pw pointing at head).  So we want to
1052     // continue the loop with the negation of that expression.
1053   } while (orig_h == head && (pw != head || !skipped));
1054   return head;
1055 }
1056 
1057 // Try to remove thread s from the list of waiters on this mutex.
1058 // Does nothing if s is not on the waiter list.
TryRemove(PerThreadSynch * s)1059 void Mutex::TryRemove(PerThreadSynch *s) {
1060   SchedulingGuard::ScopedDisable disable_rescheduling;
1061   intptr_t v = mu_.load(std::memory_order_relaxed);
1062   // acquire spinlock & lock
1063   if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait &&
1064       mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter,
1065                                   std::memory_order_acquire,
1066                                   std::memory_order_relaxed)) {
1067     PerThreadSynch *h = GetPerThreadSynch(v);
1068     if (h != nullptr) {
1069       PerThreadSynch *pw = h;   // pw is w's predecessor
1070       PerThreadSynch *w;
1071       if ((w = pw->next) != s) {  // search for thread,
1072         do {                      // processing at least one element
1073           if (!MuSameCondition(s, w)) {  // seeking different condition
1074             pw = Skip(w);                // so skip all that won't match
1075             // we don't have to worry about dangling skip fields
1076             // in the threads we skipped; none can point to s
1077             // because their condition differs from s
1078           } else {          // seeking same condition
1079             FixSkip(w, s);  // fix up any skip pointer from w to s
1080             pw = w;
1081           }
1082           // don't search further if we found the thread, or we're about to
1083           // process the first thread again.
1084         } while ((w = pw->next) != s && pw != h);
1085       }
1086       if (w == s) {                 // found thread; remove it
1087         // pw->skip may be non-zero here; the loop above ensured that
1088         // no ancestor of s can skip to s, so removal is safe anyway.
1089         h = Dequeue(h, pw);
1090         s->next = nullptr;
1091         s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
1092       }
1093     }
1094     intptr_t nv;
1095     do {                        // release spinlock and lock
1096       v = mu_.load(std::memory_order_relaxed);
1097       nv = v & (kMuDesig | kMuEvent);
1098       if (h != nullptr) {
1099         nv |= kMuWait | reinterpret_cast<intptr_t>(h);
1100         h->readers = 0;            // we hold writer lock
1101         h->maybe_unlocking = false;  // finished unlocking
1102       }
1103     } while (!mu_.compare_exchange_weak(v, nv,
1104                                         std::memory_order_release,
1105                                         std::memory_order_relaxed));
1106   }
1107 }
1108 
1109 // Wait until thread "s", which must be the current thread, is removed from the
1110 // this mutex's waiter queue.  If "s->waitp->timeout" has a timeout, wake up
1111 // if the wait extends past the absolute time specified, even if "s" is still
1112 // on the mutex queue.  In this case, remove "s" from the queue and return
1113 // true, otherwise return false.
Block(PerThreadSynch * s)1114 ABSL_XRAY_LOG_ARGS(1) void Mutex::Block(PerThreadSynch *s) {
1115   while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) {
1116     if (!DecrementSynchSem(this, s, s->waitp->timeout)) {
1117       // After a timeout, we go into a spin loop until we remove ourselves
1118       // from the queue, or someone else removes us.  We can't be sure to be
1119       // able to remove ourselves in a single lock acquisition because this
1120       // mutex may be held, and the holder has the right to read the centre
1121       // of the waiter queue without holding the spinlock.
1122       this->TryRemove(s);
1123       int c = 0;
1124       while (s->next != nullptr) {
1125         c = synchronization_internal::MutexDelay(c, GENTLE);
1126         this->TryRemove(s);
1127       }
1128       if (kDebugMode) {
1129         // This ensures that we test the case that TryRemove() is called when s
1130         // is not on the queue.
1131         this->TryRemove(s);
1132       }
1133       s->waitp->timeout = KernelTimeout::Never();      // timeout is satisfied
1134       s->waitp->cond = nullptr;  // condition no longer relevant for wakeups
1135     }
1136   }
1137   ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors,
1138                  "detected illegal recursion in Mutex code");
1139   s->waitp = nullptr;
1140 }
1141 
1142 // Wake thread w, and return the next thread in the list.
Wakeup(PerThreadSynch * w)1143 PerThreadSynch *Mutex::Wakeup(PerThreadSynch *w) {
1144   PerThreadSynch *next = w->next;
1145   w->next = nullptr;
1146   w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
1147   IncrementSynchSem(this, w);
1148 
1149   return next;
1150 }
1151 
GetGraphIdLocked(Mutex * mu)1152 static GraphId GetGraphIdLocked(Mutex *mu)
1153     ABSL_EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) {
1154   if (!deadlock_graph) {  // (re)create the deadlock graph.
1155     deadlock_graph =
1156         new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph)))
1157             GraphCycles;
1158   }
1159   return deadlock_graph->GetId(mu);
1160 }
1161 
GetGraphId(Mutex * mu)1162 static GraphId GetGraphId(Mutex *mu) ABSL_LOCKS_EXCLUDED(deadlock_graph_mu) {
1163   deadlock_graph_mu.Lock();
1164   GraphId id = GetGraphIdLocked(mu);
1165   deadlock_graph_mu.Unlock();
1166   return id;
1167 }
1168 
1169 // Record a lock acquisition.  This is used in debug mode for deadlock
1170 // detection.  The held_locks pointer points to the relevant data
1171 // structure for each case.
LockEnter(Mutex * mu,GraphId id,SynchLocksHeld * held_locks)1172 static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
1173   int n = held_locks->n;
1174   int i = 0;
1175   while (i != n && held_locks->locks[i].id != id) {
1176     i++;
1177   }
1178   if (i == n) {
1179     if (n == ABSL_ARRAYSIZE(held_locks->locks)) {
1180       held_locks->overflow = true;  // lost some data
1181     } else {                        // we have room for lock
1182       held_locks->locks[i].mu = mu;
1183       held_locks->locks[i].count = 1;
1184       held_locks->locks[i].id = id;
1185       held_locks->n = n + 1;
1186     }
1187   } else {
1188     held_locks->locks[i].count++;
1189   }
1190 }
1191 
1192 // Record a lock release.  Each call to LockEnter(mu, id, x) should be
1193 // eventually followed by a call to LockLeave(mu, id, x) by the same thread.
1194 // It does not process the event if is not needed when deadlock detection is
1195 // disabled.
LockLeave(Mutex * mu,GraphId id,SynchLocksHeld * held_locks)1196 static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
1197   int n = held_locks->n;
1198   int i = 0;
1199   while (i != n && held_locks->locks[i].id != id) {
1200     i++;
1201   }
1202   if (i == n) {
1203     if (!held_locks->overflow) {
1204       // The deadlock id may have been reassigned after ForgetDeadlockInfo,
1205       // but in that case mu should still be present.
1206       i = 0;
1207       while (i != n && held_locks->locks[i].mu != mu) {
1208         i++;
1209       }
1210       if (i == n) {  // mu missing means releasing unheld lock
1211         SynchEvent *mu_events = GetSynchEvent(mu);
1212         ABSL_RAW_LOG(FATAL,
1213                      "thread releasing lock it does not hold: %p %s; "
1214                      ,
1215                      static_cast<void *>(mu),
1216                      mu_events == nullptr ? "" : mu_events->name);
1217       }
1218     }
1219   } else if (held_locks->locks[i].count == 1) {
1220     held_locks->n = n - 1;
1221     held_locks->locks[i] = held_locks->locks[n - 1];
1222     held_locks->locks[n - 1].id = InvalidGraphId();
1223     held_locks->locks[n - 1].mu =
1224         nullptr;  // clear mu to please the leak detector.
1225   } else {
1226     assert(held_locks->locks[i].count > 0);
1227     held_locks->locks[i].count--;
1228   }
1229 }
1230 
1231 // Call LockEnter() if in debug mode and deadlock detection is enabled.
DebugOnlyLockEnter(Mutex * mu)1232 static inline void DebugOnlyLockEnter(Mutex *mu) {
1233   if (kDebugMode) {
1234     if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1235         OnDeadlockCycle::kIgnore) {
1236       LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks());
1237     }
1238   }
1239 }
1240 
1241 // Call LockEnter() if in debug mode and deadlock detection is enabled.
DebugOnlyLockEnter(Mutex * mu,GraphId id)1242 static inline void DebugOnlyLockEnter(Mutex *mu, GraphId id) {
1243   if (kDebugMode) {
1244     if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1245         OnDeadlockCycle::kIgnore) {
1246       LockEnter(mu, id, Synch_GetAllLocks());
1247     }
1248   }
1249 }
1250 
1251 // Call LockLeave() if in debug mode and deadlock detection is enabled.
DebugOnlyLockLeave(Mutex * mu)1252 static inline void DebugOnlyLockLeave(Mutex *mu) {
1253   if (kDebugMode) {
1254     if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1255         OnDeadlockCycle::kIgnore) {
1256       LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks());
1257     }
1258   }
1259 }
1260 
StackString(void ** pcs,int n,char * buf,int maxlen,bool symbolize)1261 static char *StackString(void **pcs, int n, char *buf, int maxlen,
1262                          bool symbolize) {
1263   static const int kSymLen = 200;
1264   char sym[kSymLen];
1265   int len = 0;
1266   for (int i = 0; i != n; i++) {
1267     if (symbolize) {
1268       if (!symbolizer(pcs[i], sym, kSymLen)) {
1269         sym[0] = '\0';
1270       }
1271       snprintf(buf + len, maxlen - len, "%s\t@ %p %s\n",
1272                (i == 0 ? "\n" : ""),
1273                pcs[i], sym);
1274     } else {
1275       snprintf(buf + len, maxlen - len, " %p", pcs[i]);
1276     }
1277     len += strlen(&buf[len]);
1278   }
1279   return buf;
1280 }
1281 
CurrentStackString(char * buf,int maxlen,bool symbolize)1282 static char *CurrentStackString(char *buf, int maxlen, bool symbolize) {
1283   void *pcs[40];
1284   return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf,
1285                      maxlen, symbolize);
1286 }
1287 
1288 namespace {
1289 enum { kMaxDeadlockPathLen = 10 };  // maximum length of a deadlock cycle;
1290                                     // a path this long would be remarkable
1291 // Buffers required to report a deadlock.
1292 // We do not allocate them on stack to avoid large stack frame.
1293 struct DeadlockReportBuffers {
1294   char buf[6100];
1295   GraphId path[kMaxDeadlockPathLen];
1296 };
1297 
1298 struct ScopedDeadlockReportBuffers {
ScopedDeadlockReportBuffersabsl::__anon9812522c0a11::ScopedDeadlockReportBuffers1299   ScopedDeadlockReportBuffers() {
1300     b = reinterpret_cast<DeadlockReportBuffers *>(
1301         base_internal::LowLevelAlloc::Alloc(sizeof(*b)));
1302   }
~ScopedDeadlockReportBuffersabsl::__anon9812522c0a11::ScopedDeadlockReportBuffers1303   ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); }
1304   DeadlockReportBuffers *b;
1305 };
1306 
1307 // Helper to pass to GraphCycles::UpdateStackTrace.
GetStack(void ** stack,int max_depth)1308 int GetStack(void** stack, int max_depth) {
1309   return absl::GetStackTrace(stack, max_depth, 3);
1310 }
1311 }  // anonymous namespace
1312 
1313 // Called in debug mode when a thread is about to acquire a lock in a way that
1314 // may block.
DeadlockCheck(Mutex * mu)1315 static GraphId DeadlockCheck(Mutex *mu) {
1316   if (synch_deadlock_detection.load(std::memory_order_acquire) ==
1317       OnDeadlockCycle::kIgnore) {
1318     return InvalidGraphId();
1319   }
1320 
1321   SynchLocksHeld *all_locks = Synch_GetAllLocks();
1322 
1323   absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu);
1324   const GraphId mu_id = GetGraphIdLocked(mu);
1325 
1326   if (all_locks->n == 0) {
1327     // There are no other locks held. Return now so that we don't need to
1328     // call GetSynchEvent(). This way we do not record the stack trace
1329     // for this Mutex. It's ok, since if this Mutex is involved in a deadlock,
1330     // it can't always be the first lock acquired by a thread.
1331     return mu_id;
1332   }
1333 
1334   // We prefer to keep stack traces that show a thread holding and acquiring
1335   // as many locks as possible.  This increases the chances that a given edge
1336   // in the acquires-before graph will be represented in the stack traces
1337   // recorded for the locks.
1338   deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack);
1339 
1340   // For each other mutex already held by this thread:
1341   for (int i = 0; i != all_locks->n; i++) {
1342     const GraphId other_node_id = all_locks->locks[i].id;
1343     const Mutex *other =
1344         static_cast<const Mutex *>(deadlock_graph->Ptr(other_node_id));
1345     if (other == nullptr) {
1346       // Ignore stale lock
1347       continue;
1348     }
1349 
1350     // Add the acquired-before edge to the graph.
1351     if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) {
1352       ScopedDeadlockReportBuffers scoped_buffers;
1353       DeadlockReportBuffers *b = scoped_buffers.b;
1354       static int number_of_reported_deadlocks = 0;
1355       number_of_reported_deadlocks++;
1356       // Symbolize only 2 first deadlock report to avoid huge slowdowns.
1357       bool symbolize = number_of_reported_deadlocks <= 2;
1358       ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s",
1359                    CurrentStackString(b->buf, sizeof (b->buf), symbolize));
1360       int len = 0;
1361       for (int j = 0; j != all_locks->n; j++) {
1362         void* pr = deadlock_graph->Ptr(all_locks->locks[j].id);
1363         if (pr != nullptr) {
1364           snprintf(b->buf + len, sizeof (b->buf) - len, " %p", pr);
1365           len += static_cast<int>(strlen(&b->buf[len]));
1366         }
1367       }
1368       ABSL_RAW_LOG(ERROR, "Acquiring %p    Mutexes held: %s",
1369                    static_cast<void *>(mu), b->buf);
1370       ABSL_RAW_LOG(ERROR, "Cycle: ");
1371       int path_len = deadlock_graph->FindPath(
1372           mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path);
1373       for (int j = 0; j != path_len; j++) {
1374         GraphId id = b->path[j];
1375         Mutex *path_mu = static_cast<Mutex *>(deadlock_graph->Ptr(id));
1376         if (path_mu == nullptr) continue;
1377         void** stack;
1378         int depth = deadlock_graph->GetStackTrace(id, &stack);
1379         snprintf(b->buf, sizeof(b->buf),
1380                  "mutex@%p stack: ", static_cast<void *>(path_mu));
1381         StackString(stack, depth, b->buf + strlen(b->buf),
1382                     static_cast<int>(sizeof(b->buf) - strlen(b->buf)),
1383                     symbolize);
1384         ABSL_RAW_LOG(ERROR, "%s", b->buf);
1385       }
1386       if (synch_deadlock_detection.load(std::memory_order_acquire) ==
1387           OnDeadlockCycle::kAbort) {
1388         deadlock_graph_mu.Unlock();  // avoid deadlock in fatal sighandler
1389         ABSL_RAW_LOG(FATAL, "dying due to potential deadlock");
1390         return mu_id;
1391       }
1392       break;   // report at most one potential deadlock per acquisition
1393     }
1394   }
1395 
1396   return mu_id;
1397 }
1398 
1399 // Invoke DeadlockCheck() iff we're in debug mode and
1400 // deadlock checking has been enabled.
DebugOnlyDeadlockCheck(Mutex * mu)1401 static inline GraphId DebugOnlyDeadlockCheck(Mutex *mu) {
1402   if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
1403                         OnDeadlockCycle::kIgnore) {
1404     return DeadlockCheck(mu);
1405   } else {
1406     return InvalidGraphId();
1407   }
1408 }
1409 
ForgetDeadlockInfo()1410 void Mutex::ForgetDeadlockInfo() {
1411   if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
1412                         OnDeadlockCycle::kIgnore) {
1413     deadlock_graph_mu.Lock();
1414     if (deadlock_graph != nullptr) {
1415       deadlock_graph->RemoveNode(this);
1416     }
1417     deadlock_graph_mu.Unlock();
1418   }
1419 }
1420 
AssertNotHeld() const1421 void Mutex::AssertNotHeld() const {
1422   // We have the data to allow this check only if in debug mode and deadlock
1423   // detection is enabled.
1424   if (kDebugMode &&
1425       (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 &&
1426       synch_deadlock_detection.load(std::memory_order_acquire) !=
1427           OnDeadlockCycle::kIgnore) {
1428     GraphId id = GetGraphId(const_cast<Mutex *>(this));
1429     SynchLocksHeld *locks = Synch_GetAllLocks();
1430     for (int i = 0; i != locks->n; i++) {
1431       if (locks->locks[i].id == id) {
1432         SynchEvent *mu_events = GetSynchEvent(this);
1433         ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s",
1434                      static_cast<const void *>(this),
1435                      (mu_events == nullptr ? "" : mu_events->name));
1436       }
1437     }
1438   }
1439 }
1440 
1441 // Attempt to acquire *mu, and return whether successful.  The implementation
1442 // may spin for a short while if the lock cannot be acquired immediately.
TryAcquireWithSpinning(std::atomic<intptr_t> * mu)1443 static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) {
1444   int c = GetMutexGlobals().spinloop_iterations;
1445   do {  // do/while somewhat faster on AMD
1446     intptr_t v = mu->load(std::memory_order_relaxed);
1447     if ((v & (kMuReader|kMuEvent)) != 0) {
1448       return false;  // a reader or tracing -> give up
1449     } else if (((v & kMuWriter) == 0) &&  // no holder -> try to acquire
1450                mu->compare_exchange_strong(v, kMuWriter | v,
1451                                            std::memory_order_acquire,
1452                                            std::memory_order_relaxed)) {
1453       return true;
1454     }
1455   } while (--c > 0);
1456   return false;
1457 }
1458 
Lock()1459 ABSL_XRAY_LOG_ARGS(1) void Mutex::Lock() {
1460   ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1461   GraphId id = DebugOnlyDeadlockCheck(this);
1462   intptr_t v = mu_.load(std::memory_order_relaxed);
1463   // try fast acquire, then spin loop
1464   if ((v & (kMuWriter | kMuReader | kMuEvent)) != 0 ||
1465       !mu_.compare_exchange_strong(v, kMuWriter | v,
1466                                    std::memory_order_acquire,
1467                                    std::memory_order_relaxed)) {
1468     // try spin acquire, then slow loop
1469     if (!TryAcquireWithSpinning(&this->mu_)) {
1470       this->LockSlow(kExclusive, nullptr, 0);
1471     }
1472   }
1473   DebugOnlyLockEnter(this, id);
1474   ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1475 }
1476 
ReaderLock()1477 ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderLock() {
1478   ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1479   GraphId id = DebugOnlyDeadlockCheck(this);
1480   intptr_t v = mu_.load(std::memory_order_relaxed);
1481   // try fast acquire, then slow loop
1482   if ((v & (kMuWriter | kMuWait | kMuEvent)) != 0 ||
1483       !mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1484                                    std::memory_order_acquire,
1485                                    std::memory_order_relaxed)) {
1486     this->LockSlow(kShared, nullptr, 0);
1487   }
1488   DebugOnlyLockEnter(this, id);
1489   ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1490 }
1491 
LockWhen(const Condition & cond)1492 void Mutex::LockWhen(const Condition &cond) {
1493   ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1494   GraphId id = DebugOnlyDeadlockCheck(this);
1495   this->LockSlow(kExclusive, &cond, 0);
1496   DebugOnlyLockEnter(this, id);
1497   ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1498 }
1499 
LockWhenWithTimeout(const Condition & cond,absl::Duration timeout)1500 bool Mutex::LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) {
1501   return LockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
1502 }
1503 
LockWhenWithDeadline(const Condition & cond,absl::Time deadline)1504 bool Mutex::LockWhenWithDeadline(const Condition &cond, absl::Time deadline) {
1505   ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1506   GraphId id = DebugOnlyDeadlockCheck(this);
1507   bool res = LockSlowWithDeadline(kExclusive, &cond,
1508                                   KernelTimeout(deadline), 0);
1509   DebugOnlyLockEnter(this, id);
1510   ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1511   return res;
1512 }
1513 
ReaderLockWhen(const Condition & cond)1514 void Mutex::ReaderLockWhen(const Condition &cond) {
1515   ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1516   GraphId id = DebugOnlyDeadlockCheck(this);
1517   this->LockSlow(kShared, &cond, 0);
1518   DebugOnlyLockEnter(this, id);
1519   ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1520 }
1521 
ReaderLockWhenWithTimeout(const Condition & cond,absl::Duration timeout)1522 bool Mutex::ReaderLockWhenWithTimeout(const Condition &cond,
1523                                       absl::Duration timeout) {
1524   return ReaderLockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
1525 }
1526 
ReaderLockWhenWithDeadline(const Condition & cond,absl::Time deadline)1527 bool Mutex::ReaderLockWhenWithDeadline(const Condition &cond,
1528                                        absl::Time deadline) {
1529   ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1530   GraphId id = DebugOnlyDeadlockCheck(this);
1531   bool res = LockSlowWithDeadline(kShared, &cond, KernelTimeout(deadline), 0);
1532   DebugOnlyLockEnter(this, id);
1533   ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1534   return res;
1535 }
1536 
Await(const Condition & cond)1537 void Mutex::Await(const Condition &cond) {
1538   if (cond.Eval()) {    // condition already true; nothing to do
1539     if (kDebugMode) {
1540       this->AssertReaderHeld();
1541     }
1542   } else {              // normal case
1543     ABSL_RAW_CHECK(this->AwaitCommon(cond, KernelTimeout::Never()),
1544                    "condition untrue on return from Await");
1545   }
1546 }
1547 
AwaitWithTimeout(const Condition & cond,absl::Duration timeout)1548 bool Mutex::AwaitWithTimeout(const Condition &cond, absl::Duration timeout) {
1549   return AwaitWithDeadline(cond, DeadlineFromTimeout(timeout));
1550 }
1551 
AwaitWithDeadline(const Condition & cond,absl::Time deadline)1552 bool Mutex::AwaitWithDeadline(const Condition &cond, absl::Time deadline) {
1553   if (cond.Eval()) {      // condition already true; nothing to do
1554     if (kDebugMode) {
1555       this->AssertReaderHeld();
1556     }
1557     return true;
1558   }
1559 
1560   KernelTimeout t{deadline};
1561   bool res = this->AwaitCommon(cond, t);
1562   ABSL_RAW_CHECK(res || t.has_timeout(),
1563                  "condition untrue on return from Await");
1564   return res;
1565 }
1566 
AwaitCommon(const Condition & cond,KernelTimeout t)1567 bool Mutex::AwaitCommon(const Condition &cond, KernelTimeout t) {
1568   this->AssertReaderHeld();
1569   MuHow how =
1570       (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared;
1571   ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how));
1572   SynchWaitParams waitp(
1573       how, &cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
1574       nullptr /*no cv_word*/);
1575   int flags = kMuHasBlocked;
1576   if (!Condition::GuaranteedEqual(&cond, nullptr)) {
1577     flags |= kMuIsCond;
1578   }
1579   this->UnlockSlow(&waitp);
1580   this->Block(waitp.thread);
1581   ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how));
1582   ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how));
1583   this->LockSlowLoop(&waitp, flags);
1584   bool res = waitp.cond != nullptr ||  // => cond known true from LockSlowLoop
1585              EvalConditionAnnotated(&cond, this, true, false, how == kShared);
1586   ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0);
1587   return res;
1588 }
1589 
TryLock()1590 ABSL_XRAY_LOG_ARGS(1) bool Mutex::TryLock() {
1591   ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock);
1592   intptr_t v = mu_.load(std::memory_order_relaxed);
1593   if ((v & (kMuWriter | kMuReader | kMuEvent)) == 0 &&  // try fast acquire
1594       mu_.compare_exchange_strong(v, kMuWriter | v,
1595                                   std::memory_order_acquire,
1596                                   std::memory_order_relaxed)) {
1597     DebugOnlyLockEnter(this);
1598     ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
1599     return true;
1600   }
1601   if ((v & kMuEvent) != 0) {              // we're recording events
1602     if ((v & kExclusive->slow_need_zero) == 0 &&  // try fast acquire
1603         mu_.compare_exchange_strong(
1604             v, (kExclusive->fast_or | v) + kExclusive->fast_add,
1605             std::memory_order_acquire, std::memory_order_relaxed)) {
1606       DebugOnlyLockEnter(this);
1607       PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS);
1608       ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
1609       return true;
1610     } else {
1611       PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED);
1612     }
1613   }
1614   ABSL_TSAN_MUTEX_POST_LOCK(
1615       this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0);
1616   return false;
1617 }
1618 
ReaderTryLock()1619 ABSL_XRAY_LOG_ARGS(1) bool Mutex::ReaderTryLock() {
1620   ABSL_TSAN_MUTEX_PRE_LOCK(this,
1621                            __tsan_mutex_read_lock | __tsan_mutex_try_lock);
1622   intptr_t v = mu_.load(std::memory_order_relaxed);
1623   // The while-loops (here and below) iterate only if the mutex word keeps
1624   // changing (typically because the reader count changes) under the CAS.  We
1625   // limit the number of attempts to avoid having to think about livelock.
1626   int loop_limit = 5;
1627   while ((v & (kMuWriter|kMuWait|kMuEvent)) == 0 && loop_limit != 0) {
1628     if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1629                                     std::memory_order_acquire,
1630                                     std::memory_order_relaxed)) {
1631       DebugOnlyLockEnter(this);
1632       ABSL_TSAN_MUTEX_POST_LOCK(
1633           this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
1634       return true;
1635     }
1636     loop_limit--;
1637     v = mu_.load(std::memory_order_relaxed);
1638   }
1639   if ((v & kMuEvent) != 0) {   // we're recording events
1640     loop_limit = 5;
1641     while ((v & kShared->slow_need_zero) == 0 && loop_limit != 0) {
1642       if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1643                                       std::memory_order_acquire,
1644                                       std::memory_order_relaxed)) {
1645         DebugOnlyLockEnter(this);
1646         PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS);
1647         ABSL_TSAN_MUTEX_POST_LOCK(
1648             this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
1649         return true;
1650       }
1651       loop_limit--;
1652       v = mu_.load(std::memory_order_relaxed);
1653     }
1654     if ((v & kMuEvent) != 0) {
1655       PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED);
1656     }
1657   }
1658   ABSL_TSAN_MUTEX_POST_LOCK(this,
1659                             __tsan_mutex_read_lock | __tsan_mutex_try_lock |
1660                                 __tsan_mutex_try_lock_failed,
1661                             0);
1662   return false;
1663 }
1664 
Unlock()1665 ABSL_XRAY_LOG_ARGS(1) void Mutex::Unlock() {
1666   ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0);
1667   DebugOnlyLockLeave(this);
1668   intptr_t v = mu_.load(std::memory_order_relaxed);
1669 
1670   if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) {
1671     ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x",
1672                  static_cast<unsigned>(v));
1673   }
1674 
1675   // should_try_cas is whether we'll try a compare-and-swap immediately.
1676   // NOTE: optimized out when kDebugMode is false.
1677   bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter &&
1678                           (v & (kMuWait | kMuDesig)) != kMuWait);
1679   // But, we can use an alternate computation of it, that compilers
1680   // currently don't find on their own.  When that changes, this function
1681   // can be simplified.
1682   intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent);
1683   intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig);
1684   // Claim: "x == 0 && y > 0" is equal to should_try_cas.
1685   // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait,
1686   // all possible non-zero values for x exceed all possible values for y.
1687   // Therefore, (x == 0 && y > 0) == (x < y).
1688   if (kDebugMode && should_try_cas != (x < y)) {
1689     // We would usually use PRIdPTR here, but is not correctly implemented
1690     // within the android toolchain.
1691     ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n",
1692                  static_cast<long long>(v), static_cast<long long>(x),
1693                  static_cast<long long>(y));
1694   }
1695   if (x < y &&
1696       mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
1697                                   std::memory_order_release,
1698                                   std::memory_order_relaxed)) {
1699     // fast writer release (writer with no waiters or with designated waker)
1700   } else {
1701     this->UnlockSlow(nullptr /*no waitp*/);  // take slow path
1702   }
1703   ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0);
1704 }
1705 
1706 // Requires v to represent a reader-locked state.
ExactlyOneReader(intptr_t v)1707 static bool ExactlyOneReader(intptr_t v) {
1708   assert((v & (kMuWriter|kMuReader)) == kMuReader);
1709   assert((v & kMuHigh) != 0);
1710   // The more straightforward "(v & kMuHigh) == kMuOne" also works, but
1711   // on some architectures the following generates slightly smaller code.
1712   // It may be faster too.
1713   constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne;
1714   return (v & kMuMultipleWaitersMask) == 0;
1715 }
1716 
ReaderUnlock()1717 ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderUnlock() {
1718   ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock);
1719   DebugOnlyLockLeave(this);
1720   intptr_t v = mu_.load(std::memory_order_relaxed);
1721   assert((v & (kMuWriter|kMuReader)) == kMuReader);
1722   if ((v & (kMuReader|kMuWait|kMuEvent)) == kMuReader) {
1723     // fast reader release (reader with no waiters)
1724     intptr_t clear = ExactlyOneReader(v) ? kMuReader|kMuOne : kMuOne;
1725     if (mu_.compare_exchange_strong(v, v - clear,
1726                                     std::memory_order_release,
1727                                     std::memory_order_relaxed)) {
1728       ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
1729       return;
1730     }
1731   }
1732   this->UnlockSlow(nullptr /*no waitp*/);  // take slow path
1733   ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
1734 }
1735 
1736 // The zap_desig_waker bitmask is used to clear the designated waker flag in
1737 // the mutex if this thread has blocked, and therefore may be the designated
1738 // waker.
1739 static const intptr_t zap_desig_waker[] = {
1740     ~static_cast<intptr_t>(0),  // not blocked
1741     ~static_cast<intptr_t>(
1742         kMuDesig)  // blocked; turn off the designated waker bit
1743 };
1744 
1745 // The ignore_waiting_writers bitmask is used to ignore the existence
1746 // of waiting writers if a reader that has already blocked once
1747 // wakes up.
1748 static const intptr_t ignore_waiting_writers[] = {
1749     ~static_cast<intptr_t>(0),  // not blocked
1750     ~static_cast<intptr_t>(
1751         kMuWrWait)  // blocked; pretend there are no waiting writers
1752 };
1753 
1754 // Internal version of LockWhen().  See LockSlowWithDeadline()
LockSlow(MuHow how,const Condition * cond,int flags)1755 ABSL_ATTRIBUTE_NOINLINE void Mutex::LockSlow(MuHow how, const Condition *cond,
1756                                              int flags) {
1757   ABSL_RAW_CHECK(
1758       this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags),
1759       "condition untrue on return from LockSlow");
1760 }
1761 
1762 // Compute cond->Eval() and tell race detectors that we do it under mutex mu.
EvalConditionAnnotated(const Condition * cond,Mutex * mu,bool locking,bool trylock,bool read_lock)1763 static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
1764                                           bool locking, bool trylock,
1765                                           bool read_lock) {
1766   // Delicate annotation dance.
1767   // We are currently inside of read/write lock/unlock operation.
1768   // All memory accesses are ignored inside of mutex operations + for unlock
1769   // operation tsan considers that we've already released the mutex.
1770   bool res = false;
1771 #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE
1772   const int flags = read_lock ? __tsan_mutex_read_lock : 0;
1773   const int tryflags = flags | (trylock ? __tsan_mutex_try_lock : 0);
1774 #endif
1775   if (locking) {
1776     // For lock we pretend that we have finished the operation,
1777     // evaluate the predicate, then unlock the mutex and start locking it again
1778     // to match the annotation at the end of outer lock operation.
1779     // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan
1780     // will think the lock acquisition is recursive which will trigger
1781     // deadlock detector.
1782     ABSL_TSAN_MUTEX_POST_LOCK(mu, tryflags, 0);
1783     res = cond->Eval();
1784     // There is no "try" version of Unlock, so use flags instead of tryflags.
1785     ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
1786     ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
1787     ABSL_TSAN_MUTEX_PRE_LOCK(mu, tryflags);
1788   } else {
1789     // Similarly, for unlock we pretend that we have unlocked the mutex,
1790     // lock the mutex, evaluate the predicate, and start unlocking it again
1791     // to match the annotation at the end of outer unlock operation.
1792     ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
1793     ABSL_TSAN_MUTEX_PRE_LOCK(mu, flags);
1794     ABSL_TSAN_MUTEX_POST_LOCK(mu, flags, 0);
1795     res = cond->Eval();
1796     ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
1797   }
1798   // Prevent unused param warnings in non-TSAN builds.
1799   static_cast<void>(mu);
1800   static_cast<void>(trylock);
1801   static_cast<void>(read_lock);
1802   return res;
1803 }
1804 
1805 // Compute cond->Eval() hiding it from race detectors.
1806 // We are hiding it because inside of UnlockSlow we can evaluate a predicate
1807 // that was just added by a concurrent Lock operation; Lock adds the predicate
1808 // to the internal Mutex list without actually acquiring the Mutex
1809 // (it only acquires the internal spinlock, which is rightfully invisible for
1810 // tsan). As the result there is no tsan-visible synchronization between the
1811 // addition and this thread. So if we would enable race detection here,
1812 // it would race with the predicate initialization.
EvalConditionIgnored(Mutex * mu,const Condition * cond)1813 static inline bool EvalConditionIgnored(Mutex *mu, const Condition *cond) {
1814   // Memory accesses are already ignored inside of lock/unlock operations,
1815   // but synchronization operations are also ignored. When we evaluate the
1816   // predicate we must ignore only memory accesses but not synchronization,
1817   // because missed synchronization can lead to false reports later.
1818   // So we "divert" (which un-ignores both memory accesses and synchronization)
1819   // and then separately turn on ignores of memory accesses.
1820   ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
1821   ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
1822   bool res = cond->Eval();
1823   ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END();
1824   ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
1825   static_cast<void>(mu);  // Prevent unused param warning in non-TSAN builds.
1826   return res;
1827 }
1828 
1829 // Internal equivalent of *LockWhenWithDeadline(), where
1830 //   "t" represents the absolute timeout; !t.has_timeout() means "forever".
1831 //   "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen)
1832 // In flags, bits are ored together:
1833 // - kMuHasBlocked indicates that the client has already blocked on the call so
1834 //   the designated waker bit must be cleared and waiting writers should not
1835 //   obstruct this call
1836 // - kMuIsCond indicates that this is a conditional acquire (condition variable,
1837 //   Await,  LockWhen) so contention profiling should be suppressed.
LockSlowWithDeadline(MuHow how,const Condition * cond,KernelTimeout t,int flags)1838 bool Mutex::LockSlowWithDeadline(MuHow how, const Condition *cond,
1839                                  KernelTimeout t, int flags) {
1840   intptr_t v = mu_.load(std::memory_order_relaxed);
1841   bool unlock = false;
1842   if ((v & how->fast_need_zero) == 0 &&  // try fast acquire
1843       mu_.compare_exchange_strong(
1844           v, (how->fast_or | (v & zap_desig_waker[flags & kMuHasBlocked])) +
1845                  how->fast_add,
1846           std::memory_order_acquire, std::memory_order_relaxed)) {
1847     if (cond == nullptr ||
1848         EvalConditionAnnotated(cond, this, true, false, how == kShared)) {
1849       return true;
1850     }
1851     unlock = true;
1852   }
1853   SynchWaitParams waitp(
1854       how, cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
1855       nullptr /*no cv_word*/);
1856   if (!Condition::GuaranteedEqual(cond, nullptr)) {
1857     flags |= kMuIsCond;
1858   }
1859   if (unlock) {
1860     this->UnlockSlow(&waitp);
1861     this->Block(waitp.thread);
1862     flags |= kMuHasBlocked;
1863   }
1864   this->LockSlowLoop(&waitp, flags);
1865   return waitp.cond != nullptr ||  // => cond known true from LockSlowLoop
1866          cond == nullptr ||
1867          EvalConditionAnnotated(cond, this, true, false, how == kShared);
1868 }
1869 
1870 // RAW_CHECK_FMT() takes a condition, a printf-style format string, and
1871 // the printf-style argument list.   The format string must be a literal.
1872 // Arguments after the first are not evaluated unless the condition is true.
1873 #define RAW_CHECK_FMT(cond, ...)                                   \
1874   do {                                                             \
1875     if (ABSL_PREDICT_FALSE(!(cond))) {                             \
1876       ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \
1877     }                                                              \
1878   } while (0)
1879 
CheckForMutexCorruption(intptr_t v,const char * label)1880 static void CheckForMutexCorruption(intptr_t v, const char* label) {
1881   // Test for either of two situations that should not occur in v:
1882   //   kMuWriter and kMuReader
1883   //   kMuWrWait and !kMuWait
1884   const uintptr_t w = v ^ kMuWait;
1885   // By flipping that bit, we can now test for:
1886   //   kMuWriter and kMuReader in w
1887   //   kMuWrWait and kMuWait in w
1888   // We've chosen these two pairs of values to be so that they will overlap,
1889   // respectively, when the word is left shifted by three.  This allows us to
1890   // save a branch in the common (correct) case of them not being coincident.
1891   static_assert(kMuReader << 3 == kMuWriter, "must match");
1892   static_assert(kMuWait << 3 == kMuWrWait, "must match");
1893   if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return;
1894   RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader),
1895                 "%s: Mutex corrupt: both reader and writer lock held: %p",
1896                 label, reinterpret_cast<void *>(v));
1897   RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait,
1898                 "%s: Mutex corrupt: waiting writer with no waiters: %p",
1899                 label, reinterpret_cast<void *>(v));
1900   assert(false);
1901 }
1902 
LockSlowLoop(SynchWaitParams * waitp,int flags)1903 void Mutex::LockSlowLoop(SynchWaitParams *waitp, int flags) {
1904   SchedulingGuard::ScopedDisable disable_rescheduling;
1905   int c = 0;
1906   intptr_t v = mu_.load(std::memory_order_relaxed);
1907   if ((v & kMuEvent) != 0) {
1908     PostSynchEvent(this,
1909          waitp->how == kExclusive?  SYNCH_EV_LOCK: SYNCH_EV_READERLOCK);
1910   }
1911   ABSL_RAW_CHECK(
1912       waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
1913       "detected illegal recursion into Mutex code");
1914   for (;;) {
1915     v = mu_.load(std::memory_order_relaxed);
1916     CheckForMutexCorruption(v, "Lock");
1917     if ((v & waitp->how->slow_need_zero) == 0) {
1918       if (mu_.compare_exchange_strong(
1919               v, (waitp->how->fast_or |
1920                   (v & zap_desig_waker[flags & kMuHasBlocked])) +
1921                      waitp->how->fast_add,
1922               std::memory_order_acquire, std::memory_order_relaxed)) {
1923         if (waitp->cond == nullptr ||
1924             EvalConditionAnnotated(waitp->cond, this, true, false,
1925                                    waitp->how == kShared)) {
1926           break;  // we timed out, or condition true, so return
1927         }
1928         this->UnlockSlow(waitp);  // got lock but condition false
1929         this->Block(waitp->thread);
1930         flags |= kMuHasBlocked;
1931         c = 0;
1932       }
1933     } else {                      // need to access waiter list
1934       bool dowait = false;
1935       if ((v & (kMuSpin|kMuWait)) == 0) {   // no waiters
1936         // This thread tries to become the one and only waiter.
1937         PerThreadSynch *new_h = Enqueue(nullptr, waitp, v, flags);
1938         intptr_t nv = (v & zap_desig_waker[flags & kMuHasBlocked] & kMuLow) |
1939                       kMuWait;
1940         ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed");
1941         if (waitp->how == kExclusive && (v & kMuReader) != 0) {
1942           nv |= kMuWrWait;
1943         }
1944         if (mu_.compare_exchange_strong(
1945                 v, reinterpret_cast<intptr_t>(new_h) | nv,
1946                 std::memory_order_release, std::memory_order_relaxed)) {
1947           dowait = true;
1948         } else {            // attempted Enqueue() failed
1949           // zero out the waitp field set by Enqueue()
1950           waitp->thread->waitp = nullptr;
1951         }
1952       } else if ((v & waitp->how->slow_inc_need_zero &
1953                   ignore_waiting_writers[flags & kMuHasBlocked]) == 0) {
1954         // This is a reader that needs to increment the reader count,
1955         // but the count is currently held in the last waiter.
1956         if (mu_.compare_exchange_strong(
1957                 v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
1958                        kMuReader,
1959                 std::memory_order_acquire, std::memory_order_relaxed)) {
1960           PerThreadSynch *h = GetPerThreadSynch(v);
1961           h->readers += kMuOne;       // inc reader count in waiter
1962           do {                        // release spinlock
1963             v = mu_.load(std::memory_order_relaxed);
1964           } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader,
1965                                               std::memory_order_release,
1966                                               std::memory_order_relaxed));
1967           if (waitp->cond == nullptr ||
1968               EvalConditionAnnotated(waitp->cond, this, true, false,
1969                                      waitp->how == kShared)) {
1970             break;  // we timed out, or condition true, so return
1971           }
1972           this->UnlockSlow(waitp);           // got lock but condition false
1973           this->Block(waitp->thread);
1974           flags |= kMuHasBlocked;
1975           c = 0;
1976         }
1977       } else if ((v & kMuSpin) == 0 &&  // attempt to queue ourselves
1978                  mu_.compare_exchange_strong(
1979                      v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
1980                             kMuWait,
1981                      std::memory_order_acquire, std::memory_order_relaxed)) {
1982         PerThreadSynch *h = GetPerThreadSynch(v);
1983         PerThreadSynch *new_h = Enqueue(h, waitp, v, flags);
1984         intptr_t wr_wait = 0;
1985         ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed");
1986         if (waitp->how == kExclusive && (v & kMuReader) != 0) {
1987           wr_wait = kMuWrWait;      // give priority to a waiting writer
1988         }
1989         do {                        // release spinlock
1990           v = mu_.load(std::memory_order_relaxed);
1991         } while (!mu_.compare_exchange_weak(
1992             v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait |
1993             reinterpret_cast<intptr_t>(new_h),
1994             std::memory_order_release, std::memory_order_relaxed));
1995         dowait = true;
1996       }
1997       if (dowait) {
1998         this->Block(waitp->thread);  // wait until removed from list or timeout
1999         flags |= kMuHasBlocked;
2000         c = 0;
2001       }
2002     }
2003     ABSL_RAW_CHECK(
2004         waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
2005         "detected illegal recursion into Mutex code");
2006     // delay, then try again
2007     c = synchronization_internal::MutexDelay(c, GENTLE);
2008   }
2009   ABSL_RAW_CHECK(
2010       waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
2011       "detected illegal recursion into Mutex code");
2012   if ((v & kMuEvent) != 0) {
2013     PostSynchEvent(this,
2014                    waitp->how == kExclusive? SYNCH_EV_LOCK_RETURNING :
2015                                       SYNCH_EV_READERLOCK_RETURNING);
2016   }
2017 }
2018 
2019 // Unlock this mutex, which is held by the current thread.
2020 // If waitp is non-zero, it must be the wait parameters for the current thread
2021 // which holds the lock but is not runnable because its condition is false
2022 // or it is in the process of blocking on a condition variable; it must requeue
2023 // itself on the mutex/condvar to wait for its condition to become true.
UnlockSlow(SynchWaitParams * waitp)2024 ABSL_ATTRIBUTE_NOINLINE void Mutex::UnlockSlow(SynchWaitParams *waitp) {
2025   SchedulingGuard::ScopedDisable disable_rescheduling;
2026   intptr_t v = mu_.load(std::memory_order_relaxed);
2027   this->AssertReaderHeld();
2028   CheckForMutexCorruption(v, "Unlock");
2029   if ((v & kMuEvent) != 0) {
2030     PostSynchEvent(this,
2031                 (v & kMuWriter) != 0? SYNCH_EV_UNLOCK: SYNCH_EV_READERUNLOCK);
2032   }
2033   int c = 0;
2034   // the waiter under consideration to wake, or zero
2035   PerThreadSynch *w = nullptr;
2036   // the predecessor to w or zero
2037   PerThreadSynch *pw = nullptr;
2038   // head of the list searched previously, or zero
2039   PerThreadSynch *old_h = nullptr;
2040   // a condition that's known to be false.
2041   const Condition *known_false = nullptr;
2042   PerThreadSynch *wake_list = kPerThreadSynchNull;   // list of threads to wake
2043   intptr_t wr_wait = 0;        // set to kMuWrWait if we wake a reader and a
2044                                // later writer could have acquired the lock
2045                                // (starvation avoidance)
2046   ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr ||
2047                      waitp->thread->suppress_fatal_errors,
2048                  "detected illegal recursion into Mutex code");
2049   // This loop finds threads wake_list to wakeup if any, and removes them from
2050   // the list of waiters.  In addition, it places waitp.thread on the queue of
2051   // waiters if waitp is non-zero.
2052   for (;;) {
2053     v = mu_.load(std::memory_order_relaxed);
2054     if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait &&
2055         waitp == nullptr) {
2056       // fast writer release (writer with no waiters or with designated waker)
2057       if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
2058                                       std::memory_order_release,
2059                                       std::memory_order_relaxed)) {
2060         return;
2061       }
2062     } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) {
2063       // fast reader release (reader with no waiters)
2064       intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne;
2065       if (mu_.compare_exchange_strong(v, v - clear,
2066                                       std::memory_order_release,
2067                                       std::memory_order_relaxed)) {
2068         return;
2069       }
2070     } else if ((v & kMuSpin) == 0 &&  // attempt to get spinlock
2071                mu_.compare_exchange_strong(v, v | kMuSpin,
2072                                            std::memory_order_acquire,
2073                                            std::memory_order_relaxed)) {
2074       if ((v & kMuWait) == 0) {       // no one to wake
2075         intptr_t nv;
2076         bool do_enqueue = true;  // always Enqueue() the first time
2077         ABSL_RAW_CHECK(waitp != nullptr,
2078                        "UnlockSlow is confused");  // about to sleep
2079         do {    // must loop to release spinlock as reader count may change
2080           v = mu_.load(std::memory_order_relaxed);
2081           // decrement reader count if there are readers
2082           intptr_t new_readers = (v >= kMuOne)?  v - kMuOne : v;
2083           PerThreadSynch *new_h = nullptr;
2084           if (do_enqueue) {
2085             // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then
2086             // we must not retry here.  The initial attempt will always have
2087             // succeeded, further attempts would enqueue us against *this due to
2088             // Fer() handling.
2089             do_enqueue = (waitp->cv_word == nullptr);
2090             new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond);
2091           }
2092           intptr_t clear = kMuWrWait | kMuWriter;  // by default clear write bit
2093           if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) {  // last reader
2094             clear = kMuWrWait | kMuReader;                    // clear read bit
2095           }
2096           nv = (v & kMuLow & ~clear & ~kMuSpin);
2097           if (new_h != nullptr) {
2098             nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2099           } else {  // new_h could be nullptr if we queued ourselves on a
2100                     // CondVar
2101             // In that case, we must place the reader count back in the mutex
2102             // word, as Enqueue() did not store it in the new waiter.
2103             nv |= new_readers & kMuHigh;
2104           }
2105           // release spinlock & our lock; retry if reader-count changed
2106           // (writer count cannot change since we hold lock)
2107         } while (!mu_.compare_exchange_weak(v, nv,
2108                                             std::memory_order_release,
2109                                             std::memory_order_relaxed));
2110         break;
2111       }
2112 
2113       // There are waiters.
2114       // Set h to the head of the circular waiter list.
2115       PerThreadSynch *h = GetPerThreadSynch(v);
2116       if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) {
2117         // a reader but not the last
2118         h->readers -= kMuOne;  // release our lock
2119         intptr_t nv = v;       // normally just release spinlock
2120         if (waitp != nullptr) {  // but waitp!=nullptr => must queue ourselves
2121           PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
2122           ABSL_RAW_CHECK(new_h != nullptr,
2123                          "waiters disappeared during Enqueue()!");
2124           nv &= kMuLow;
2125           nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2126         }
2127         mu_.store(nv, std::memory_order_release);  // release spinlock
2128         // can release with a store because there were waiters
2129         break;
2130       }
2131 
2132       // Either we didn't search before, or we marked the queue
2133       // as "maybe_unlocking" and no one else should have changed it.
2134       ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking,
2135                      "Mutex queue changed beneath us");
2136 
2137       // The lock is becoming free, and there's a waiter
2138       if (old_h != nullptr &&
2139           !old_h->may_skip) {                  // we used old_h as a terminator
2140         old_h->may_skip = true;                // allow old_h to skip once more
2141         ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head");
2142         if (h != old_h && MuSameCondition(old_h, old_h->next)) {
2143           old_h->skip = old_h->next;  // old_h not head & can skip to successor
2144         }
2145       }
2146       if (h->next->waitp->how == kExclusive &&
2147           Condition::GuaranteedEqual(h->next->waitp->cond, nullptr)) {
2148         // easy case: writer with no condition; no need to search
2149         pw = h;                       // wake w, the successor of h (=pw)
2150         w = h->next;
2151         w->wake = true;
2152         // We are waking up a writer.  This writer may be racing against
2153         // an already awake reader for the lock.  We want the
2154         // writer to usually win this race,
2155         // because if it doesn't, we can potentially keep taking a reader
2156         // perpetually and writers will starve.  Worse than
2157         // that, this can also starve other readers if kMuWrWait gets set
2158         // later.
2159         wr_wait = kMuWrWait;
2160       } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) {
2161         // we found a waiter w to wake on a previous iteration and either it's
2162         // a writer, or we've searched the entire list so we have all the
2163         // readers.
2164         if (pw == nullptr) {  // if w's predecessor is unknown, it must be h
2165           pw = h;
2166         }
2167       } else {
2168         // At this point we don't know all the waiters to wake, and the first
2169         // waiter has a condition or is a reader.  We avoid searching over
2170         // waiters we've searched on previous iterations by starting at
2171         // old_h if it's set.  If old_h==h, there's no one to wakeup at all.
2172         if (old_h == h) {      // we've searched before, and nothing's new
2173                                // so there's no one to wake.
2174           intptr_t nv = (v & ~(kMuReader|kMuWriter|kMuWrWait));
2175           h->readers = 0;
2176           h->maybe_unlocking = false;   // finished unlocking
2177           if (waitp != nullptr) {       // we must queue ourselves and sleep
2178             PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
2179             nv &= kMuLow;
2180             if (new_h != nullptr) {
2181               nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2182             }  // else new_h could be nullptr if we queued ourselves on a
2183                // CondVar
2184           }
2185           // release spinlock & lock
2186           // can release with a store because there were waiters
2187           mu_.store(nv, std::memory_order_release);
2188           break;
2189         }
2190 
2191         // set up to walk the list
2192         PerThreadSynch *w_walk;   // current waiter during list walk
2193         PerThreadSynch *pw_walk;  // previous waiter during list walk
2194         if (old_h != nullptr) {  // we've searched up to old_h before
2195           pw_walk = old_h;
2196           w_walk = old_h->next;
2197         } else {            // no prior search, start at beginning
2198           pw_walk =
2199               nullptr;  // h->next's predecessor may change; don't record it
2200           w_walk = h->next;
2201         }
2202 
2203         h->may_skip = false;  // ensure we never skip past h in future searches
2204                               // even if other waiters are queued after it.
2205         ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head");
2206 
2207         h->maybe_unlocking = true;  // we're about to scan the waiter list
2208                                     // without the spinlock held.
2209                                     // Enqueue must be conservative about
2210                                     // priority queuing.
2211 
2212         // We must release the spinlock to evaluate the conditions.
2213         mu_.store(v, std::memory_order_release);  // release just spinlock
2214         // can release with a store because there were waiters
2215 
2216         // h is the last waiter queued, and w_walk the first unsearched waiter.
2217         // Without the spinlock, the locations mu_ and h->next may now change
2218         // underneath us, but since we hold the lock itself, the only legal
2219         // change is to add waiters between h and w_walk.  Therefore, it's safe
2220         // to walk the path from w_walk to h inclusive. (TryRemove() can remove
2221         // a waiter anywhere, but it acquires both the spinlock and the Mutex)
2222 
2223         old_h = h;        // remember we searched to here
2224 
2225         // Walk the path upto and including h looking for waiters we can wake.
2226         while (pw_walk != h) {
2227           w_walk->wake = false;
2228           if (w_walk->waitp->cond ==
2229                   nullptr ||  // no condition => vacuously true OR
2230               (w_walk->waitp->cond != known_false &&
2231                // this thread's condition is not known false, AND
2232                //  is in fact true
2233                EvalConditionIgnored(this, w_walk->waitp->cond))) {
2234             if (w == nullptr) {
2235               w_walk->wake = true;    // can wake this waiter
2236               w = w_walk;
2237               pw = pw_walk;
2238               if (w_walk->waitp->how == kExclusive) {
2239                 wr_wait = kMuWrWait;
2240                 break;                // bail if waking this writer
2241               }
2242             } else if (w_walk->waitp->how == kShared) {  // wake if a reader
2243               w_walk->wake = true;
2244             } else {   // writer with true condition
2245               wr_wait = kMuWrWait;
2246             }
2247           } else {                  // can't wake; condition false
2248             known_false = w_walk->waitp->cond;  // remember last false condition
2249           }
2250           if (w_walk->wake) {   // we're waking reader w_walk
2251             pw_walk = w_walk;   // don't skip similar waiters
2252           } else {              // not waking; skip as much as possible
2253             pw_walk = Skip(w_walk);
2254           }
2255           // If pw_walk == h, then load of pw_walk->next can race with
2256           // concurrent write in Enqueue(). However, at the same time
2257           // we do not need to do the load, because we will bail out
2258           // from the loop anyway.
2259           if (pw_walk != h) {
2260             w_walk = pw_walk->next;
2261           }
2262         }
2263 
2264         continue;  // restart for(;;)-loop to wakeup w or to find more waiters
2265       }
2266       ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor");
2267       // The first (and perhaps only) waiter we've chosen to wake is w, whose
2268       // predecessor is pw.  If w is a reader, we must wake all the other
2269       // waiters with wake==true as well.  We may also need to queue
2270       // ourselves if waitp != null.  The spinlock and the lock are still
2271       // held.
2272 
2273       // This traverses the list in [ pw->next, h ], where h is the head,
2274       // removing all elements with wake==true and placing them in the
2275       // singly-linked list wake_list.  Returns the new head.
2276       h = DequeueAllWakeable(h, pw, &wake_list);
2277 
2278       intptr_t nv = (v & kMuEvent) | kMuDesig;
2279                                              // assume no waiters left,
2280                                              // set kMuDesig for INV1a
2281 
2282       if (waitp != nullptr) {  // we must queue ourselves and sleep
2283         h = Enqueue(h, waitp, v, kMuIsCond);
2284         // h is new last waiter; could be null if we queued ourselves on a
2285         // CondVar
2286       }
2287 
2288       ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull,
2289                      "unexpected empty wake list");
2290 
2291       if (h != nullptr) {  // there are waiters left
2292         h->readers = 0;
2293         h->maybe_unlocking = false;     // finished unlocking
2294         nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h);
2295       }
2296 
2297       // release both spinlock & lock
2298       // can release with a store because there were waiters
2299       mu_.store(nv, std::memory_order_release);
2300       break;  // out of for(;;)-loop
2301     }
2302     // aggressive here; no one can proceed till we do
2303     c = synchronization_internal::MutexDelay(c, AGGRESSIVE);
2304   }                            // end of for(;;)-loop
2305 
2306   if (wake_list != kPerThreadSynchNull) {
2307     int64_t enqueue_timestamp = wake_list->waitp->contention_start_cycles;
2308     bool cond_waiter = wake_list->cond_waiter;
2309     do {
2310       wake_list = Wakeup(wake_list);              // wake waiters
2311     } while (wake_list != kPerThreadSynchNull);
2312     if (!cond_waiter) {
2313       // Sample lock contention events only if the (first) waiter was trying to
2314       // acquire the lock, not waiting on a condition variable or Condition.
2315       int64_t wait_cycles = base_internal::CycleClock::Now() - enqueue_timestamp;
2316       mutex_tracer("slow release", this, wait_cycles);
2317       ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
2318       submit_profile_data(enqueue_timestamp);
2319       ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
2320     }
2321   }
2322 }
2323 
2324 // Used by CondVar implementation to reacquire mutex after waking from
2325 // condition variable.  This routine is used instead of Lock() because the
2326 // waiting thread may have been moved from the condition variable queue to the
2327 // mutex queue without a wakeup, by Trans().  In that case, when the thread is
2328 // finally woken, the woken thread will believe it has been woken from the
2329 // condition variable (i.e. its PC will be in when in the CondVar code), when
2330 // in fact it has just been woken from the mutex.  Thus, it must enter the slow
2331 // path of the mutex in the same state as if it had just woken from the mutex.
2332 // That is, it must ensure to clear kMuDesig (INV1b).
Trans(MuHow how)2333 void Mutex::Trans(MuHow how) {
2334   this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond);
2335 }
2336 
2337 // Used by CondVar implementation to effectively wake thread w from the
2338 // condition variable.  If this mutex is free, we simply wake the thread.
2339 // It will later acquire the mutex with high probability.  Otherwise, we
2340 // enqueue thread w on this mutex.
Fer(PerThreadSynch * w)2341 void Mutex::Fer(PerThreadSynch *w) {
2342   SchedulingGuard::ScopedDisable disable_rescheduling;
2343   int c = 0;
2344   ABSL_RAW_CHECK(w->waitp->cond == nullptr,
2345                  "Mutex::Fer while waiting on Condition");
2346   ABSL_RAW_CHECK(!w->waitp->timeout.has_timeout(),
2347                  "Mutex::Fer while in timed wait");
2348   ABSL_RAW_CHECK(w->waitp->cv_word == nullptr,
2349                  "Mutex::Fer with pending CondVar queueing");
2350   for (;;) {
2351     intptr_t v = mu_.load(std::memory_order_relaxed);
2352     // Note: must not queue if the mutex is unlocked (nobody will wake it).
2353     // For example, we can have only kMuWait (conditional) or maybe
2354     // kMuWait|kMuWrWait.
2355     // conflicting != 0 implies that the waking thread cannot currently take
2356     // the mutex, which in turn implies that someone else has it and can wake
2357     // us if we queue.
2358     const intptr_t conflicting =
2359         kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader);
2360     if ((v & conflicting) == 0) {
2361       w->next = nullptr;
2362       w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2363       IncrementSynchSem(this, w);
2364       return;
2365     } else {
2366       if ((v & (kMuSpin|kMuWait)) == 0) {       // no waiters
2367         // This thread tries to become the one and only waiter.
2368         PerThreadSynch *new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond);
2369         ABSL_RAW_CHECK(new_h != nullptr,
2370                        "Enqueue failed");  // we must queue ourselves
2371         if (mu_.compare_exchange_strong(
2372                 v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait,
2373                 std::memory_order_release, std::memory_order_relaxed)) {
2374           return;
2375         }
2376       } else if ((v & kMuSpin) == 0 &&
2377                  mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) {
2378         PerThreadSynch *h = GetPerThreadSynch(v);
2379         PerThreadSynch *new_h = Enqueue(h, w->waitp, v, kMuIsCond);
2380         ABSL_RAW_CHECK(new_h != nullptr,
2381                        "Enqueue failed");  // we must queue ourselves
2382         do {
2383           v = mu_.load(std::memory_order_relaxed);
2384         } while (!mu_.compare_exchange_weak(
2385             v,
2386             (v & kMuLow & ~kMuSpin) | kMuWait |
2387                 reinterpret_cast<intptr_t>(new_h),
2388             std::memory_order_release, std::memory_order_relaxed));
2389         return;
2390       }
2391     }
2392     c = synchronization_internal::MutexDelay(c, GENTLE);
2393   }
2394 }
2395 
AssertHeld() const2396 void Mutex::AssertHeld() const {
2397   if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) {
2398     SynchEvent *e = GetSynchEvent(this);
2399     ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s",
2400                  static_cast<const void *>(this),
2401                  (e == nullptr ? "" : e->name));
2402   }
2403 }
2404 
AssertReaderHeld() const2405 void Mutex::AssertReaderHeld() const {
2406   if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) {
2407     SynchEvent *e = GetSynchEvent(this);
2408     ABSL_RAW_LOG(
2409         FATAL, "thread should hold at least a read lock on Mutex %p %s",
2410         static_cast<const void *>(this), (e == nullptr ? "" : e->name));
2411   }
2412 }
2413 
2414 // -------------------------------- condition variables
2415 static const intptr_t kCvSpin = 0x0001L;   // spinlock protects waiter list
2416 static const intptr_t kCvEvent = 0x0002L;  // record events
2417 
2418 static const intptr_t kCvLow = 0x0003L;  // low order bits of CV
2419 
2420 // Hack to make constant values available to gdb pretty printer
2421 enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, };
2422 
2423 static_assert(PerThreadSynch::kAlignment > kCvLow,
2424               "PerThreadSynch::kAlignment must be greater than kCvLow");
2425 
EnableDebugLog(const char * name)2426 void CondVar::EnableDebugLog(const char *name) {
2427   SynchEvent *e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin);
2428   e->log = true;
2429   UnrefSynchEvent(e);
2430 }
2431 
~CondVar()2432 CondVar::~CondVar() {
2433   if ((cv_.load(std::memory_order_relaxed) & kCvEvent) != 0) {
2434     ForgetSynchEvent(&this->cv_, kCvEvent, kCvSpin);
2435   }
2436 }
2437 
2438 
2439 // Remove thread s from the list of waiters on this condition variable.
Remove(PerThreadSynch * s)2440 void CondVar::Remove(PerThreadSynch *s) {
2441   SchedulingGuard::ScopedDisable disable_rescheduling;
2442   intptr_t v;
2443   int c = 0;
2444   for (v = cv_.load(std::memory_order_relaxed);;
2445        v = cv_.load(std::memory_order_relaxed)) {
2446     if ((v & kCvSpin) == 0 &&  // attempt to acquire spinlock
2447         cv_.compare_exchange_strong(v, v | kCvSpin,
2448                                     std::memory_order_acquire,
2449                                     std::memory_order_relaxed)) {
2450       PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2451       if (h != nullptr) {
2452         PerThreadSynch *w = h;
2453         while (w->next != s && w->next != h) {  // search for thread
2454           w = w->next;
2455         }
2456         if (w->next == s) {           // found thread; remove it
2457           w->next = s->next;
2458           if (h == s) {
2459             h = (w == s) ? nullptr : w;
2460           }
2461           s->next = nullptr;
2462           s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2463         }
2464       }
2465                                       // release spinlock
2466       cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
2467                 std::memory_order_release);
2468       return;
2469     } else {
2470       // try again after a delay
2471       c = synchronization_internal::MutexDelay(c, GENTLE);
2472     }
2473   }
2474 }
2475 
2476 // Queue thread waitp->thread on condition variable word cv_word using
2477 // wait parameters waitp.
2478 // We split this into a separate routine, rather than simply doing it as part
2479 // of WaitCommon().  If we were to queue ourselves on the condition variable
2480 // before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via
2481 // the logging code, or via a Condition function) and might potentially attempt
2482 // to block this thread.  That would be a problem if the thread were already on
2483 // a the condition variable waiter queue.  Thus, we use the waitp->cv_word
2484 // to tell the unlock code to call CondVarEnqueue() to queue the thread on the
2485 // condition variable queue just before the mutex is to be unlocked, and (most
2486 // importantly) after any call to an external routine that might re-enter the
2487 // mutex code.
CondVarEnqueue(SynchWaitParams * waitp)2488 static void CondVarEnqueue(SynchWaitParams *waitp) {
2489   // This thread might be transferred to the Mutex queue by Fer() when
2490   // we are woken.  To make sure that is what happens, Enqueue() doesn't
2491   // call CondVarEnqueue() again but instead uses its normal code.  We
2492   // must do this before we queue ourselves so that cv_word will be null
2493   // when seen by the dequeuer, who may wish immediately to requeue
2494   // this thread on another queue.
2495   std::atomic<intptr_t> *cv_word = waitp->cv_word;
2496   waitp->cv_word = nullptr;
2497 
2498   intptr_t v = cv_word->load(std::memory_order_relaxed);
2499   int c = 0;
2500   while ((v & kCvSpin) != 0 ||  // acquire spinlock
2501          !cv_word->compare_exchange_weak(v, v | kCvSpin,
2502                                          std::memory_order_acquire,
2503                                          std::memory_order_relaxed)) {
2504     c = synchronization_internal::MutexDelay(c, GENTLE);
2505     v = cv_word->load(std::memory_order_relaxed);
2506   }
2507   ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be");
2508   waitp->thread->waitp = waitp;      // prepare ourselves for waiting
2509   PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2510   if (h == nullptr) {  // add this thread to waiter list
2511     waitp->thread->next = waitp->thread;
2512   } else {
2513     waitp->thread->next = h->next;
2514     h->next = waitp->thread;
2515   }
2516   waitp->thread->state.store(PerThreadSynch::kQueued,
2517                              std::memory_order_relaxed);
2518   cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread),
2519                  std::memory_order_release);
2520 }
2521 
WaitCommon(Mutex * mutex,KernelTimeout t)2522 bool CondVar::WaitCommon(Mutex *mutex, KernelTimeout t) {
2523   bool rc = false;          // return value; true iff we timed-out
2524 
2525   intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed);
2526   Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared;
2527   ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how));
2528 
2529   // maybe trace this call
2530   intptr_t v = cv_.load(std::memory_order_relaxed);
2531   cond_var_tracer("Wait", this);
2532   if ((v & kCvEvent) != 0) {
2533     PostSynchEvent(this, SYNCH_EV_WAIT);
2534   }
2535 
2536   // Release mu and wait on condition variable.
2537   SynchWaitParams waitp(mutex_how, nullptr, t, mutex,
2538                         Synch_GetPerThreadAnnotated(mutex), &cv_);
2539   // UnlockSlow() will call CondVarEnqueue() just before releasing the
2540   // Mutex, thus queuing this thread on the condition variable.  See
2541   // CondVarEnqueue() for the reasons.
2542   mutex->UnlockSlow(&waitp);
2543 
2544   // wait for signal
2545   while (waitp.thread->state.load(std::memory_order_acquire) ==
2546          PerThreadSynch::kQueued) {
2547     if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) {
2548       this->Remove(waitp.thread);
2549       rc = true;
2550     }
2551   }
2552 
2553   ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be");
2554   waitp.thread->waitp = nullptr;  // cleanup
2555 
2556   // maybe trace this call
2557   cond_var_tracer("Unwait", this);
2558   if ((v & kCvEvent) != 0) {
2559     PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING);
2560   }
2561 
2562   // From synchronization point of view Wait is unlock of the mutex followed
2563   // by lock of the mutex. We've annotated start of unlock in the beginning
2564   // of the function. Now, finish unlock and annotate lock of the mutex.
2565   // (Trans is effectively lock).
2566   ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how));
2567   ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how));
2568   mutex->Trans(mutex_how);  // Reacquire mutex
2569   ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0);
2570   return rc;
2571 }
2572 
WaitWithTimeout(Mutex * mu,absl::Duration timeout)2573 bool CondVar::WaitWithTimeout(Mutex *mu, absl::Duration timeout) {
2574   return WaitWithDeadline(mu, DeadlineFromTimeout(timeout));
2575 }
2576 
WaitWithDeadline(Mutex * mu,absl::Time deadline)2577 bool CondVar::WaitWithDeadline(Mutex *mu, absl::Time deadline) {
2578   return WaitCommon(mu, KernelTimeout(deadline));
2579 }
2580 
Wait(Mutex * mu)2581 void CondVar::Wait(Mutex *mu) {
2582   WaitCommon(mu, KernelTimeout::Never());
2583 }
2584 
2585 // Wake thread w
2586 // If it was a timed wait, w will be waiting on w->cv
2587 // Otherwise, if it was not a Mutex mutex, w will be waiting on w->sem
2588 // Otherwise, w is transferred to the Mutex mutex via Mutex::Fer().
Wakeup(PerThreadSynch * w)2589 void CondVar::Wakeup(PerThreadSynch *w) {
2590   if (w->waitp->timeout.has_timeout() || w->waitp->cvmu == nullptr) {
2591     // The waiting thread only needs to observe "w->state == kAvailable" to be
2592     // released, we must cache "cvmu" before clearing "next".
2593     Mutex *mu = w->waitp->cvmu;
2594     w->next = nullptr;
2595     w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2596     Mutex::IncrementSynchSem(mu, w);
2597   } else {
2598     w->waitp->cvmu->Fer(w);
2599   }
2600 }
2601 
Signal()2602 void CondVar::Signal() {
2603   SchedulingGuard::ScopedDisable disable_rescheduling;
2604   ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
2605   intptr_t v;
2606   int c = 0;
2607   for (v = cv_.load(std::memory_order_relaxed); v != 0;
2608        v = cv_.load(std::memory_order_relaxed)) {
2609     if ((v & kCvSpin) == 0 &&  // attempt to acquire spinlock
2610         cv_.compare_exchange_strong(v, v | kCvSpin,
2611                                     std::memory_order_acquire,
2612                                     std::memory_order_relaxed)) {
2613       PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2614       PerThreadSynch *w = nullptr;
2615       if (h != nullptr) {  // remove first waiter
2616         w = h->next;
2617         if (w == h) {
2618           h = nullptr;
2619         } else {
2620           h->next = w->next;
2621         }
2622       }
2623                                       // release spinlock
2624       cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
2625                 std::memory_order_release);
2626       if (w != nullptr) {
2627         CondVar::Wakeup(w);                // wake waiter, if there was one
2628         cond_var_tracer("Signal wakeup", this);
2629       }
2630       if ((v & kCvEvent) != 0) {
2631         PostSynchEvent(this, SYNCH_EV_SIGNAL);
2632       }
2633       ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2634       return;
2635     } else {
2636       c = synchronization_internal::MutexDelay(c, GENTLE);
2637     }
2638   }
2639   ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2640 }
2641 
SignalAll()2642 void CondVar::SignalAll () {
2643   ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
2644   intptr_t v;
2645   int c = 0;
2646   for (v = cv_.load(std::memory_order_relaxed); v != 0;
2647        v = cv_.load(std::memory_order_relaxed)) {
2648     // empty the list if spinlock free
2649     // We do this by simply setting the list to empty using
2650     // compare and swap.   We then have the entire list in our hands,
2651     // which cannot be changing since we grabbed it while no one
2652     // held the lock.
2653     if ((v & kCvSpin) == 0 &&
2654         cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire,
2655                                     std::memory_order_relaxed)) {
2656       PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2657       if (h != nullptr) {
2658         PerThreadSynch *w;
2659         PerThreadSynch *n = h->next;
2660         do {                          // for every thread, wake it up
2661           w = n;
2662           n = n->next;
2663           CondVar::Wakeup(w);
2664         } while (w != h);
2665         cond_var_tracer("SignalAll wakeup", this);
2666       }
2667       if ((v & kCvEvent) != 0) {
2668         PostSynchEvent(this, SYNCH_EV_SIGNALALL);
2669       }
2670       ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2671       return;
2672     } else {
2673       // try again after a delay
2674       c = synchronization_internal::MutexDelay(c, GENTLE);
2675     }
2676   }
2677   ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2678 }
2679 
Release()2680 void ReleasableMutexLock::Release() {
2681   ABSL_RAW_CHECK(this->mu_ != nullptr,
2682                  "ReleasableMutexLock::Release may only be called once");
2683   this->mu_->Unlock();
2684   this->mu_ = nullptr;
2685 }
2686 
2687 #ifdef ABSL_HAVE_THREAD_SANITIZER
2688 extern "C" void __tsan_read1(void *addr);
2689 #else
2690 #define __tsan_read1(addr)  // do nothing if TSan not enabled
2691 #endif
2692 
2693 // A function that just returns its argument, dereferenced
Dereference(void * arg)2694 static bool Dereference(void *arg) {
2695   // ThreadSanitizer does not instrument this file for memory accesses.
2696   // This function dereferences a user variable that can participate
2697   // in a data race, so we need to manually tell TSan about this memory access.
2698   __tsan_read1(arg);
2699   return *(static_cast<bool *>(arg));
2700 }
2701 
Condition()2702 Condition::Condition() {}   // null constructor, used for kTrue only
2703 const Condition Condition::kTrue;
2704 
Condition(bool (* func)(void *),void * arg)2705 Condition::Condition(bool (*func)(void *), void *arg)
2706     : eval_(&CallVoidPtrFunction),
2707       function_(func),
2708       method_(nullptr),
2709       arg_(arg) {}
2710 
CallVoidPtrFunction(const Condition * c)2711 bool Condition::CallVoidPtrFunction(const Condition *c) {
2712   return (*c->function_)(c->arg_);
2713 }
2714 
Condition(const bool * cond)2715 Condition::Condition(const bool *cond)
2716     : eval_(CallVoidPtrFunction),
2717       function_(Dereference),
2718       method_(nullptr),
2719       // const_cast is safe since Dereference does not modify arg
2720       arg_(const_cast<bool *>(cond)) {}
2721 
Eval() const2722 bool Condition::Eval() const {
2723   // eval_ == null for kTrue
2724   return (this->eval_ == nullptr) || (*this->eval_)(this);
2725 }
2726 
GuaranteedEqual(const Condition * a,const Condition * b)2727 bool Condition::GuaranteedEqual(const Condition *a, const Condition *b) {
2728   if (a == nullptr) {
2729     return b == nullptr || b->eval_ == nullptr;
2730   }
2731   if (b == nullptr || b->eval_ == nullptr) {
2732     return a->eval_ == nullptr;
2733   }
2734   return a->eval_ == b->eval_ && a->function_ == b->function_ &&
2735          a->arg_ == b->arg_ && a->method_ == b->method_;
2736 }
2737 
2738 ABSL_NAMESPACE_END
2739 }  // namespace absl
2740