• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // mutex.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines a `Mutex` -- a mutually exclusive lock -- and the
20 // most common type of synchronization primitive for facilitating locks on
21 // shared resources. A mutex is used to prevent multiple threads from accessing
22 // and/or writing to a shared resource concurrently.
23 //
24 // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
25 // features:
26 //   * Conditional predicates intrinsic to the `Mutex` object
27 //   * Shared/reader locks, in addition to standard exclusive/writer locks
28 //   * Deadlock detection and debug support.
29 //
30 // The following helper classes are also defined within this file:
31 //
32 //  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
33 //              write access within the current scope.
34 //  ReaderMutexLock
35 //            - An RAII wrapper to acquire and release a `Mutex` for shared/read
36 //              access within the current scope.
37 //
38 //  WriterMutexLock
39 //            - Alias for `MutexLock` above, designed for use in distinguishing
40 //              reader and writer locks within code.
41 //
42 // In addition to simple mutex locks, this file also defines ways to perform
43 // locking under certain conditions.
44 //
45 //  Condition   - (Preferred) Used to wait for a particular predicate that
46 //                depends on state protected by the `Mutex` to become true.
47 //  CondVar     - A lower-level variant of `Condition` that relies on
48 //                application code to explicitly signal the `CondVar` when
49 //                a condition has been met.
50 //
51 // See below for more information on using `Condition` or `CondVar`.
52 //
53 // Mutexes and mutex behavior can be quite complicated. The information within
54 // this header file is limited, as a result. Please consult the Mutex guide for
55 // more complete information and examples.
56 
57 #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
58 #define ABSL_SYNCHRONIZATION_MUTEX_H_
59 
60 #include <atomic>
61 #include <cstdint>
62 #include <string>
63 
64 #include "absl/base/const_init.h"
65 #include "absl/base/internal/identity.h"
66 #include "absl/base/internal/low_level_alloc.h"
67 #include "absl/base/internal/thread_identity.h"
68 #include "absl/base/internal/tsan_mutex_interface.h"
69 #include "absl/base/port.h"
70 #include "absl/base/thread_annotations.h"
71 #include "absl/synchronization/internal/kernel_timeout.h"
72 #include "absl/synchronization/internal/per_thread_sem.h"
73 #include "absl/time/time.h"
74 
75 // Decide if we should use the non-production implementation because
76 // the production implementation hasn't been fully ported yet.
77 #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
78 #error ABSL_INTERNAL_USE_NONPROD_MUTEX cannot be directly set
79 #elif defined(ABSL_LOW_LEVEL_ALLOC_MISSING)
80 #define ABSL_INTERNAL_USE_NONPROD_MUTEX 1
81 #include "absl/synchronization/internal/mutex_nonprod.inc"
82 #endif
83 
84 namespace absl {
85 ABSL_NAMESPACE_BEGIN
86 
87 class Condition;
88 struct SynchWaitParams;
89 
90 // -----------------------------------------------------------------------------
91 // Mutex
92 // -----------------------------------------------------------------------------
93 //
94 // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
95 // on some resource, typically a variable or data structure with associated
96 // invariants. Proper usage of mutexes prevents concurrent access by different
97 // threads to the same resource.
98 //
99 // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
100 // The `Lock()` operation *acquires* a `Mutex` (in a state known as an
101 // *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a
102 // Mutex. During the span of time between the Lock() and Unlock() operations,
103 // a mutex is said to be *held*. By design all mutexes support exclusive/write
104 // locks, as this is the most common way to use a mutex.
105 //
106 // The `Mutex` state machine for basic lock/unlock operations is quite simple:
107 //
108 // |                | Lock()     | Unlock() |
109 // |----------------+------------+----------|
110 // | Free           | Exclusive  | invalid  |
111 // | Exclusive      | blocks     | Free     |
112 //
113 // Attempts to `Unlock()` must originate from the thread that performed the
114 // corresponding `Lock()` operation.
115 //
116 // An "invalid" operation is disallowed by the API. The `Mutex` implementation
117 // is allowed to do anything on an invalid call, including but not limited to
118 // crashing with a useful error message, silently succeeding, or corrupting
119 // data structures. In debug mode, the implementation attempts to crash with a
120 // useful error message.
121 //
122 // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
123 // is, however, approximately fair over long periods, and starvation-free for
124 // threads at the same priority.
125 //
126 // The lock/unlock primitives are now annotated with lock annotations
127 // defined in (base/thread_annotations.h). When writing multi-threaded code,
128 // you should use lock annotations whenever possible to document your lock
129 // synchronization policy. Besides acting as documentation, these annotations
130 // also help compilers or static analysis tools to identify and warn about
131 // issues that could potentially result in race conditions and deadlocks.
132 //
133 // For more information about the lock annotations, please see
134 // [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)
135 // in the Clang documentation.
136 //
137 // See also `MutexLock`, below, for scoped `Mutex` acquisition.
138 
139 class ABSL_LOCKABLE Mutex {
140  public:
141   // Creates a `Mutex` that is not held by anyone. This constructor is
142   // typically used for Mutexes allocated on the heap or the stack.
143   //
144   // To create `Mutex` instances with static storage duration
145   // (e.g. a namespace-scoped or global variable), see
146   // `Mutex::Mutex(absl::kConstInit)` below instead.
147   Mutex();
148 
149   // Creates a mutex with static storage duration.  A global variable
150   // constructed this way avoids the lifetime issues that can occur on program
151   // startup and shutdown.  (See absl/base/const_init.h.)
152   //
153   // For Mutexes allocated on the heap and stack, instead use the default
154   // constructor, which can interact more fully with the thread sanitizer.
155   //
156   // Example usage:
157   //   namespace foo {
158   //   ABSL_CONST_INIT Mutex mu(absl::kConstInit);
159   //   }
160   explicit constexpr Mutex(absl::ConstInitType);
161 
162   ~Mutex();
163 
164   // Mutex::Lock()
165   //
166   // Blocks the calling thread, if necessary, until this `Mutex` is free, and
167   // then acquires it exclusively. (This lock is also known as a "write lock.")
168   void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
169 
170   // Mutex::Unlock()
171   //
172   // Releases this `Mutex` and returns it from the exclusive/write state to the
173   // free state. Caller must hold the `Mutex` exclusively.
174   void Unlock() ABSL_UNLOCK_FUNCTION();
175 
176   // Mutex::TryLock()
177   //
178   // If the mutex can be acquired without blocking, does so exclusively and
179   // returns `true`. Otherwise, returns `false`. Returns `true` with high
180   // probability if the `Mutex` was free.
181   bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
182 
183   // Mutex::AssertHeld()
184   //
185   // Return immediately if this thread holds the `Mutex` exclusively (in write
186   // mode). Otherwise, may report an error (typically by crashing with a
187   // diagnostic), or may return immediately.
188   void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
189 
190   // ---------------------------------------------------------------------------
191   // Reader-Writer Locking
192   // ---------------------------------------------------------------------------
193 
194   // A Mutex can also be used as a starvation-free reader-writer lock.
195   // Neither read-locks nor write-locks are reentrant/recursive to avoid
196   // potential client programming errors.
197   //
198   // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
199   // `Unlock()` and `TryLock()` methods for use within applications mixing
200   // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
201   // manner can make locking behavior clearer when mixing read and write modes.
202   //
203   // Introducing reader locks necessarily complicates the `Mutex` state
204   // machine somewhat. The table below illustrates the allowed state transitions
205   // of a mutex in such cases. Note that ReaderLock() may block even if the lock
206   // is held in shared mode; this occurs when another thread is blocked on a
207   // call to WriterLock().
208   //
209   // ---------------------------------------------------------------------------
210   //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()
211   // ---------------------------------------------------------------------------
212   // State
213   // ---------------------------------------------------------------------------
214   // Free           Exclusive    invalid   Shared(1)              invalid
215   // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
216   // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
217   // Exclusive      blocks       Free      blocks                 invalid
218   // ---------------------------------------------------------------------------
219   //
220   // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
221 
222   // Mutex::ReaderLock()
223   //
224   // Blocks the calling thread, if necessary, until this `Mutex` is either free,
225   // or in shared mode, and then acquires a share of it. Note that
226   // `ReaderLock()` will block if some other thread has an exclusive/writer lock
227   // on the mutex.
228 
229   void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
230 
231   // Mutex::ReaderUnlock()
232   //
233   // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
234   // the free state if this thread holds the last reader lock on the mutex. Note
235   // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
236   void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
237 
238   // Mutex::ReaderTryLock()
239   //
240   // If the mutex can be acquired without blocking, acquires this mutex for
241   // shared access and returns `true`. Otherwise, returns `false`. Returns
242   // `true` with high probability if the `Mutex` was free or shared.
243   bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
244 
245   // Mutex::AssertReaderHeld()
246   //
247   // Returns immediately if this thread holds the `Mutex` in at least shared
248   // mode (read mode). Otherwise, may report an error (typically by
249   // crashing with a diagnostic), or may return immediately.
250   void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
251 
252   // Mutex::WriterLock()
253   // Mutex::WriterUnlock()
254   // Mutex::WriterTryLock()
255   //
256   // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
257   //
258   // These methods may be used (along with the complementary `Reader*()`
259   // methods) to distingish simple exclusive `Mutex` usage (`Lock()`,
260   // etc.) from reader/writer lock usage.
WriterLock()261   void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
262 
WriterUnlock()263   void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
264 
WriterTryLock()265   bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
266     return this->TryLock();
267   }
268 
269   // ---------------------------------------------------------------------------
270   // Conditional Critical Regions
271   // ---------------------------------------------------------------------------
272 
273   // Conditional usage of a `Mutex` can occur using two distinct paradigms:
274   //
275   //   * Use of `Mutex` member functions with `Condition` objects.
276   //   * Use of the separate `CondVar` abstraction.
277   //
278   // In general, prefer use of `Condition` and the `Mutex` member functions
279   // listed below over `CondVar`. When there are multiple threads waiting on
280   // distinctly different conditions, however, a battery of `CondVar`s may be
281   // more efficient. This section discusses use of `Condition` objects.
282   //
283   // `Mutex` contains member functions for performing lock operations only under
284   // certain conditions, of class `Condition`. For correctness, the `Condition`
285   // must return a boolean that is a pure function, only of state protected by
286   // the `Mutex`. The condition must be invariant w.r.t. environmental state
287   // such as thread, cpu id, or time, and must be `noexcept`. The condition will
288   // always be invoked with the mutex held in at least read mode, so you should
289   // not block it for long periods or sleep it on a timer.
290   //
291   // Since a condition must not depend directly on the current time, use
292   // `*WithTimeout()` member function variants to make your condition
293   // effectively true after a given duration, or `*WithDeadline()` variants to
294   // make your condition effectively true after a given time.
295   //
296   // The condition function should have no side-effects aside from debug
297   // logging; as a special exception, the function may acquire other mutexes
298   // provided it releases all those that it acquires.  (This exception was
299   // required to allow logging.)
300 
301   // Mutex::Await()
302   //
303   // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
304   // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
305   // same mode in which it was previously held. If the condition is initially
306   // `true`, `Await()` *may* skip the release/re-acquire step.
307   //
308   // `Await()` requires that this thread holds this `Mutex` in some mode.
309   void Await(const Condition &cond);
310 
311   // Mutex::LockWhen()
312   // Mutex::ReaderLockWhen()
313   // Mutex::WriterLockWhen()
314   //
315   // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
316   // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
317   // logically equivalent to `*Lock(); Await();` though they may have different
318   // performance characteristics.
319   void LockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION();
320 
321   void ReaderLockWhen(const Condition &cond) ABSL_SHARED_LOCK_FUNCTION();
322 
WriterLockWhen(const Condition & cond)323   void WriterLockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
324     this->LockWhen(cond);
325   }
326 
327   // ---------------------------------------------------------------------------
328   // Mutex Variants with Timeouts/Deadlines
329   // ---------------------------------------------------------------------------
330 
331   // Mutex::AwaitWithTimeout()
332   // Mutex::AwaitWithDeadline()
333   //
334   // Unlocks this `Mutex` and blocks until simultaneously:
335   //   - either `cond` is true or the {timeout has expired, deadline has passed}
336   //     and
337   //   - this `Mutex` can be reacquired,
338   // then reacquire this `Mutex` in the same mode in which it was previously
339   // held, returning `true` iff `cond` is `true` on return.
340   //
341   // If the condition is initially `true`, the implementation *may* skip the
342   // release/re-acquire step and return immediately.
343   //
344   // Deadlines in the past are equivalent to an immediate deadline.
345   // Negative timeouts are equivalent to a zero timeout.
346   //
347   // This method requires that this thread holds this `Mutex` in some mode.
348   bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);
349 
350   bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);
351 
352   // Mutex::LockWhenWithTimeout()
353   // Mutex::ReaderLockWhenWithTimeout()
354   // Mutex::WriterLockWhenWithTimeout()
355   //
356   // Blocks until simultaneously both:
357   //   - either `cond` is `true` or the timeout has expired, and
358   //   - this `Mutex` can be acquired,
359   // then atomically acquires this `Mutex`, returning `true` iff `cond` is
360   // `true` on return.
361   //
362   // Negative timeouts are equivalent to a zero timeout.
363   bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
364       ABSL_EXCLUSIVE_LOCK_FUNCTION();
365   bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
366       ABSL_SHARED_LOCK_FUNCTION();
WriterLockWhenWithTimeout(const Condition & cond,absl::Duration timeout)367   bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
368       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
369     return this->LockWhenWithTimeout(cond, timeout);
370   }
371 
372   // Mutex::LockWhenWithDeadline()
373   // Mutex::ReaderLockWhenWithDeadline()
374   // Mutex::WriterLockWhenWithDeadline()
375   //
376   // Blocks until simultaneously both:
377   //   - either `cond` is `true` or the deadline has been passed, and
378   //   - this `Mutex` can be acquired,
379   // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
380   // on return.
381   //
382   // Deadlines in the past are equivalent to an immediate deadline.
383   bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)
384       ABSL_EXCLUSIVE_LOCK_FUNCTION();
385   bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
386       ABSL_SHARED_LOCK_FUNCTION();
WriterLockWhenWithDeadline(const Condition & cond,absl::Time deadline)387   bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
388       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
389     return this->LockWhenWithDeadline(cond, deadline);
390   }
391 
392   // ---------------------------------------------------------------------------
393   // Debug Support: Invariant Checking, Deadlock Detection, Logging.
394   // ---------------------------------------------------------------------------
395 
396   // Mutex::EnableInvariantDebugging()
397   //
398   // If `invariant`!=null and if invariant debugging has been enabled globally,
399   // cause `(*invariant)(arg)` to be called at moments when the invariant for
400   // this `Mutex` should hold (for example: just after acquire, just before
401   // release).
402   //
403   // The routine `invariant` should have no side-effects since it is not
404   // guaranteed how many times it will be called; it should check the invariant
405   // and crash if it does not hold. Enabling global invariant debugging may
406   // substantially reduce `Mutex` performance; it should be set only for
407   // non-production runs.  Optimization options may also disable invariant
408   // checks.
409   void EnableInvariantDebugging(void (*invariant)(void *), void *arg);
410 
411   // Mutex::EnableDebugLog()
412   //
413   // Cause all subsequent uses of this `Mutex` to be logged via
414   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
415   // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
416   //
417   // Note: This method substantially reduces `Mutex` performance.
418   void EnableDebugLog(const char *name);
419 
420   // Deadlock detection
421 
422   // Mutex::ForgetDeadlockInfo()
423   //
424   // Forget any deadlock-detection information previously gathered
425   // about this `Mutex`. Call this method in debug mode when the lock ordering
426   // of a `Mutex` changes.
427   void ForgetDeadlockInfo();
428 
429   // Mutex::AssertNotHeld()
430   //
431   // Return immediately if this thread does not hold this `Mutex` in any
432   // mode; otherwise, may report an error (typically by crashing with a
433   // diagnostic), or may return immediately.
434   //
435   // Currently this check is performed only if all of:
436   //    - in debug mode
437   //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
438   //    - number of locks concurrently held by this thread is not large.
439   // are true.
440   void AssertNotHeld() const;
441 
442   // Special cases.
443 
444   // A `MuHow` is a constant that indicates how a lock should be acquired.
445   // Internal implementation detail.  Clients should ignore.
446   typedef const struct MuHowS *MuHow;
447 
448   // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
449   //
450   // Causes the `Mutex` implementation to prepare itself for re-entry caused by
451   // future use of `Mutex` within a fatal signal handler. This method is
452   // intended for use only for last-ditch attempts to log crash information.
453   // It does not guarantee that attempts to use Mutexes within the handler will
454   // not deadlock; it merely makes other faults less likely.
455   //
456   // WARNING:  This routine must be invoked from a signal handler, and the
457   // signal handler must either loop forever or terminate the process.
458   // Attempts to return from (or `longjmp` out of) the signal handler once this
459   // call has been made may cause arbitrary program behaviour including
460   // crashes and deadlocks.
461   static void InternalAttemptToUseMutexInFatalSignalHandler();
462 
463  private:
464 #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
465   friend class CondVar;
466 
impl()467   synchronization_internal::MutexImpl *impl() { return impl_.get(); }
468 
469   synchronization_internal::SynchronizationStorage<
470       synchronization_internal::MutexImpl>
471       impl_;
472 #else
473   std::atomic<intptr_t> mu_;  // The Mutex state.
474 
475   // Post()/Wait() versus associated PerThreadSem; in class for required
476   // friendship with PerThreadSem.
477   static inline void IncrementSynchSem(Mutex *mu,
478                                        base_internal::PerThreadSynch *w);
479   static inline bool DecrementSynchSem(
480       Mutex *mu, base_internal::PerThreadSynch *w,
481       synchronization_internal::KernelTimeout t);
482 
483   // slow path acquire
484   void LockSlowLoop(SynchWaitParams *waitp, int flags);
485   // wrappers around LockSlowLoop()
486   bool LockSlowWithDeadline(MuHow how, const Condition *cond,
487                             synchronization_internal::KernelTimeout t,
488                             int flags);
489   void LockSlow(MuHow how, const Condition *cond,
490                 int flags) ABSL_ATTRIBUTE_COLD;
491   // slow path release
492   void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;
493   // Common code between Await() and AwaitWithTimeout/Deadline()
494   bool AwaitCommon(const Condition &cond,
495                    synchronization_internal::KernelTimeout t);
496   // Attempt to remove thread s from queue.
497   void TryRemove(base_internal::PerThreadSynch *s);
498   // Block a thread on mutex.
499   void Block(base_internal::PerThreadSynch *s);
500   // Wake a thread; return successor.
501   base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w);
502 
503   friend class CondVar;   // for access to Trans()/Fer().
504   void Trans(MuHow how);  // used for CondVar->Mutex transfer
505   void Fer(
506       base_internal::PerThreadSynch *w);  // used for CondVar->Mutex transfer
507 #endif
508 
509   // Catch the error of writing Mutex when intending MutexLock.
Mutex(const volatile Mutex *)510   Mutex(const volatile Mutex * /*ignored*/) {}  // NOLINT(runtime/explicit)
511 
512   Mutex(const Mutex&) = delete;
513   Mutex& operator=(const Mutex&) = delete;
514 };
515 
516 // -----------------------------------------------------------------------------
517 // Mutex RAII Wrappers
518 // -----------------------------------------------------------------------------
519 
520 // MutexLock
521 //
522 // `MutexLock` is a helper class, which acquires and releases a `Mutex` via
523 // RAII.
524 //
525 // Example:
526 //
527 // Class Foo {
528 //
529 //   Foo::Bar* Baz() {
530 //     MutexLock l(&lock_);
531 //     ...
532 //     return bar;
533 //   }
534 //
535 // private:
536 //   Mutex lock_;
537 // };
538 class ABSL_SCOPED_LOCKABLE MutexLock {
539  public:
MutexLock(Mutex * mu)540   explicit MutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
541     this->mu_->Lock();
542   }
543 
544   MutexLock(const MutexLock &) = delete;  // NOLINT(runtime/mutex)
545   MutexLock(MutexLock&&) = delete;  // NOLINT(runtime/mutex)
546   MutexLock& operator=(const MutexLock&) = delete;
547   MutexLock& operator=(MutexLock&&) = delete;
548 
ABSL_UNLOCK_FUNCTION()549   ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
550 
551  private:
552   Mutex *const mu_;
553 };
554 
555 // ReaderMutexLock
556 //
557 // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
558 // releases a shared lock on a `Mutex` via RAII.
559 class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
560  public:
ReaderMutexLock(Mutex * mu)561   explicit ReaderMutexLock(Mutex *mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
562     mu->ReaderLock();
563   }
564 
565   ReaderMutexLock(const ReaderMutexLock&) = delete;
566   ReaderMutexLock(ReaderMutexLock&&) = delete;
567   ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
568   ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
569 
ABSL_UNLOCK_FUNCTION()570   ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
571 
572  private:
573   Mutex *const mu_;
574 };
575 
576 // WriterMutexLock
577 //
578 // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
579 // releases a write (exclusive) lock on a `Mutex` via RAII.
580 class ABSL_SCOPED_LOCKABLE WriterMutexLock {
581  public:
WriterMutexLock(Mutex * mu)582   explicit WriterMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
583       : mu_(mu) {
584     mu->WriterLock();
585   }
586 
587   WriterMutexLock(const WriterMutexLock&) = delete;
588   WriterMutexLock(WriterMutexLock&&) = delete;
589   WriterMutexLock& operator=(const WriterMutexLock&) = delete;
590   WriterMutexLock& operator=(WriterMutexLock&&) = delete;
591 
ABSL_UNLOCK_FUNCTION()592   ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
593 
594  private:
595   Mutex *const mu_;
596 };
597 
598 // -----------------------------------------------------------------------------
599 // Condition
600 // -----------------------------------------------------------------------------
601 //
602 // As noted above, `Mutex` contains a number of member functions which take a
603 // `Condition` as an argument; clients can wait for conditions to become `true`
604 // before attempting to acquire the mutex. These sections are known as
605 // "condition critical" sections. To use a `Condition`, you simply need to
606 // construct it, and use within an appropriate `Mutex` member function;
607 // everything else in the `Condition` class is an implementation detail.
608 //
609 // A `Condition` is specified as a function pointer which returns a boolean.
610 // `Condition` functions should be pure functions -- their results should depend
611 // only on passed arguments, should not consult any external state (such as
612 // clocks), and should have no side-effects, aside from debug logging. Any
613 // objects that the function may access should be limited to those which are
614 // constant while the mutex is blocked on the condition (e.g. a stack variable),
615 // or objects of state protected explicitly by the mutex.
616 //
617 // No matter which construction is used for `Condition`, the underlying
618 // function pointer / functor / callable must not throw any
619 // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
620 // the face of a throwing `Condition`. (When Abseil is allowed to depend
621 // on C++17, these function pointers will be explicitly marked
622 // `noexcept`; until then this requirement cannot be enforced in the
623 // type system.)
624 //
625 // Note: to use a `Condition`, you need only construct it and pass it within the
626 // appropriate `Mutex' member function, such as `Mutex::Await()`.
627 //
628 // Example:
629 //
630 //   // assume count_ is not internal reference count
631 //   int count_ ABSL_GUARDED_BY(mu_);
632 //
633 //   mu_.LockWhen(Condition(+[](int* count) { return *count == 0; },
634 //         &count_));
635 //
636 // When multiple threads are waiting on exactly the same condition, make sure
637 // that they are constructed with the same parameters (same pointer to function
638 // + arg, or same pointer to object + method), so that the mutex implementation
639 // can avoid redundantly evaluating the same condition for each thread.
640 class Condition {
641  public:
642   // A Condition that returns the result of "(*func)(arg)"
643   Condition(bool (*func)(void *), void *arg);
644 
645   // Templated version for people who are averse to casts.
646   //
647   // To use a lambda, prepend it with unary plus, which converts the lambda
648   // into a function pointer:
649   //     Condition(+[](T* t) { return ...; }, arg).
650   //
651   // Note: lambdas in this case must contain no bound variables.
652   //
653   // See class comment for performance advice.
654   template<typename T>
655   Condition(bool (*func)(T *), T *arg);
656 
657   // Templated version for invoking a method that returns a `bool`.
658   //
659   // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
660   // `object->Method()`.
661   //
662   // Implementation Note: `absl::internal::identity` is used to allow methods to
663   // come from base classes. A simpler signature like
664   // `Condition(T*, bool (T::*)())` does not suffice.
665   template<typename T>
666   Condition(T *object, bool (absl::internal::identity<T>::type::* method)());
667 
668   // Same as above, for const members
669   template<typename T>
670   Condition(const T *object,
671             bool (absl::internal::identity<T>::type::* method)() const);
672 
673   // A Condition that returns the value of `*cond`
674   explicit Condition(const bool *cond);
675 
676   // Templated version for invoking a functor that returns a `bool`.
677   // This approach accepts pointers to non-mutable lambdas, `std::function`,
678   // the result of` std::bind` and user-defined functors that define
679   // `bool F::operator()() const`.
680   //
681   // Example:
682   //
683   //   auto reached = [this, current]() {
684   //     mu_.AssertReaderHeld();                // For annotalysis.
685   //     return processed_ >= current;
686   //   };
687   //   mu_.Await(Condition(&reached));
688   //
689   // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReadHeld()" in the
690   // lambda as it may be called when the mutex is being unlocked from a scope
691   // holding only a reader lock, which will make the assertion not fulfilled and
692   // crash the binary.
693 
694   // See class comment for performance advice. In particular, if there
695   // might be more than one waiter for the same condition, make sure
696   // that all waiters construct the condition with the same pointers.
697 
698   // Implementation note: The second template parameter ensures that this
699   // constructor doesn't participate in overload resolution if T doesn't have
700   // `bool operator() const`.
701   template <typename T, typename E = decltype(
702       static_cast<bool (T::*)() const>(&T::operator()))>
Condition(const T * obj)703   explicit Condition(const T *obj)
704       : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
705 
706   // A Condition that always returns `true`.
707   static const Condition kTrue;
708 
709   // Evaluates the condition.
710   bool Eval() const;
711 
712   // Returns `true` if the two conditions are guaranteed to return the same
713   // value if evaluated at the same time, `false` if the evaluation *may* return
714   // different results.
715   //
716   // Two `Condition` values are guaranteed equal if both their `func` and `arg`
717   // components are the same. A null pointer is equivalent to a `true`
718   // condition.
719   static bool GuaranteedEqual(const Condition *a, const Condition *b);
720 
721  private:
722   typedef bool (*InternalFunctionType)(void * arg);
723   typedef bool (Condition::*InternalMethodType)();
724   typedef bool (*InternalMethodCallerType)(void * arg,
725                                            InternalMethodType internal_method);
726 
727   bool (*eval_)(const Condition*);  // Actual evaluator
728   InternalFunctionType function_;   // function taking pointer returning bool
729   InternalMethodType method_;       // method returning bool
730   void *arg_;                       // arg of function_ or object of method_
731 
732   Condition();        // null constructor used only to create kTrue
733 
734   // Various functions eval_ can point to:
735   static bool CallVoidPtrFunction(const Condition*);
736   template <typename T> static bool CastAndCallFunction(const Condition* c);
737   template <typename T> static bool CastAndCallMethod(const Condition* c);
738 };
739 
740 // -----------------------------------------------------------------------------
741 // CondVar
742 // -----------------------------------------------------------------------------
743 //
744 // A condition variable, reflecting state evaluated separately outside of the
745 // `Mutex` object, which can be signaled to wake callers.
746 // This class is not normally needed; use `Mutex` member functions such as
747 // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
748 // with many threads and many conditions, `CondVar` may be faster.
749 //
750 // The implementation may deliver signals to any condition variable at
751 // any time, even when no call to `Signal()` or `SignalAll()` is made; as a
752 // result, upon being awoken, you must check the logical condition you have
753 // been waiting upon.
754 //
755 // Examples:
756 //
757 // Usage for a thread waiting for some condition C protected by mutex mu:
758 //       mu.Lock();
759 //       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
760 //       //  C holds; process data
761 //       mu.Unlock();
762 //
763 // Usage to wake T is:
764 //       mu.Lock();
765 //      // process data, possibly establishing C
766 //      if (C) { cv->Signal(); }
767 //      mu.Unlock();
768 //
769 // If C may be useful to more than one waiter, use `SignalAll()` instead of
770 // `Signal()`.
771 //
772 // With this implementation it is efficient to use `Signal()/SignalAll()` inside
773 // the locked region; this usage can make reasoning about your program easier.
774 //
775 class CondVar {
776  public:
777   // A `CondVar` allocated on the heap or on the stack can use the this
778   // constructor.
779   CondVar();
780   ~CondVar();
781 
782   // CondVar::Wait()
783   //
784   // Atomically releases a `Mutex` and blocks on this condition variable.
785   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
786   // spurious wakeup), then reacquires the `Mutex` and returns.
787   //
788   // Requires and ensures that the current thread holds the `Mutex`.
789   void Wait(Mutex *mu);
790 
791   // CondVar::WaitWithTimeout()
792   //
793   // Atomically releases a `Mutex` and blocks on this condition variable.
794   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
795   // spurious wakeup), or until the timeout has expired, then reacquires
796   // the `Mutex` and returns.
797   //
798   // Returns true if the timeout has expired without this `CondVar`
799   // being signalled in any manner. If both the timeout has expired
800   // and this `CondVar` has been signalled, the implementation is free
801   // to return `true` or `false`.
802   //
803   // Requires and ensures that the current thread holds the `Mutex`.
804   bool WaitWithTimeout(Mutex *mu, absl::Duration timeout);
805 
806   // CondVar::WaitWithDeadline()
807   //
808   // Atomically releases a `Mutex` and blocks on this condition variable.
809   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
810   // spurious wakeup), or until the deadline has passed, then reacquires
811   // the `Mutex` and returns.
812   //
813   // Deadlines in the past are equivalent to an immediate deadline.
814   //
815   // Returns true if the deadline has passed without this `CondVar`
816   // being signalled in any manner. If both the deadline has passed
817   // and this `CondVar` has been signalled, the implementation is free
818   // to return `true` or `false`.
819   //
820   // Requires and ensures that the current thread holds the `Mutex`.
821   bool WaitWithDeadline(Mutex *mu, absl::Time deadline);
822 
823   // CondVar::Signal()
824   //
825   // Signal this `CondVar`; wake at least one waiter if one exists.
826   void Signal();
827 
828   // CondVar::SignalAll()
829   //
830   // Signal this `CondVar`; wake all waiters.
831   void SignalAll();
832 
833   // CondVar::EnableDebugLog()
834   //
835   // Causes all subsequent uses of this `CondVar` to be logged via
836   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
837   // Note: this method substantially reduces `CondVar` performance.
838   void EnableDebugLog(const char *name);
839 
840  private:
841 #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
impl()842   synchronization_internal::CondVarImpl *impl() { return impl_.get(); }
843   synchronization_internal::SynchronizationStorage<
844       synchronization_internal::CondVarImpl>
845       impl_;
846 #else
847   bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t);
848   void Remove(base_internal::PerThreadSynch *s);
849   void Wakeup(base_internal::PerThreadSynch *w);
850   std::atomic<intptr_t> cv_;  // Condition variable state.
851 #endif
852   CondVar(const CondVar&) = delete;
853   CondVar& operator=(const CondVar&) = delete;
854 };
855 
856 
857 // Variants of MutexLock.
858 //
859 // If you find yourself using one of these, consider instead using
860 // Mutex::Unlock() and/or if-statements for clarity.
861 
862 // MutexLockMaybe
863 //
864 // MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
865 class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
866  public:
MutexLockMaybe(Mutex * mu)867   explicit MutexLockMaybe(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
868       : mu_(mu) {
869     if (this->mu_ != nullptr) {
870       this->mu_->Lock();
871     }
872   }
ABSL_UNLOCK_FUNCTION()873   ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
874     if (this->mu_ != nullptr) { this->mu_->Unlock(); }
875   }
876 
877  private:
878   Mutex *const mu_;
879   MutexLockMaybe(const MutexLockMaybe&) = delete;
880   MutexLockMaybe(MutexLockMaybe&&) = delete;
881   MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
882   MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
883 };
884 
885 // ReleasableMutexLock
886 //
887 // ReleasableMutexLock is like MutexLock, but permits `Release()` of its
888 // mutex before destruction. `Release()` may be called at most once.
889 class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
890  public:
ReleasableMutexLock(Mutex * mu)891   explicit ReleasableMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
892       : mu_(mu) {
893     this->mu_->Lock();
894   }
ABSL_UNLOCK_FUNCTION()895   ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
896     if (this->mu_ != nullptr) { this->mu_->Unlock(); }
897   }
898 
899   void Release() ABSL_UNLOCK_FUNCTION();
900 
901  private:
902   Mutex *mu_;
903   ReleasableMutexLock(const ReleasableMutexLock&) = delete;
904   ReleasableMutexLock(ReleasableMutexLock&&) = delete;
905   ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
906   ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
907 };
908 
909 #ifdef ABSL_INTERNAL_USE_NONPROD_MUTEX
910 
Mutex(absl::ConstInitType)911 inline constexpr Mutex::Mutex(absl::ConstInitType) : impl_(absl::kConstInit) {}
912 
913 #else
914 
Mutex()915 inline Mutex::Mutex() : mu_(0) {
916   ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
917 }
918 
Mutex(absl::ConstInitType)919 inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
920 
CondVar()921 inline CondVar::CondVar() : cv_(0) {}
922 
923 #endif  // ABSL_INTERNAL_USE_NONPROD_MUTEX
924 
925 // static
926 template <typename T>
CastAndCallMethod(const Condition * c)927 bool Condition::CastAndCallMethod(const Condition *c) {
928   typedef bool (T::*MemberType)();
929   MemberType rm = reinterpret_cast<MemberType>(c->method_);
930   T *x = static_cast<T *>(c->arg_);
931   return (x->*rm)();
932 }
933 
934 // static
935 template <typename T>
CastAndCallFunction(const Condition * c)936 bool Condition::CastAndCallFunction(const Condition *c) {
937   typedef bool (*FuncType)(T *);
938   FuncType fn = reinterpret_cast<FuncType>(c->function_);
939   T *x = static_cast<T *>(c->arg_);
940   return (*fn)(x);
941 }
942 
943 template <typename T>
Condition(bool (* func)(T *),T * arg)944 inline Condition::Condition(bool (*func)(T *), T *arg)
945     : eval_(&CastAndCallFunction<T>),
946       function_(reinterpret_cast<InternalFunctionType>(func)),
947       method_(nullptr),
948       arg_(const_cast<void *>(static_cast<const void *>(arg))) {}
949 
950 template <typename T>
Condition(T * object,bool (absl::internal::identity<T>::type::* method)())951 inline Condition::Condition(T *object,
952                             bool (absl::internal::identity<T>::type::*method)())
953     : eval_(&CastAndCallMethod<T>),
954       function_(nullptr),
955       method_(reinterpret_cast<InternalMethodType>(method)),
956       arg_(object) {}
957 
958 template <typename T>
Condition(const T * object,bool (absl::internal::identity<T>::type::* method)()const)959 inline Condition::Condition(const T *object,
960                             bool (absl::internal::identity<T>::type::*method)()
961                                 const)
962     : eval_(&CastAndCallMethod<T>),
963       function_(nullptr),
964       method_(reinterpret_cast<InternalMethodType>(method)),
965       arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {}
966 
967 // Register a hook for profiling support.
968 //
969 // The function pointer registered here will be called whenever a mutex is
970 // contended.  The callback is given the absl/base/cycleclock.h timestamp when
971 // waiting began.
972 //
973 // Calls to this function do not race or block, but there is no ordering
974 // guaranteed between calls to this function and call to the provided hook.
975 // In particular, the previously registered hook may still be called for some
976 // time after this function returns.
977 void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp));
978 
979 // Register a hook for Mutex tracing.
980 //
981 // The function pointer registered here will be called whenever a mutex is
982 // contended.  The callback is given an opaque handle to the contended mutex,
983 // an event name, and the number of wait cycles (as measured by
984 // //absl/base/internal/cycleclock.h, and which may not be real
985 // "cycle" counts.)
986 //
987 // The only event name currently sent is "slow release".
988 //
989 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
990 void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
991                               int64_t wait_cycles));
992 
993 // TODO(gfalcon): Combine RegisterMutexProfiler() and RegisterMutexTracer()
994 // into a single interface, since they are only ever called in pairs.
995 
996 // Register a hook for CondVar tracing.
997 //
998 // The function pointer registered here will be called here on various CondVar
999 // events.  The callback is given an opaque handle to the CondVar object and
1000 // a string identifying the event.  This is thread-safe, but only a single
1001 // tracer can be registered.
1002 //
1003 // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
1004 // "SignalAll wakeup".
1005 //
1006 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1007 void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));
1008 
1009 // Register a hook for symbolizing stack traces in deadlock detector reports.
1010 //
1011 // 'pc' is the program counter being symbolized, 'out' is the buffer to write
1012 // into, and 'out_size' is the size of the buffer.  This function can return
1013 // false if symbolizing failed, or true if a NUL-terminated symbol was written
1014 // to 'out.'
1015 //
1016 // This has the same memory ordering concerns as RegisterMutexProfiler() above.
1017 //
1018 // DEPRECATED: The default symbolizer function is absl::Symbolize() and the
1019 // ability to register a different hook for symbolizing stack traces will be
1020 // removed on or after 2023-05-01.
1021 ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed "
1022                 "on or after 2023-05-01")
1023 void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));
1024 
1025 // EnableMutexInvariantDebugging()
1026 //
1027 // Enable or disable global support for Mutex invariant debugging.  If enabled,
1028 // then invariant predicates can be registered per-Mutex for debug checking.
1029 // See Mutex::EnableInvariantDebugging().
1030 void EnableMutexInvariantDebugging(bool enabled);
1031 
1032 // When in debug mode, and when the feature has been enabled globally, the
1033 // implementation will keep track of lock ordering and complain (or optionally
1034 // crash) if a cycle is detected in the acquired-before graph.
1035 
1036 // Possible modes of operation for the deadlock detector in debug mode.
1037 enum class OnDeadlockCycle {
1038   kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
1039   kReport,  // Report lock cycles to stderr when detected
1040   kAbort,  // Report lock cycles to stderr when detected, then abort
1041 };
1042 
1043 // SetMutexDeadlockDetectionMode()
1044 //
1045 // Enable or disable global support for detection of potential deadlocks
1046 // due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
1047 // lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
1048 // will be maintained internally, and detected cycles will be reported in
1049 // the manner chosen here.
1050 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
1051 
1052 ABSL_NAMESPACE_END
1053 }  // namespace absl
1054 
1055 // In some build configurations we pass --detect-odr-violations to the
1056 // gold linker.  This causes it to flag weak symbol overrides as ODR
1057 // violations.  Because ODR only applies to C++ and not C,
1058 // --detect-odr-violations ignores symbols not mangled with C++ names.
1059 // By changing our extension points to be extern "C", we dodge this
1060 // check.
1061 extern "C" {
1062 void AbslInternalMutexYield();
1063 }  // extern "C"
1064 
1065 #endif  // ABSL_SYNCHRONIZATION_MUTEX_H_
1066