• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 Google Inc. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //   https://www.apache.org/licenses/LICENSE-2.0
8 //
9 //   Unless required by applicable law or agreed to in writing, software
10 //   distributed under the License is distributed on an "AS IS" BASIS,
11 //   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 //   See the License for the specific language governing permissions and
13 //   limitations under the License.
14 
15 // This file implements the TimeZoneIf interface using the "zoneinfo"
16 // data provided by the IANA Time Zone Database (i.e., the only real game
17 // in town).
18 //
19 // TimeZoneInfo represents the history of UTC-offset changes within a time
20 // zone. Most changes are due to daylight-saving rules, but occasionally
21 // shifts are made to the time-zone's base offset. The database only attempts
22 // to be definitive for times since 1970, so be wary of local-time conversions
23 // before that. Also, rule and zone-boundary changes are made at the whim
24 // of governments, so the conversion of future times needs to be taken with
25 // a grain of salt.
26 //
27 // For more information see tzfile(5), http://www.iana.org/time-zones, or
28 // https://en.wikipedia.org/wiki/Zoneinfo.
29 //
30 // Note that we assume the proleptic Gregorian calendar and 60-second
31 // minutes throughout.
32 
33 #include "time_zone_info.h"
34 
35 #include <algorithm>
36 #include <cassert>
37 #include <chrono>
38 #include <cstdint>
39 #include <cstdio>
40 #include <cstdlib>
41 #include <cstring>
42 #include <functional>
43 #include <memory>
44 #include <sstream>
45 #include <string>
46 
47 #include "absl/base/config.h"
48 #include "absl/time/internal/cctz/include/cctz/civil_time.h"
49 #include "time_zone_fixed.h"
50 #include "time_zone_posix.h"
51 
52 namespace absl {
53 ABSL_NAMESPACE_BEGIN
54 namespace time_internal {
55 namespace cctz {
56 
57 namespace {
58 
IsLeap(year_t year)59 inline bool IsLeap(year_t year) {
60   return (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0);
61 }
62 
63 // The number of days in non-leap and leap years respectively.
64 const std::int_least32_t kDaysPerYear[2] = {365, 366};
65 
66 // The day offsets of the beginning of each (1-based) month in non-leap and
67 // leap years respectively (e.g., 335 days before December in a leap year).
68 const std::int_least16_t kMonthOffsets[2][1 + 12 + 1] = {
69     {-1, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365},
70     {-1, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366},
71 };
72 
73 // We reject leap-second encoded zoneinfo and so assume 60-second minutes.
74 const std::int_least32_t kSecsPerDay = 24 * 60 * 60;
75 
76 // 400-year chunks always have 146097 days (20871 weeks).
77 const std::int_least64_t kSecsPer400Years = 146097LL * kSecsPerDay;
78 
79 // Like kDaysPerYear[] but scaled up by a factor of kSecsPerDay.
80 const std::int_least32_t kSecsPerYear[2] = {
81     365 * kSecsPerDay,
82     366 * kSecsPerDay,
83 };
84 
85 // Convert a cctz::weekday to a POSIX TZ weekday number (0==Sun, ..., 6=Sat).
ToPosixWeekday(weekday wd)86 inline int ToPosixWeekday(weekday wd) {
87   switch (wd) {
88     case weekday::sunday:
89       return 0;
90     case weekday::monday:
91       return 1;
92     case weekday::tuesday:
93       return 2;
94     case weekday::wednesday:
95       return 3;
96     case weekday::thursday:
97       return 4;
98     case weekday::friday:
99       return 5;
100     case weekday::saturday:
101       return 6;
102   }
103   return 0; /*NOTREACHED*/
104 }
105 
106 // Single-byte, unsigned numeric values are encoded directly.
Decode8(const char * cp)107 inline std::uint_fast8_t Decode8(const char* cp) {
108   return static_cast<std::uint_fast8_t>(*cp) & 0xff;
109 }
110 
111 // Multi-byte, numeric values are encoded using a MSB first,
112 // twos-complement representation. These helpers decode, from
113 // the given address, 4-byte and 8-byte values respectively.
114 // Note: If int_fastXX_t == intXX_t and this machine is not
115 // twos complement, then there will be at least one input value
116 // we cannot represent.
Decode32(const char * cp)117 std::int_fast32_t Decode32(const char* cp) {
118   std::uint_fast32_t v = 0;
119   for (int i = 0; i != (32 / 8); ++i) v = (v << 8) | Decode8(cp++);
120   const std::int_fast32_t s32max = 0x7fffffff;
121   const auto s32maxU = static_cast<std::uint_fast32_t>(s32max);
122   if (v <= s32maxU) return static_cast<std::int_fast32_t>(v);
123   return static_cast<std::int_fast32_t>(v - s32maxU - 1) - s32max - 1;
124 }
125 
Decode64(const char * cp)126 std::int_fast64_t Decode64(const char* cp) {
127   std::uint_fast64_t v = 0;
128   for (int i = 0; i != (64 / 8); ++i) v = (v << 8) | Decode8(cp++);
129   const std::int_fast64_t s64max = 0x7fffffffffffffff;
130   const auto s64maxU = static_cast<std::uint_fast64_t>(s64max);
131   if (v <= s64maxU) return static_cast<std::int_fast64_t>(v);
132   return static_cast<std::int_fast64_t>(v - s64maxU - 1) - s64max - 1;
133 }
134 
135 // Generate a year-relative offset for a PosixTransition.
TransOffset(bool leap_year,int jan1_weekday,const PosixTransition & pt)136 std::int_fast64_t TransOffset(bool leap_year, int jan1_weekday,
137                               const PosixTransition& pt) {
138   std::int_fast64_t days = 0;
139   switch (pt.date.fmt) {
140     case PosixTransition::J: {
141       days = pt.date.j.day;
142       if (!leap_year || days < kMonthOffsets[1][3]) days -= 1;
143       break;
144     }
145     case PosixTransition::N: {
146       days = pt.date.n.day;
147       break;
148     }
149     case PosixTransition::M: {
150       const bool last_week = (pt.date.m.week == 5);
151       days = kMonthOffsets[leap_year][pt.date.m.month + last_week];
152       const std::int_fast64_t weekday = (jan1_weekday + days) % 7;
153       if (last_week) {
154         days -= (weekday + 7 - 1 - pt.date.m.weekday) % 7 + 1;
155       } else {
156         days += (pt.date.m.weekday + 7 - weekday) % 7;
157         days += (pt.date.m.week - 1) * 7;
158       }
159       break;
160     }
161   }
162   return (days * kSecsPerDay) + pt.time.offset;
163 }
164 
MakeUnique(const time_point<seconds> & tp)165 inline time_zone::civil_lookup MakeUnique(const time_point<seconds>& tp) {
166   time_zone::civil_lookup cl;
167   cl.kind = time_zone::civil_lookup::UNIQUE;
168   cl.pre = cl.trans = cl.post = tp;
169   return cl;
170 }
171 
MakeUnique(std::int_fast64_t unix_time)172 inline time_zone::civil_lookup MakeUnique(std::int_fast64_t unix_time) {
173   return MakeUnique(FromUnixSeconds(unix_time));
174 }
175 
MakeSkipped(const Transition & tr,const civil_second & cs)176 inline time_zone::civil_lookup MakeSkipped(const Transition& tr,
177                                            const civil_second& cs) {
178   time_zone::civil_lookup cl;
179   cl.kind = time_zone::civil_lookup::SKIPPED;
180   cl.pre = FromUnixSeconds(tr.unix_time - 1 + (cs - tr.prev_civil_sec));
181   cl.trans = FromUnixSeconds(tr.unix_time);
182   cl.post = FromUnixSeconds(tr.unix_time - (tr.civil_sec - cs));
183   return cl;
184 }
185 
MakeRepeated(const Transition & tr,const civil_second & cs)186 inline time_zone::civil_lookup MakeRepeated(const Transition& tr,
187                                             const civil_second& cs) {
188   time_zone::civil_lookup cl;
189   cl.kind = time_zone::civil_lookup::REPEATED;
190   cl.pre = FromUnixSeconds(tr.unix_time - 1 - (tr.prev_civil_sec - cs));
191   cl.trans = FromUnixSeconds(tr.unix_time);
192   cl.post = FromUnixSeconds(tr.unix_time + (cs - tr.civil_sec));
193   return cl;
194 }
195 
YearShift(const civil_second & cs,year_t shift)196 inline civil_second YearShift(const civil_second& cs, year_t shift) {
197   return civil_second(cs.year() + shift, cs.month(), cs.day(), cs.hour(),
198                       cs.minute(), cs.second());
199 }
200 
201 }  // namespace
202 
203 // What (no leap-seconds) UTC+seconds zoneinfo would look like.
ResetToBuiltinUTC(const seconds & offset)204 bool TimeZoneInfo::ResetToBuiltinUTC(const seconds& offset) {
205   transition_types_.resize(1);
206   TransitionType& tt(transition_types_.back());
207   tt.utc_offset = static_cast<std::int_least32_t>(offset.count());
208   tt.is_dst = false;
209   tt.abbr_index = 0;
210 
211   // We temporarily add some redundant, contemporary (2015 through 2025)
212   // transitions for performance reasons.  See TimeZoneInfo::LocalTime().
213   // TODO: Fix the performance issue and remove the extra transitions.
214   transitions_.clear();
215   transitions_.reserve(12);
216   for (const std::int_fast64_t unix_time : {
217            -(1LL << 59),  // a "first half" transition
218            1420070400LL,  // 2015-01-01T00:00:00+00:00
219            1451606400LL,  // 2016-01-01T00:00:00+00:00
220            1483228800LL,  // 2017-01-01T00:00:00+00:00
221            1514764800LL,  // 2018-01-01T00:00:00+00:00
222            1546300800LL,  // 2019-01-01T00:00:00+00:00
223            1577836800LL,  // 2020-01-01T00:00:00+00:00
224            1609459200LL,  // 2021-01-01T00:00:00+00:00
225            1640995200LL,  // 2022-01-01T00:00:00+00:00
226            1672531200LL,  // 2023-01-01T00:00:00+00:00
227            1704067200LL,  // 2024-01-01T00:00:00+00:00
228            1735689600LL,  // 2025-01-01T00:00:00+00:00
229        }) {
230     Transition& tr(*transitions_.emplace(transitions_.end()));
231     tr.unix_time = unix_time;
232     tr.type_index = 0;
233     tr.civil_sec = LocalTime(tr.unix_time, tt).cs;
234     tr.prev_civil_sec = tr.civil_sec - 1;
235   }
236 
237   default_transition_type_ = 0;
238   abbreviations_ = FixedOffsetToAbbr(offset);
239   abbreviations_.append(1, '\0');
240   future_spec_.clear();  // never needed for a fixed-offset zone
241   extended_ = false;
242 
243   tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
244   tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
245 
246   transitions_.shrink_to_fit();
247   return true;
248 }
249 
250 // Builds the in-memory header using the raw bytes from the file.
Build(const tzhead & tzh)251 bool TimeZoneInfo::Header::Build(const tzhead& tzh) {
252   std::int_fast32_t v;
253   if ((v = Decode32(tzh.tzh_timecnt)) < 0) return false;
254   timecnt = static_cast<std::size_t>(v);
255   if ((v = Decode32(tzh.tzh_typecnt)) < 0) return false;
256   typecnt = static_cast<std::size_t>(v);
257   if ((v = Decode32(tzh.tzh_charcnt)) < 0) return false;
258   charcnt = static_cast<std::size_t>(v);
259   if ((v = Decode32(tzh.tzh_leapcnt)) < 0) return false;
260   leapcnt = static_cast<std::size_t>(v);
261   if ((v = Decode32(tzh.tzh_ttisstdcnt)) < 0) return false;
262   ttisstdcnt = static_cast<std::size_t>(v);
263   if ((v = Decode32(tzh.tzh_ttisutcnt)) < 0) return false;
264   ttisutcnt = static_cast<std::size_t>(v);
265   return true;
266 }
267 
268 // How many bytes of data are associated with this header. The result
269 // depends upon whether this is a section with 4-byte or 8-byte times.
DataLength(std::size_t time_len) const270 std::size_t TimeZoneInfo::Header::DataLength(std::size_t time_len) const {
271   std::size_t len = 0;
272   len += (time_len + 1) * timecnt;  // unix_time + type_index
273   len += (4 + 1 + 1) * typecnt;     // utc_offset + is_dst + abbr_index
274   len += 1 * charcnt;               // abbreviations
275   len += (time_len + 4) * leapcnt;  // leap-time + TAI-UTC
276   len += 1 * ttisstdcnt;            // UTC/local indicators
277   len += 1 * ttisutcnt;             // standard/wall indicators
278   return len;
279 }
280 
281 // zic(8) can generate no-op transitions when a zone changes rules at an
282 // instant when there is actually no discontinuity.  So we check whether
283 // two transitions have equivalent types (same offset/is_dst/abbr).
EquivTransitions(std::uint_fast8_t tt1_index,std::uint_fast8_t tt2_index) const284 bool TimeZoneInfo::EquivTransitions(std::uint_fast8_t tt1_index,
285                                     std::uint_fast8_t tt2_index) const {
286   if (tt1_index == tt2_index) return true;
287   const TransitionType& tt1(transition_types_[tt1_index]);
288   const TransitionType& tt2(transition_types_[tt2_index]);
289   if (tt1.utc_offset != tt2.utc_offset) return false;
290   if (tt1.is_dst != tt2.is_dst) return false;
291   if (tt1.abbr_index != tt2.abbr_index) return false;
292   return true;
293 }
294 
295 // Find/make a transition type with these attributes.
GetTransitionType(std::int_fast32_t utc_offset,bool is_dst,const std::string & abbr,std::uint_least8_t * index)296 bool TimeZoneInfo::GetTransitionType(std::int_fast32_t utc_offset, bool is_dst,
297                                      const std::string& abbr,
298                                      std::uint_least8_t* index) {
299   std::size_t type_index = 0;
300   std::size_t abbr_index = abbreviations_.size();
301   for (; type_index != transition_types_.size(); ++type_index) {
302     const TransitionType& tt(transition_types_[type_index]);
303     const char* tt_abbr = &abbreviations_[tt.abbr_index];
304     if (tt_abbr == abbr) abbr_index = tt.abbr_index;
305     if (tt.utc_offset == utc_offset && tt.is_dst == is_dst) {
306       if (abbr_index == tt.abbr_index) break;  // reuse
307     }
308   }
309   if (type_index > 255 || abbr_index > 255) {
310     // No index space (8 bits) available for a new type or abbreviation.
311     return false;
312   }
313   if (type_index == transition_types_.size()) {
314     TransitionType& tt(*transition_types_.emplace(transition_types_.end()));
315     tt.utc_offset = static_cast<std::int_least32_t>(utc_offset);
316     tt.is_dst = is_dst;
317     if (abbr_index == abbreviations_.size()) {
318       abbreviations_.append(abbr);
319       abbreviations_.append(1, '\0');
320     }
321     tt.abbr_index = static_cast<std::uint_least8_t>(abbr_index);
322   }
323   *index = static_cast<std::uint_least8_t>(type_index);
324   return true;
325 }
326 
327 // Use the POSIX-TZ-environment-variable-style string to handle times
328 // in years after the last transition stored in the zoneinfo data.
ExtendTransitions()329 bool TimeZoneInfo::ExtendTransitions() {
330   extended_ = false;
331   if (future_spec_.empty()) return true;  // last transition prevails
332 
333   PosixTimeZone posix;
334   if (!ParsePosixSpec(future_spec_, &posix)) return false;
335 
336   // Find transition type for the future std specification.
337   std::uint_least8_t std_ti;
338   if (!GetTransitionType(posix.std_offset, false, posix.std_abbr, &std_ti))
339     return false;
340 
341   if (posix.dst_abbr.empty()) {  // std only
342     // The future specification should match the last transition, and
343     // that means that handling the future will fall out naturally.
344     return EquivTransitions(transitions_.back().type_index, std_ti);
345   }
346 
347   // Find transition type for the future dst specification.
348   std::uint_least8_t dst_ti;
349   if (!GetTransitionType(posix.dst_offset, true, posix.dst_abbr, &dst_ti))
350     return false;
351 
352   // Extend the transitions for an additional 400 years using the
353   // future specification. Years beyond those can be handled by
354   // mapping back to a cycle-equivalent year within that range.
355   // We may need two additional transitions for the current year.
356   transitions_.reserve(transitions_.size() + 400 * 2 + 2);
357   extended_ = true;
358 
359   const Transition& last(transitions_.back());
360   const std::int_fast64_t last_time = last.unix_time;
361   const TransitionType& last_tt(transition_types_[last.type_index]);
362   last_year_ = LocalTime(last_time, last_tt).cs.year();
363   bool leap_year = IsLeap(last_year_);
364   const civil_second jan1(last_year_);
365   std::int_fast64_t jan1_time = jan1 - civil_second();
366   int jan1_weekday = ToPosixWeekday(get_weekday(jan1));
367 
368   Transition dst = {0, dst_ti, civil_second(), civil_second()};
369   Transition std = {0, std_ti, civil_second(), civil_second()};
370   for (const year_t limit = last_year_ + 400;; ++last_year_) {
371     auto dst_trans_off = TransOffset(leap_year, jan1_weekday, posix.dst_start);
372     auto std_trans_off = TransOffset(leap_year, jan1_weekday, posix.dst_end);
373     dst.unix_time = jan1_time + dst_trans_off - posix.std_offset;
374     std.unix_time = jan1_time + std_trans_off - posix.dst_offset;
375     const auto* ta = dst.unix_time < std.unix_time ? &dst : &std;
376     const auto* tb = dst.unix_time < std.unix_time ? &std : &dst;
377     if (last_time < tb->unix_time) {
378       if (last_time < ta->unix_time) transitions_.push_back(*ta);
379       transitions_.push_back(*tb);
380     }
381     if (last_year_ == limit) break;
382     jan1_time += kSecsPerYear[leap_year];
383     jan1_weekday = (jan1_weekday + kDaysPerYear[leap_year]) % 7;
384     leap_year = !leap_year && IsLeap(last_year_ + 1);
385   }
386 
387   return true;
388 }
389 
Load(ZoneInfoSource * zip)390 bool TimeZoneInfo::Load(ZoneInfoSource* zip) {
391   // Read and validate the header.
392   tzhead tzh;
393   if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) return false;
394   if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0)
395     return false;
396   Header hdr;
397   if (!hdr.Build(tzh)) return false;
398   std::size_t time_len = 4;
399   if (tzh.tzh_version[0] != '\0') {
400     // Skip the 4-byte data.
401     if (zip->Skip(hdr.DataLength(time_len)) != 0) return false;
402     // Read and validate the header for the 8-byte data.
403     if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) return false;
404     if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0)
405       return false;
406     if (tzh.tzh_version[0] == '\0') return false;
407     if (!hdr.Build(tzh)) return false;
408     time_len = 8;
409   }
410   if (hdr.typecnt == 0) return false;
411   if (hdr.leapcnt != 0) {
412     // This code assumes 60-second minutes so we do not want
413     // the leap-second encoded zoneinfo. We could reverse the
414     // compensation, but the "right" encoding is rarely used
415     // so currently we simply reject such data.
416     return false;
417   }
418   if (hdr.ttisstdcnt != 0 && hdr.ttisstdcnt != hdr.typecnt) return false;
419   if (hdr.ttisutcnt != 0 && hdr.ttisutcnt != hdr.typecnt) return false;
420 
421   // Read the data into a local buffer.
422   std::size_t len = hdr.DataLength(time_len);
423   std::vector<char> tbuf(len);
424   if (zip->Read(tbuf.data(), len) != len) return false;
425   const char* bp = tbuf.data();
426 
427   // Decode and validate the transitions.
428   transitions_.reserve(hdr.timecnt + 2);
429   transitions_.resize(hdr.timecnt);
430   for (std::size_t i = 0; i != hdr.timecnt; ++i) {
431     transitions_[i].unix_time = (time_len == 4) ? Decode32(bp) : Decode64(bp);
432     bp += time_len;
433     if (i != 0) {
434       // Check that the transitions are ordered by time (as zic guarantees).
435       if (!Transition::ByUnixTime()(transitions_[i - 1], transitions_[i]))
436         return false;  // out of order
437     }
438   }
439   bool seen_type_0 = false;
440   for (std::size_t i = 0; i != hdr.timecnt; ++i) {
441     transitions_[i].type_index = Decode8(bp++);
442     if (transitions_[i].type_index >= hdr.typecnt) return false;
443     if (transitions_[i].type_index == 0) seen_type_0 = true;
444   }
445 
446   // Decode and validate the transition types.
447   transition_types_.reserve(hdr.typecnt + 2);
448   transition_types_.resize(hdr.typecnt);
449   for (std::size_t i = 0; i != hdr.typecnt; ++i) {
450     transition_types_[i].utc_offset =
451         static_cast<std::int_least32_t>(Decode32(bp));
452     if (transition_types_[i].utc_offset >= kSecsPerDay ||
453         transition_types_[i].utc_offset <= -kSecsPerDay)
454       return false;
455     bp += 4;
456     transition_types_[i].is_dst = (Decode8(bp++) != 0);
457     transition_types_[i].abbr_index = Decode8(bp++);
458     if (transition_types_[i].abbr_index >= hdr.charcnt) return false;
459   }
460 
461   // Determine the before-first-transition type.
462   default_transition_type_ = 0;
463   if (seen_type_0 && hdr.timecnt != 0) {
464     std::uint_fast8_t index = 0;
465     if (transition_types_[0].is_dst) {
466       index = transitions_[0].type_index;
467       while (index != 0 && transition_types_[index].is_dst) --index;
468     }
469     while (index != hdr.typecnt && transition_types_[index].is_dst) ++index;
470     if (index != hdr.typecnt) default_transition_type_ = index;
471   }
472 
473   // Copy all the abbreviations.
474   abbreviations_.reserve(hdr.charcnt + 10);
475   abbreviations_.assign(bp, hdr.charcnt);
476   bp += hdr.charcnt;
477 
478   // Skip the unused portions. We've already dispensed with leap-second
479   // encoded zoneinfo. The ttisstd/ttisgmt indicators only apply when
480   // interpreting a POSIX spec that does not include start/end rules, and
481   // that isn't the case here (see "zic -p").
482   bp += (8 + 4) * hdr.leapcnt;  // leap-time + TAI-UTC
483   bp += 1 * hdr.ttisstdcnt;     // UTC/local indicators
484   bp += 1 * hdr.ttisutcnt;      // standard/wall indicators
485   assert(bp == tbuf.data() + tbuf.size());
486 
487   future_spec_.clear();
488   if (tzh.tzh_version[0] != '\0') {
489     // Snarf up the NL-enclosed future POSIX spec. Note
490     // that version '3' files utilize an extended format.
491     auto get_char = [](ZoneInfoSource* azip) -> int {
492       unsigned char ch;  // all non-EOF results are positive
493       return (azip->Read(&ch, 1) == 1) ? ch : EOF;
494     };
495     if (get_char(zip) != '\n') return false;
496     for (int c = get_char(zip); c != '\n'; c = get_char(zip)) {
497       if (c == EOF) return false;
498       future_spec_.push_back(static_cast<char>(c));
499     }
500   }
501 
502   // We don't check for EOF so that we're forwards compatible.
503 
504   // If we did not find version information during the standard loading
505   // process (as of tzh_version '3' that is unsupported), then ask the
506   // ZoneInfoSource for any out-of-bound version string it may be privy to.
507   if (version_.empty()) {
508     version_ = zip->Version();
509   }
510 
511   // Trim redundant transitions. zic may have added these to work around
512   // differences between the glibc and reference implementations (see
513   // zic.c:dontmerge) and the Qt library (see zic.c:WORK_AROUND_QTBUG_53071).
514   // For us, they just get in the way when we do future_spec_ extension.
515   while (hdr.timecnt > 1) {
516     if (!EquivTransitions(transitions_[hdr.timecnt - 1].type_index,
517                           transitions_[hdr.timecnt - 2].type_index)) {
518       break;
519     }
520     hdr.timecnt -= 1;
521   }
522   transitions_.resize(hdr.timecnt);
523 
524   // Ensure that there is always a transition in the first half of the
525   // time line (the second half is handled below) so that the signed
526   // difference between a civil_second and the civil_second of its
527   // previous transition is always representable, without overflow.
528   if (transitions_.empty() || transitions_.front().unix_time >= 0) {
529     Transition& tr(*transitions_.emplace(transitions_.begin()));
530     tr.unix_time = -(1LL << 59);  // -18267312070-10-26T17:01:52+00:00
531     tr.type_index = default_transition_type_;
532   }
533 
534   // Extend the transitions using the future specification.
535   if (!ExtendTransitions()) return false;
536 
537   // Ensure that there is always a transition in the second half of the
538   // time line (the first half is handled above) so that the signed
539   // difference between a civil_second and the civil_second of its
540   // previous transition is always representable, without overflow.
541   const Transition& last(transitions_.back());
542   if (last.unix_time < 0) {
543     const std::uint_fast8_t type_index = last.type_index;
544     Transition& tr(*transitions_.emplace(transitions_.end()));
545     tr.unix_time = 2147483647;  // 2038-01-19T03:14:07+00:00
546     tr.type_index = type_index;
547   }
548 
549   // Compute the local civil time for each transition and the preceding
550   // second. These will be used for reverse conversions in MakeTime().
551   const TransitionType* ttp = &transition_types_[default_transition_type_];
552   for (std::size_t i = 0; i != transitions_.size(); ++i) {
553     Transition& tr(transitions_[i]);
554     tr.prev_civil_sec = LocalTime(tr.unix_time, *ttp).cs - 1;
555     ttp = &transition_types_[tr.type_index];
556     tr.civil_sec = LocalTime(tr.unix_time, *ttp).cs;
557     if (i != 0) {
558       // Check that the transitions are ordered by civil time. Essentially
559       // this means that an offset change cannot cross another such change.
560       // No one does this in practice, and we depend on it in MakeTime().
561       if (!Transition::ByCivilTime()(transitions_[i - 1], tr))
562         return false;  // out of order
563     }
564   }
565 
566   // Compute the maximum/minimum civil times that can be converted to a
567   // time_point<seconds> for each of the zone's transition types.
568   for (auto& tt : transition_types_) {
569     tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
570     tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
571   }
572 
573   transitions_.shrink_to_fit();
574   return true;
575 }
576 
577 namespace {
578 
579 // fopen(3) adaptor.
FOpen(const char * path,const char * mode)580 inline FILE* FOpen(const char* path, const char* mode) {
581 #if defined(_MSC_VER)
582   FILE* fp;
583   if (fopen_s(&fp, path, mode) != 0) fp = nullptr;
584   return fp;
585 #else
586   return fopen(path, mode);  // TODO: Enable the close-on-exec flag.
587 #endif
588 }
589 
590 // A stdio(3)-backed implementation of ZoneInfoSource.
591 class FileZoneInfoSource : public ZoneInfoSource {
592  public:
593   static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
594 
Read(void * ptr,std::size_t size)595   std::size_t Read(void* ptr, std::size_t size) override {
596     size = std::min(size, len_);
597     std::size_t nread = fread(ptr, 1, size, fp_.get());
598     len_ -= nread;
599     return nread;
600   }
Skip(std::size_t offset)601   int Skip(std::size_t offset) override {
602     offset = std::min(offset, len_);
603     int rc = fseek(fp_.get(), static_cast<long>(offset), SEEK_CUR);
604     if (rc == 0) len_ -= offset;
605     return rc;
606   }
Version() const607   std::string Version() const override {
608     // TODO: It would nice if the zoneinfo data included the tzdb version.
609     return std::string();
610   }
611 
612  protected:
FileZoneInfoSource(FILE * fp,std::size_t len=std::numeric_limits<std::size_t>::max ())613   explicit FileZoneInfoSource(
614       FILE* fp, std::size_t len = std::numeric_limits<std::size_t>::max())
615       : fp_(fp, fclose), len_(len) {}
616 
617  private:
618   std::unique_ptr<FILE, int (*)(FILE*)> fp_;
619   std::size_t len_;
620 };
621 
Open(const std::string & name)622 std::unique_ptr<ZoneInfoSource> FileZoneInfoSource::Open(
623     const std::string& name) {
624   // Use of the "file:" prefix is intended for testing purposes only.
625   const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
626 
627   // Map the time-zone name to a path name.
628   std::string path;
629   if (pos == name.size() || name[pos] != '/') {
630     const char* tzdir = "/usr/share/zoneinfo";
631     char* tzdir_env = nullptr;
632 #if defined(_MSC_VER)
633     _dupenv_s(&tzdir_env, nullptr, "TZDIR");
634 #else
635     tzdir_env = std::getenv("TZDIR");
636 #endif
637     if (tzdir_env && *tzdir_env) tzdir = tzdir_env;
638     path += tzdir;
639     path += '/';
640 #if defined(_MSC_VER)
641     free(tzdir_env);
642 #endif
643   }
644   path.append(name, pos, std::string::npos);
645 
646   // Open the zoneinfo file.
647   FILE* fp = FOpen(path.c_str(), "rb");
648   if (fp == nullptr) return nullptr;
649   std::size_t length = 0;
650   if (fseek(fp, 0, SEEK_END) == 0) {
651     long offset = ftell(fp);
652     if (offset >= 0) {
653       length = static_cast<std::size_t>(offset);
654     }
655     rewind(fp);
656   }
657   return std::unique_ptr<ZoneInfoSource>(new FileZoneInfoSource(fp, length));
658 }
659 
660 class AndroidZoneInfoSource : public FileZoneInfoSource {
661  public:
662   static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
Version() const663   std::string Version() const override { return version_; }
664 
665  private:
AndroidZoneInfoSource(FILE * fp,std::size_t len,const char * vers)666   explicit AndroidZoneInfoSource(FILE* fp, std::size_t len, const char* vers)
667       : FileZoneInfoSource(fp, len), version_(vers) {}
668   std::string version_;
669 };
670 
Open(const std::string & name)671 std::unique_ptr<ZoneInfoSource> AndroidZoneInfoSource::Open(
672     const std::string& name) {
673   // Use of the "file:" prefix is intended for testing purposes only.
674   const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
675 
676   // See Android's libc/tzcode/bionic.cpp for additional information.
677   for (const char* tzdata : {"/data/misc/zoneinfo/current/tzdata",
678                              "/system/usr/share/zoneinfo/tzdata"}) {
679     std::unique_ptr<FILE, int (*)(FILE*)> fp(FOpen(tzdata, "rb"), fclose);
680     if (fp.get() == nullptr) continue;
681 
682     char hbuf[24];  // covers header.zonetab_offset too
683     if (fread(hbuf, 1, sizeof(hbuf), fp.get()) != sizeof(hbuf)) continue;
684     if (strncmp(hbuf, "tzdata", 6) != 0) continue;
685     const char* vers = (hbuf[11] == '\0') ? hbuf + 6 : "";
686     const std::int_fast32_t index_offset = Decode32(hbuf + 12);
687     const std::int_fast32_t data_offset = Decode32(hbuf + 16);
688     if (index_offset < 0 || data_offset < index_offset) continue;
689     if (fseek(fp.get(), static_cast<long>(index_offset), SEEK_SET) != 0)
690       continue;
691 
692     char ebuf[52];  // covers entry.unused too
693     const std::size_t index_size =
694         static_cast<std::size_t>(data_offset - index_offset);
695     const std::size_t zonecnt = index_size / sizeof(ebuf);
696     if (zonecnt * sizeof(ebuf) != index_size) continue;
697     for (std::size_t i = 0; i != zonecnt; ++i) {
698       if (fread(ebuf, 1, sizeof(ebuf), fp.get()) != sizeof(ebuf)) break;
699       const std::int_fast32_t start = data_offset + Decode32(ebuf + 40);
700       const std::int_fast32_t length = Decode32(ebuf + 44);
701       if (start < 0 || length < 0) break;
702       ebuf[40] = '\0';  // ensure zone name is NUL terminated
703       if (strcmp(name.c_str() + pos, ebuf) == 0) {
704         if (fseek(fp.get(), static_cast<long>(start), SEEK_SET) != 0) break;
705         return std::unique_ptr<ZoneInfoSource>(new AndroidZoneInfoSource(
706             fp.release(), static_cast<std::size_t>(length), vers));
707       }
708     }
709   }
710 
711   return nullptr;
712 }
713 
714 }  // namespace
715 
Load(const std::string & name)716 bool TimeZoneInfo::Load(const std::string& name) {
717   // We can ensure that the loading of UTC or any other fixed-offset
718   // zone never fails because the simple, fixed-offset state can be
719   // internally generated. Note that this depends on our choice to not
720   // accept leap-second encoded ("right") zoneinfo.
721   auto offset = seconds::zero();
722   if (FixedOffsetFromName(name, &offset)) {
723     return ResetToBuiltinUTC(offset);
724   }
725 
726   // Find and use a ZoneInfoSource to load the named zone.
727   auto zip = cctz_extension::zone_info_source_factory(
728       name, [](const std::string& n) -> std::unique_ptr<ZoneInfoSource> {
729         if (auto z = FileZoneInfoSource::Open(n)) return z;
730         if (auto z = AndroidZoneInfoSource::Open(n)) return z;
731         return nullptr;
732       });
733   return zip != nullptr && Load(zip.get());
734 }
735 
736 // BreakTime() translation for a particular transition type.
LocalTime(std::int_fast64_t unix_time,const TransitionType & tt) const737 time_zone::absolute_lookup TimeZoneInfo::LocalTime(
738     std::int_fast64_t unix_time, const TransitionType& tt) const {
739   // A civil time in "+offset" looks like (time+offset) in UTC.
740   // Note: We perform two additions in the civil_second domain to
741   // sidestep the chance of overflow in (unix_time + tt.utc_offset).
742   return {(civil_second() + unix_time) + tt.utc_offset, tt.utc_offset,
743           tt.is_dst, &abbreviations_[tt.abbr_index]};
744 }
745 
746 // BreakTime() translation for a particular transition.
LocalTime(std::int_fast64_t unix_time,const Transition & tr) const747 time_zone::absolute_lookup TimeZoneInfo::LocalTime(std::int_fast64_t unix_time,
748                                                    const Transition& tr) const {
749   const TransitionType& tt = transition_types_[tr.type_index];
750   // Note: (unix_time - tr.unix_time) will never overflow as we
751   // have ensured that there is always a "nearby" transition.
752   return {tr.civil_sec + (unix_time - tr.unix_time),  // TODO: Optimize.
753           tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]};
754 }
755 
756 // MakeTime() translation with a conversion-preserving +N * 400-year shift.
TimeLocal(const civil_second & cs,year_t c4_shift) const757 time_zone::civil_lookup TimeZoneInfo::TimeLocal(const civil_second& cs,
758                                                 year_t c4_shift) const {
759   assert(last_year_ - 400 < cs.year() && cs.year() <= last_year_);
760   time_zone::civil_lookup cl = MakeTime(cs);
761   if (c4_shift > seconds::max().count() / kSecsPer400Years) {
762     cl.pre = cl.trans = cl.post = time_point<seconds>::max();
763   } else {
764     const auto offset = seconds(c4_shift * kSecsPer400Years);
765     const auto limit = time_point<seconds>::max() - offset;
766     for (auto* tp : {&cl.pre, &cl.trans, &cl.post}) {
767       if (*tp > limit) {
768         *tp = time_point<seconds>::max();
769       } else {
770         *tp += offset;
771       }
772     }
773   }
774   return cl;
775 }
776 
BreakTime(const time_point<seconds> & tp) const777 time_zone::absolute_lookup TimeZoneInfo::BreakTime(
778     const time_point<seconds>& tp) const {
779   std::int_fast64_t unix_time = ToUnixSeconds(tp);
780   const std::size_t timecnt = transitions_.size();
781   assert(timecnt != 0);  // We always add a transition.
782 
783   if (unix_time < transitions_[0].unix_time) {
784     return LocalTime(unix_time, transition_types_[default_transition_type_]);
785   }
786   if (unix_time >= transitions_[timecnt - 1].unix_time) {
787     // After the last transition. If we extended the transitions using
788     // future_spec_, shift back to a supported year using the 400-year
789     // cycle of calendaric equivalence and then compensate accordingly.
790     if (extended_) {
791       const std::int_fast64_t diff =
792           unix_time - transitions_[timecnt - 1].unix_time;
793       const year_t shift = diff / kSecsPer400Years + 1;
794       const auto d = seconds(shift * kSecsPer400Years);
795       time_zone::absolute_lookup al = BreakTime(tp - d);
796       al.cs = YearShift(al.cs, shift * 400);
797       return al;
798     }
799     return LocalTime(unix_time, transitions_[timecnt - 1]);
800   }
801 
802   const std::size_t hint = local_time_hint_.load(std::memory_order_relaxed);
803   if (0 < hint && hint < timecnt) {
804     if (transitions_[hint - 1].unix_time <= unix_time) {
805       if (unix_time < transitions_[hint].unix_time) {
806         return LocalTime(unix_time, transitions_[hint - 1]);
807       }
808     }
809   }
810 
811   const Transition target = {unix_time, 0, civil_second(), civil_second()};
812   const Transition* begin = &transitions_[0];
813   const Transition* tr = std::upper_bound(begin, begin + timecnt, target,
814                                           Transition::ByUnixTime());
815   local_time_hint_.store(static_cast<std::size_t>(tr - begin),
816                          std::memory_order_relaxed);
817   return LocalTime(unix_time, *--tr);
818 }
819 
MakeTime(const civil_second & cs) const820 time_zone::civil_lookup TimeZoneInfo::MakeTime(const civil_second& cs) const {
821   const std::size_t timecnt = transitions_.size();
822   assert(timecnt != 0);  // We always add a transition.
823 
824   // Find the first transition after our target civil time.
825   const Transition* tr = nullptr;
826   const Transition* begin = &transitions_[0];
827   const Transition* end = begin + timecnt;
828   if (cs < begin->civil_sec) {
829     tr = begin;
830   } else if (cs >= transitions_[timecnt - 1].civil_sec) {
831     tr = end;
832   } else {
833     const std::size_t hint = time_local_hint_.load(std::memory_order_relaxed);
834     if (0 < hint && hint < timecnt) {
835       if (transitions_[hint - 1].civil_sec <= cs) {
836         if (cs < transitions_[hint].civil_sec) {
837           tr = begin + hint;
838         }
839       }
840     }
841     if (tr == nullptr) {
842       const Transition target = {0, 0, cs, civil_second()};
843       tr = std::upper_bound(begin, end, target, Transition::ByCivilTime());
844       time_local_hint_.store(static_cast<std::size_t>(tr - begin),
845                              std::memory_order_relaxed);
846     }
847   }
848 
849   if (tr == begin) {
850     if (tr->prev_civil_sec >= cs) {
851       // Before first transition, so use the default offset.
852       const TransitionType& tt(transition_types_[default_transition_type_]);
853       if (cs < tt.civil_min) return MakeUnique(time_point<seconds>::min());
854       return MakeUnique(cs - (civil_second() + tt.utc_offset));
855     }
856     // tr->prev_civil_sec < cs < tr->civil_sec
857     return MakeSkipped(*tr, cs);
858   }
859 
860   if (tr == end) {
861     if (cs > (--tr)->prev_civil_sec) {
862       // After the last transition. If we extended the transitions using
863       // future_spec_, shift back to a supported year using the 400-year
864       // cycle of calendaric equivalence and then compensate accordingly.
865       if (extended_ && cs.year() > last_year_) {
866         const year_t shift = (cs.year() - last_year_ - 1) / 400 + 1;
867         return TimeLocal(YearShift(cs, shift * -400), shift);
868       }
869       const TransitionType& tt(transition_types_[tr->type_index]);
870       if (cs > tt.civil_max) return MakeUnique(time_point<seconds>::max());
871       return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
872     }
873     // tr->civil_sec <= cs <= tr->prev_civil_sec
874     return MakeRepeated(*tr, cs);
875   }
876 
877   if (tr->prev_civil_sec < cs) {
878     // tr->prev_civil_sec < cs < tr->civil_sec
879     return MakeSkipped(*tr, cs);
880   }
881 
882   if (cs <= (--tr)->prev_civil_sec) {
883     // tr->civil_sec <= cs <= tr->prev_civil_sec
884     return MakeRepeated(*tr, cs);
885   }
886 
887   // In between transitions.
888   return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
889 }
890 
Version() const891 std::string TimeZoneInfo::Version() const { return version_; }
892 
Description() const893 std::string TimeZoneInfo::Description() const {
894   std::ostringstream oss;
895   oss << "#trans=" << transitions_.size();
896   oss << " #types=" << transition_types_.size();
897   oss << " spec='" << future_spec_ << "'";
898   return oss.str();
899 }
900 
NextTransition(const time_point<seconds> & tp,time_zone::civil_transition * trans) const901 bool TimeZoneInfo::NextTransition(const time_point<seconds>& tp,
902                                   time_zone::civil_transition* trans) const {
903   if (transitions_.empty()) return false;
904   const Transition* begin = &transitions_[0];
905   const Transition* end = begin + transitions_.size();
906   if (begin->unix_time <= -(1LL << 59)) {
907     // Do not report the BIG_BANG found in some zoneinfo data as it is
908     // really a sentinel, not a transition.  See pre-2018f tz/zic.c.
909     ++begin;
910   }
911   std::int_fast64_t unix_time = ToUnixSeconds(tp);
912   const Transition target = {unix_time, 0, civil_second(), civil_second()};
913   const Transition* tr =
914       std::upper_bound(begin, end, target, Transition::ByUnixTime());
915   for (; tr != end; ++tr) {  // skip no-op transitions
916     std::uint_fast8_t prev_type_index =
917         (tr == begin) ? default_transition_type_ : tr[-1].type_index;
918     if (!EquivTransitions(prev_type_index, tr[0].type_index)) break;
919   }
920   // When tr == end we return false, ignoring future_spec_.
921   if (tr == end) return false;
922   trans->from = tr->prev_civil_sec + 1;
923   trans->to = tr->civil_sec;
924   return true;
925 }
926 
PrevTransition(const time_point<seconds> & tp,time_zone::civil_transition * trans) const927 bool TimeZoneInfo::PrevTransition(const time_point<seconds>& tp,
928                                   time_zone::civil_transition* trans) const {
929   if (transitions_.empty()) return false;
930   const Transition* begin = &transitions_[0];
931   const Transition* end = begin + transitions_.size();
932   if (begin->unix_time <= -(1LL << 59)) {
933     // Do not report the BIG_BANG found in some zoneinfo data as it is
934     // really a sentinel, not a transition.  See pre-2018f tz/zic.c.
935     ++begin;
936   }
937   std::int_fast64_t unix_time = ToUnixSeconds(tp);
938   if (FromUnixSeconds(unix_time) != tp) {
939     if (unix_time == std::numeric_limits<std::int_fast64_t>::max()) {
940       if (end == begin) return false;  // Ignore future_spec_.
941       trans->from = (--end)->prev_civil_sec + 1;
942       trans->to = end->civil_sec;
943       return true;
944     }
945     unix_time += 1;  // ceils
946   }
947   const Transition target = {unix_time, 0, civil_second(), civil_second()};
948   const Transition* tr =
949       std::lower_bound(begin, end, target, Transition::ByUnixTime());
950   for (; tr != begin; --tr) {  // skip no-op transitions
951     std::uint_fast8_t prev_type_index =
952         (tr - 1 == begin) ? default_transition_type_ : tr[-2].type_index;
953     if (!EquivTransitions(prev_type_index, tr[-1].type_index)) break;
954   }
955   // When tr == end we return the "last" transition, ignoring future_spec_.
956   if (tr == begin) return false;
957   trans->from = (--tr)->prev_civil_sec + 1;
958   trans->to = tr->civil_sec;
959   return true;
960 }
961 
962 }  // namespace cctz
963 }  // namespace time_internal
964 ABSL_NAMESPACE_END
965 }  // namespace absl
966