1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // variant.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines an `absl::variant` type for holding a type-safe
20 // value of some prescribed set of types (noted as alternative types), and
21 // associated functions for managing variants.
22 //
23 // The `absl::variant` type is a form of type-safe union. An `absl::variant`
24 // should always hold a value of one of its alternative types (except in the
25 // "valueless by exception state" -- see below). A default-constructed
26 // `absl::variant` will hold the value of its first alternative type, provided
27 // it is default-constructible.
28 //
29 // In exceptional cases due to error, an `absl::variant` can hold no
30 // value (known as a "valueless by exception" state), though this is not the
31 // norm.
32 //
33 // As with `absl::optional`, an `absl::variant` -- when it holds a value --
34 // allocates a value of that type directly within the `variant` itself; it
35 // cannot hold a reference, array, or the type `void`; it can, however, hold a
36 // pointer to externally managed memory.
37 //
38 // `absl::variant` is a C++11 compatible version of the C++17 `std::variant`
39 // abstraction and is designed to be a drop-in replacement for code compliant
40 // with C++17.
41
42 #ifndef ABSL_TYPES_VARIANT_H_
43 #define ABSL_TYPES_VARIANT_H_
44
45 #include "absl/base/config.h"
46 #include "absl/utility/utility.h"
47
48 #ifdef ABSL_USES_STD_VARIANT
49
50 #include <variant> // IWYU pragma: export
51
52 namespace absl {
53 ABSL_NAMESPACE_BEGIN
54 using std::bad_variant_access;
55 using std::get;
56 using std::get_if;
57 using std::holds_alternative;
58 using std::monostate;
59 using std::variant;
60 using std::variant_alternative;
61 using std::variant_alternative_t;
62 using std::variant_npos;
63 using std::variant_size;
64 using std::variant_size_v;
65 using std::visit;
66 ABSL_NAMESPACE_END
67 } // namespace absl
68
69 #else // ABSL_USES_STD_VARIANT
70
71 #include <functional>
72 #include <new>
73 #include <type_traits>
74 #include <utility>
75
76 #include "absl/base/macros.h"
77 #include "absl/base/port.h"
78 #include "absl/meta/type_traits.h"
79 #include "absl/types/internal/variant.h"
80
81 namespace absl {
82 ABSL_NAMESPACE_BEGIN
83
84 // -----------------------------------------------------------------------------
85 // absl::variant
86 // -----------------------------------------------------------------------------
87 //
88 // An `absl::variant` type is a form of type-safe union. An `absl::variant` --
89 // except in exceptional cases -- always holds a value of one of its alternative
90 // types.
91 //
92 // Example:
93 //
94 // // Construct a variant that holds either an integer or a std::string and
95 // // assign it to a std::string.
96 // absl::variant<int, std::string> v = std::string("abc");
97 //
98 // // A default-constructed variant will hold a value-initialized value of
99 // // the first alternative type.
100 // auto a = absl::variant<int, std::string>(); // Holds an int of value '0'.
101 //
102 // // variants are assignable.
103 //
104 // // copy assignment
105 // auto v1 = absl::variant<int, std::string>("abc");
106 // auto v2 = absl::variant<int, std::string>(10);
107 // v2 = v1; // copy assign
108 //
109 // // move assignment
110 // auto v1 = absl::variant<int, std::string>("abc");
111 // v1 = absl::variant<int, std::string>(10);
112 //
113 // // assignment through type conversion
114 // a = 128; // variant contains int
115 // a = "128"; // variant contains std::string
116 //
117 // An `absl::variant` holding a value of one of its alternative types `T` holds
118 // an allocation of `T` directly within the variant itself. An `absl::variant`
119 // is not allowed to allocate additional storage, such as dynamic memory, to
120 // allocate the contained value. The contained value shall be allocated in a
121 // region of the variant storage suitably aligned for all alternative types.
122 template <typename... Ts>
123 class variant;
124
125 // swap()
126 //
127 // Swaps two `absl::variant` values. This function is equivalent to `v.swap(w)`
128 // where `v` and `w` are `absl::variant` types.
129 //
130 // Note that this function requires all alternative types to be both swappable
131 // and move-constructible, because any two variants may refer to either the same
132 // type (in which case, they will be swapped) or to two different types (in
133 // which case the values will need to be moved).
134 //
135 template <
136 typename... Ts,
137 absl::enable_if_t<
138 absl::conjunction<std::is_move_constructible<Ts>...,
139 type_traits_internal::IsSwappable<Ts>...>::value,
140 int> = 0>
swap(variant<Ts...> & v,variant<Ts...> & w)141 void swap(variant<Ts...>& v, variant<Ts...>& w) noexcept(noexcept(v.swap(w))) {
142 v.swap(w);
143 }
144
145 // variant_size
146 //
147 // Returns the number of alternative types available for a given `absl::variant`
148 // type as a compile-time constant expression. As this is a class template, it
149 // is not generally useful for accessing the number of alternative types of
150 // any given `absl::variant` instance.
151 //
152 // Example:
153 //
154 // auto a = absl::variant<int, std::string>;
155 // constexpr int num_types =
156 // absl::variant_size<absl::variant<int, std::string>>();
157 //
158 // // You can also use the member constant `value`.
159 // constexpr int num_types =
160 // absl::variant_size<absl::variant<int, std::string>>::value;
161 //
162 // // `absl::variant_size` is more valuable for use in generic code:
163 // template <typename Variant>
164 // constexpr bool IsVariantMultivalue() {
165 // return absl::variant_size<Variant>() > 1;
166 // }
167 //
168 // Note that the set of cv-qualified specializations of `variant_size` are
169 // provided to ensure that those specializations compile (especially when passed
170 // within template logic).
171 template <class T>
172 struct variant_size;
173
174 template <class... Ts>
175 struct variant_size<variant<Ts...>>
176 : std::integral_constant<std::size_t, sizeof...(Ts)> {};
177
178 // Specialization of `variant_size` for const qualified variants.
179 template <class T>
180 struct variant_size<const T> : variant_size<T>::type {};
181
182 // Specialization of `variant_size` for volatile qualified variants.
183 template <class T>
184 struct variant_size<volatile T> : variant_size<T>::type {};
185
186 // Specialization of `variant_size` for const volatile qualified variants.
187 template <class T>
188 struct variant_size<const volatile T> : variant_size<T>::type {};
189
190 // variant_alternative
191 //
192 // Returns the alternative type for a given `absl::variant` at the passed
193 // index value as a compile-time constant expression. As this is a class
194 // template resulting in a type, it is not useful for access of the run-time
195 // value of any given `absl::variant` variable.
196 //
197 // Example:
198 //
199 // // The type of the 0th alternative is "int".
200 // using alternative_type_0
201 // = absl::variant_alternative<0, absl::variant<int, std::string>>::type;
202 //
203 // static_assert(std::is_same<alternative_type_0, int>::value, "");
204 //
205 // // `absl::variant_alternative` is more valuable for use in generic code:
206 // template <typename Variant>
207 // constexpr bool IsFirstElementTrivial() {
208 // return std::is_trivial_v<variant_alternative<0, Variant>::type>;
209 // }
210 //
211 // Note that the set of cv-qualified specializations of `variant_alternative`
212 // are provided to ensure that those specializations compile (especially when
213 // passed within template logic).
214 template <std::size_t I, class T>
215 struct variant_alternative;
216
217 template <std::size_t I, class... Types>
218 struct variant_alternative<I, variant<Types...>> {
219 using type =
220 variant_internal::VariantAlternativeSfinaeT<I, variant<Types...>>;
221 };
222
223 // Specialization of `variant_alternative` for const qualified variants.
224 template <std::size_t I, class T>
225 struct variant_alternative<I, const T> {
226 using type = const typename variant_alternative<I, T>::type;
227 };
228
229 // Specialization of `variant_alternative` for volatile qualified variants.
230 template <std::size_t I, class T>
231 struct variant_alternative<I, volatile T> {
232 using type = volatile typename variant_alternative<I, T>::type;
233 };
234
235 // Specialization of `variant_alternative` for const volatile qualified
236 // variants.
237 template <std::size_t I, class T>
238 struct variant_alternative<I, const volatile T> {
239 using type = const volatile typename variant_alternative<I, T>::type;
240 };
241
242 // Template type alias for variant_alternative<I, T>::type.
243 //
244 // Example:
245 //
246 // using alternative_type_0
247 // = absl::variant_alternative_t<0, absl::variant<int, std::string>>;
248 // static_assert(std::is_same<alternative_type_0, int>::value, "");
249 template <std::size_t I, class T>
250 using variant_alternative_t = typename variant_alternative<I, T>::type;
251
252 // holds_alternative()
253 //
254 // Checks whether the given variant currently holds a given alternative type,
255 // returning `true` if so.
256 //
257 // Example:
258 //
259 // absl::variant<int, std::string> foo = 42;
260 // if (absl::holds_alternative<int>(foo)) {
261 // std::cout << "The variant holds an integer";
262 // }
263 template <class T, class... Types>
264 constexpr bool holds_alternative(const variant<Types...>& v) noexcept {
265 static_assert(
266 variant_internal::UnambiguousIndexOfImpl<variant<Types...>, T,
267 0>::value != sizeof...(Types),
268 "The type T must occur exactly once in Types...");
269 return v.index() ==
270 variant_internal::UnambiguousIndexOf<variant<Types...>, T>::value;
271 }
272
273 // get()
274 //
275 // Returns a reference to the value currently within a given variant, using
276 // either a unique alternative type amongst the variant's set of alternative
277 // types, or the variant's index value. Attempting to get a variant's value
278 // using a type that is not unique within the variant's set of alternative types
279 // is a compile-time error. If the index of the alternative being specified is
280 // different from the index of the alternative that is currently stored, throws
281 // `absl::bad_variant_access`.
282 //
283 // Example:
284 //
285 // auto a = absl::variant<int, std::string>;
286 //
287 // // Get the value by type (if unique).
288 // int i = absl::get<int>(a);
289 //
290 // auto b = absl::variant<int, int>;
291 //
292 // // Getting the value by a type that is not unique is ill-formed.
293 // int j = absl::get<int>(b); // Compile Error!
294 //
295 // // Getting value by index not ambiguous and allowed.
296 // int k = absl::get<1>(b);
297
298 // Overload for getting a variant's lvalue by type.
299 template <class T, class... Types>
300 constexpr T& get(variant<Types...>& v) { // NOLINT
301 return variant_internal::VariantCoreAccess::CheckedAccess<
302 variant_internal::IndexOf<T, Types...>::value>(v);
303 }
304
305 // Overload for getting a variant's rvalue by type.
306 // Note: `absl::move()` is required to allow use of constexpr in C++11.
307 template <class T, class... Types>
308 constexpr T&& get(variant<Types...>&& v) {
309 return variant_internal::VariantCoreAccess::CheckedAccess<
310 variant_internal::IndexOf<T, Types...>::value>(absl::move(v));
311 }
312
313 // Overload for getting a variant's const lvalue by type.
314 template <class T, class... Types>
315 constexpr const T& get(const variant<Types...>& v) {
316 return variant_internal::VariantCoreAccess::CheckedAccess<
317 variant_internal::IndexOf<T, Types...>::value>(v);
318 }
319
320 // Overload for getting a variant's const rvalue by type.
321 // Note: `absl::move()` is required to allow use of constexpr in C++11.
322 template <class T, class... Types>
323 constexpr const T&& get(const variant<Types...>&& v) {
324 return variant_internal::VariantCoreAccess::CheckedAccess<
325 variant_internal::IndexOf<T, Types...>::value>(absl::move(v));
326 }
327
328 // Overload for getting a variant's lvalue by index.
329 template <std::size_t I, class... Types>
330 constexpr variant_alternative_t<I, variant<Types...>>& get(
331 variant<Types...>& v) { // NOLINT
332 return variant_internal::VariantCoreAccess::CheckedAccess<I>(v);
333 }
334
335 // Overload for getting a variant's rvalue by index.
336 // Note: `absl::move()` is required to allow use of constexpr in C++11.
337 template <std::size_t I, class... Types>
338 constexpr variant_alternative_t<I, variant<Types...>>&& get(
339 variant<Types...>&& v) {
340 return variant_internal::VariantCoreAccess::CheckedAccess<I>(absl::move(v));
341 }
342
343 // Overload for getting a variant's const lvalue by index.
344 template <std::size_t I, class... Types>
345 constexpr const variant_alternative_t<I, variant<Types...>>& get(
346 const variant<Types...>& v) {
347 return variant_internal::VariantCoreAccess::CheckedAccess<I>(v);
348 }
349
350 // Overload for getting a variant's const rvalue by index.
351 // Note: `absl::move()` is required to allow use of constexpr in C++11.
352 template <std::size_t I, class... Types>
353 constexpr const variant_alternative_t<I, variant<Types...>>&& get(
354 const variant<Types...>&& v) {
355 return variant_internal::VariantCoreAccess::CheckedAccess<I>(absl::move(v));
356 }
357
358 // get_if()
359 //
360 // Returns a pointer to the value currently stored within a given variant, if
361 // present, using either a unique alternative type amongst the variant's set of
362 // alternative types, or the variant's index value. If such a value does not
363 // exist, returns `nullptr`.
364 //
365 // As with `get`, attempting to get a variant's value using a type that is not
366 // unique within the variant's set of alternative types is a compile-time error.
367
368 // Overload for getting a pointer to the value stored in the given variant by
369 // index.
370 template <std::size_t I, class... Types>
371 constexpr absl::add_pointer_t<variant_alternative_t<I, variant<Types...>>>
372 get_if(variant<Types...>* v) noexcept {
373 return (v != nullptr && v->index() == I)
374 ? std::addressof(
375 variant_internal::VariantCoreAccess::Access<I>(*v))
376 : nullptr;
377 }
378
379 // Overload for getting a pointer to the const value stored in the given
380 // variant by index.
381 template <std::size_t I, class... Types>
382 constexpr absl::add_pointer_t<const variant_alternative_t<I, variant<Types...>>>
383 get_if(const variant<Types...>* v) noexcept {
384 return (v != nullptr && v->index() == I)
385 ? std::addressof(
386 variant_internal::VariantCoreAccess::Access<I>(*v))
387 : nullptr;
388 }
389
390 // Overload for getting a pointer to the value stored in the given variant by
391 // type.
392 template <class T, class... Types>
393 constexpr absl::add_pointer_t<T> get_if(variant<Types...>* v) noexcept {
394 return absl::get_if<variant_internal::IndexOf<T, Types...>::value>(v);
395 }
396
397 // Overload for getting a pointer to the const value stored in the given variant
398 // by type.
399 template <class T, class... Types>
400 constexpr absl::add_pointer_t<const T> get_if(
401 const variant<Types...>* v) noexcept {
402 return absl::get_if<variant_internal::IndexOf<T, Types...>::value>(v);
403 }
404
405 // visit()
406 //
407 // Calls a provided functor on a given set of variants. `absl::visit()` is
408 // commonly used to conditionally inspect the state of a given variant (or set
409 // of variants).
410 //
411 // The functor must return the same type when called with any of the variants'
412 // alternatives.
413 //
414 // Example:
415 //
416 // // Define a visitor functor
417 // struct GetVariant {
418 // template<typename T>
419 // void operator()(const T& i) const {
420 // std::cout << "The variant's value is: " << i;
421 // }
422 // };
423 //
424 // // Declare our variant, and call `absl::visit()` on it.
425 // // Note that `GetVariant()` returns void in either case.
426 // absl::variant<int, std::string> foo = std::string("foo");
427 // GetVariant visitor;
428 // absl::visit(visitor, foo); // Prints `The variant's value is: foo'
429 template <typename Visitor, typename... Variants>
430 variant_internal::VisitResult<Visitor, Variants...> visit(Visitor&& vis,
431 Variants&&... vars) {
432 return variant_internal::
433 VisitIndices<variant_size<absl::decay_t<Variants> >::value...>::Run(
434 variant_internal::PerformVisitation<Visitor, Variants...>{
435 std::forward_as_tuple(absl::forward<Variants>(vars)...),
436 absl::forward<Visitor>(vis)},
437 vars.index()...);
438 }
439
440 // monostate
441 //
442 // The monostate class serves as a first alternative type for a variant for
443 // which the first variant type is otherwise not default-constructible.
444 struct monostate {};
445
446 // `absl::monostate` Relational Operators
447
448 constexpr bool operator<(monostate, monostate) noexcept { return false; }
449 constexpr bool operator>(monostate, monostate) noexcept { return false; }
450 constexpr bool operator<=(monostate, monostate) noexcept { return true; }
451 constexpr bool operator>=(monostate, monostate) noexcept { return true; }
452 constexpr bool operator==(monostate, monostate) noexcept { return true; }
453 constexpr bool operator!=(monostate, monostate) noexcept { return false; }
454
455
456 //------------------------------------------------------------------------------
457 // `absl::variant` Template Definition
458 //------------------------------------------------------------------------------
459 template <typename T0, typename... Tn>
460 class variant<T0, Tn...> : private variant_internal::VariantBase<T0, Tn...> {
461 static_assert(absl::conjunction<std::is_object<T0>,
462 std::is_object<Tn>...>::value,
463 "Attempted to instantiate a variant containing a non-object "
464 "type.");
465 // Intentionally not qualifying `negation` with `absl::` to work around a bug
466 // in MSVC 2015 with inline namespace and variadic template.
467 static_assert(absl::conjunction<negation<std::is_array<T0> >,
468 negation<std::is_array<Tn> >...>::value,
469 "Attempted to instantiate a variant containing an array type.");
470 static_assert(absl::conjunction<std::is_nothrow_destructible<T0>,
471 std::is_nothrow_destructible<Tn>...>::value,
472 "Attempted to instantiate a variant containing a non-nothrow "
473 "destructible type.");
474
475 friend struct variant_internal::VariantCoreAccess;
476
477 private:
478 using Base = variant_internal::VariantBase<T0, Tn...>;
479
480 public:
481 // Constructors
482
483 // Constructs a variant holding a default-initialized value of the first
484 // alternative type.
485 constexpr variant() /*noexcept(see 111above)*/ = default;
486
487 // Copy constructor, standard semantics
488 variant(const variant& other) = default;
489
490 // Move constructor, standard semantics
491 variant(variant&& other) /*noexcept(see above)*/ = default;
492
493 // Constructs a variant of an alternative type specified by overload
494 // resolution of the provided forwarding arguments through
495 // direct-initialization.
496 //
497 // Note: If the selected constructor is a constexpr constructor, this
498 // constructor shall be a constexpr constructor.
499 //
500 // NOTE: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0608r1.html
501 // has been voted passed the design phase in the C++ standard meeting in Mar
502 // 2018. It will be implemented and integrated into `absl::variant`.
503 template <
504 class T,
505 std::size_t I = std::enable_if<
506 variant_internal::IsNeitherSelfNorInPlace<variant,
507 absl::decay_t<T>>::value,
508 variant_internal::IndexOfConstructedType<variant, T>>::type::value,
509 class Tj = absl::variant_alternative_t<I, variant>,
510 absl::enable_if_t<std::is_constructible<Tj, T>::value>* =
511 nullptr>
512 constexpr variant(T&& t) noexcept(std::is_nothrow_constructible<Tj, T>::value)
513 : Base(variant_internal::EmplaceTag<I>(), absl::forward<T>(t)) {}
514
515 // Constructs a variant of an alternative type from the arguments through
516 // direct-initialization.
517 //
518 // Note: If the selected constructor is a constexpr constructor, this
519 // constructor shall be a constexpr constructor.
520 template <class T, class... Args,
521 typename std::enable_if<std::is_constructible<
522 variant_internal::UnambiguousTypeOfT<variant, T>,
523 Args...>::value>::type* = nullptr>
524 constexpr explicit variant(in_place_type_t<T>, Args&&... args)
525 : Base(variant_internal::EmplaceTag<
526 variant_internal::UnambiguousIndexOf<variant, T>::value>(),
527 absl::forward<Args>(args)...) {}
528
529 // Constructs a variant of an alternative type from an initializer list
530 // and other arguments through direct-initialization.
531 //
532 // Note: If the selected constructor is a constexpr constructor, this
533 // constructor shall be a constexpr constructor.
534 template <class T, class U, class... Args,
535 typename std::enable_if<std::is_constructible<
536 variant_internal::UnambiguousTypeOfT<variant, T>,
537 std::initializer_list<U>&, Args...>::value>::type* = nullptr>
538 constexpr explicit variant(in_place_type_t<T>, std::initializer_list<U> il,
539 Args&&... args)
540 : Base(variant_internal::EmplaceTag<
541 variant_internal::UnambiguousIndexOf<variant, T>::value>(),
542 il, absl::forward<Args>(args)...) {}
543
544 // Constructs a variant of an alternative type from a provided index,
545 // through value-initialization using the provided forwarded arguments.
546 template <std::size_t I, class... Args,
547 typename std::enable_if<std::is_constructible<
548 variant_internal::VariantAlternativeSfinaeT<I, variant>,
549 Args...>::value>::type* = nullptr>
550 constexpr explicit variant(in_place_index_t<I>, Args&&... args)
551 : Base(variant_internal::EmplaceTag<I>(), absl::forward<Args>(args)...) {}
552
553 // Constructs a variant of an alternative type from a provided index,
554 // through value-initialization of an initializer list and the provided
555 // forwarded arguments.
556 template <std::size_t I, class U, class... Args,
557 typename std::enable_if<std::is_constructible<
558 variant_internal::VariantAlternativeSfinaeT<I, variant>,
559 std::initializer_list<U>&, Args...>::value>::type* = nullptr>
560 constexpr explicit variant(in_place_index_t<I>, std::initializer_list<U> il,
561 Args&&... args)
562 : Base(variant_internal::EmplaceTag<I>(), il,
563 absl::forward<Args>(args)...) {}
564
565 // Destructors
566
567 // Destroys the variant's currently contained value, provided that
568 // `absl::valueless_by_exception()` is false.
569 ~variant() = default;
570
571 // Assignment Operators
572
573 // Copy assignment operator
574 variant& operator=(const variant& other) = default;
575
576 // Move assignment operator
577 variant& operator=(variant&& other) /*noexcept(see above)*/ = default;
578
579 // Converting assignment operator
580 //
581 // NOTE: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0608r1.html
582 // has been voted passed the design phase in the C++ standard meeting in Mar
583 // 2018. It will be implemented and integrated into `absl::variant`.
584 template <
585 class T,
586 std::size_t I = std::enable_if<
587 !std::is_same<absl::decay_t<T>, variant>::value,
588 variant_internal::IndexOfConstructedType<variant, T>>::type::value,
589 class Tj = absl::variant_alternative_t<I, variant>,
590 typename std::enable_if<std::is_assignable<Tj&, T>::value &&
591 std::is_constructible<Tj, T>::value>::type* =
592 nullptr>
593 variant& operator=(T&& t) noexcept(
594 std::is_nothrow_assignable<Tj&, T>::value&&
595 std::is_nothrow_constructible<Tj, T>::value) {
596 variant_internal::VisitIndices<sizeof...(Tn) + 1>::Run(
597 variant_internal::VariantCoreAccess::MakeConversionAssignVisitor(
598 this, absl::forward<T>(t)),
599 index());
600
601 return *this;
602 }
603
604
605 // emplace() Functions
606
607 // Constructs a value of the given alternative type T within the variant.
608 //
609 // Example:
610 //
611 // absl::variant<std::vector<int>, int, std::string> v;
612 // v.emplace<int>(99);
613 // v.emplace<std::string>("abc");
614 template <
615 class T, class... Args,
616 typename std::enable_if<std::is_constructible<
617 absl::variant_alternative_t<
618 variant_internal::UnambiguousIndexOf<variant, T>::value, variant>,
619 Args...>::value>::type* = nullptr>
620 T& emplace(Args&&... args) {
621 return variant_internal::VariantCoreAccess::Replace<
622 variant_internal::UnambiguousIndexOf<variant, T>::value>(
623 this, absl::forward<Args>(args)...);
624 }
625
626 // Constructs a value of the given alternative type T within the variant using
627 // an initializer list.
628 //
629 // Example:
630 //
631 // absl::variant<std::vector<int>, int, std::string> v;
632 // v.emplace<std::vector<int>>({0, 1, 2});
633 template <
634 class T, class U, class... Args,
635 typename std::enable_if<std::is_constructible<
636 absl::variant_alternative_t<
637 variant_internal::UnambiguousIndexOf<variant, T>::value, variant>,
638 std::initializer_list<U>&, Args...>::value>::type* = nullptr>
639 T& emplace(std::initializer_list<U> il, Args&&... args) {
640 return variant_internal::VariantCoreAccess::Replace<
641 variant_internal::UnambiguousIndexOf<variant, T>::value>(
642 this, il, absl::forward<Args>(args)...);
643 }
644
645 // Destroys the current value of the variant (provided that
646 // `absl::valueless_by_exception()` is false, and constructs a new value at
647 // the given index.
648 //
649 // Example:
650 //
651 // absl::variant<std::vector<int>, int, int> v;
652 // v.emplace<1>(99);
653 // v.emplace<2>(98);
654 // v.emplace<int>(99); // Won't compile. 'int' isn't a unique type.
655 template <std::size_t I, class... Args,
656 typename std::enable_if<
657 std::is_constructible<absl::variant_alternative_t<I, variant>,
658 Args...>::value>::type* = nullptr>
659 absl::variant_alternative_t<I, variant>& emplace(Args&&... args) {
660 return variant_internal::VariantCoreAccess::Replace<I>(
661 this, absl::forward<Args>(args)...);
662 }
663
664 // Destroys the current value of the variant (provided that
665 // `absl::valueless_by_exception()` is false, and constructs a new value at
666 // the given index using an initializer list and the provided arguments.
667 //
668 // Example:
669 //
670 // absl::variant<std::vector<int>, int, int> v;
671 // v.emplace<0>({0, 1, 2});
672 template <std::size_t I, class U, class... Args,
673 typename std::enable_if<std::is_constructible<
674 absl::variant_alternative_t<I, variant>,
675 std::initializer_list<U>&, Args...>::value>::type* = nullptr>
676 absl::variant_alternative_t<I, variant>& emplace(std::initializer_list<U> il,
677 Args&&... args) {
678 return variant_internal::VariantCoreAccess::Replace<I>(
679 this, il, absl::forward<Args>(args)...);
680 }
681
682 // variant::valueless_by_exception()
683 //
684 // Returns false if and only if the variant currently holds a valid value.
685 constexpr bool valueless_by_exception() const noexcept {
686 return this->index_ == absl::variant_npos;
687 }
688
689 // variant::index()
690 //
691 // Returns the index value of the variant's currently selected alternative
692 // type.
693 constexpr std::size_t index() const noexcept { return this->index_; }
694
695 // variant::swap()
696 //
697 // Swaps the values of two variant objects.
698 //
699 void swap(variant& rhs) noexcept(
700 absl::conjunction<
701 std::is_nothrow_move_constructible<T0>,
702 std::is_nothrow_move_constructible<Tn>...,
703 type_traits_internal::IsNothrowSwappable<T0>,
704 type_traits_internal::IsNothrowSwappable<Tn>...>::value) {
705 return variant_internal::VisitIndices<sizeof...(Tn) + 1>::Run(
706 variant_internal::Swap<T0, Tn...>{this, &rhs}, rhs.index());
707 }
708 };
709
710 // We need a valid declaration of variant<> for SFINAE and overload resolution
711 // to work properly above, but we don't need a full declaration since this type
712 // will never be constructed. This declaration, though incomplete, suffices.
713 template <>
714 class variant<>;
715
716 //------------------------------------------------------------------------------
717 // Relational Operators
718 //------------------------------------------------------------------------------
719 //
720 // If neither operand is in the `variant::valueless_by_exception` state:
721 //
722 // * If the index of both variants is the same, the relational operator
723 // returns the result of the corresponding relational operator for the
724 // corresponding alternative type.
725 // * If the index of both variants is not the same, the relational operator
726 // returns the result of that operation applied to the value of the left
727 // operand's index and the value of the right operand's index.
728 // * If at least one operand is in the valueless_by_exception state:
729 // - A variant in the valueless_by_exception state is only considered equal
730 // to another variant in the valueless_by_exception state.
731 // - If exactly one operand is in the valueless_by_exception state, the
732 // variant in the valueless_by_exception state is less than the variant
733 // that is not in the valueless_by_exception state.
734 //
735 // Note: The value 1 is added to each index in the relational comparisons such
736 // that the index corresponding to the valueless_by_exception state wraps around
737 // to 0 (the lowest value for the index type), and the remaining indices stay in
738 // the same relative order.
739
740 // Equal-to operator
741 template <typename... Types>
742 constexpr variant_internal::RequireAllHaveEqualT<Types...> operator==(
743 const variant<Types...>& a, const variant<Types...>& b) {
744 return (a.index() == b.index()) &&
745 variant_internal::VisitIndices<sizeof...(Types)>::Run(
746 variant_internal::EqualsOp<Types...>{&a, &b}, a.index());
747 }
748
749 // Not equal operator
750 template <typename... Types>
751 constexpr variant_internal::RequireAllHaveNotEqualT<Types...> operator!=(
752 const variant<Types...>& a, const variant<Types...>& b) {
753 return (a.index() != b.index()) ||
754 variant_internal::VisitIndices<sizeof...(Types)>::Run(
755 variant_internal::NotEqualsOp<Types...>{&a, &b}, a.index());
756 }
757
758 // Less-than operator
759 template <typename... Types>
760 constexpr variant_internal::RequireAllHaveLessThanT<Types...> operator<(
761 const variant<Types...>& a, const variant<Types...>& b) {
762 return (a.index() != b.index())
763 ? (a.index() + 1) < (b.index() + 1)
764 : variant_internal::VisitIndices<sizeof...(Types)>::Run(
765 variant_internal::LessThanOp<Types...>{&a, &b}, a.index());
766 }
767
768 // Greater-than operator
769 template <typename... Types>
770 constexpr variant_internal::RequireAllHaveGreaterThanT<Types...> operator>(
771 const variant<Types...>& a, const variant<Types...>& b) {
772 return (a.index() != b.index())
773 ? (a.index() + 1) > (b.index() + 1)
774 : variant_internal::VisitIndices<sizeof...(Types)>::Run(
775 variant_internal::GreaterThanOp<Types...>{&a, &b},
776 a.index());
777 }
778
779 // Less-than or equal-to operator
780 template <typename... Types>
781 constexpr variant_internal::RequireAllHaveLessThanOrEqualT<Types...> operator<=(
782 const variant<Types...>& a, const variant<Types...>& b) {
783 return (a.index() != b.index())
784 ? (a.index() + 1) < (b.index() + 1)
785 : variant_internal::VisitIndices<sizeof...(Types)>::Run(
786 variant_internal::LessThanOrEqualsOp<Types...>{&a, &b},
787 a.index());
788 }
789
790 // Greater-than or equal-to operator
791 template <typename... Types>
792 constexpr variant_internal::RequireAllHaveGreaterThanOrEqualT<Types...>
793 operator>=(const variant<Types...>& a, const variant<Types...>& b) {
794 return (a.index() != b.index())
795 ? (a.index() + 1) > (b.index() + 1)
796 : variant_internal::VisitIndices<sizeof...(Types)>::Run(
797 variant_internal::GreaterThanOrEqualsOp<Types...>{&a, &b},
798 a.index());
799 }
800
801 ABSL_NAMESPACE_END
802 } // namespace absl
803
804 namespace std {
805
806 // hash()
807 template <> // NOLINT
808 struct hash<absl::monostate> {
809 std::size_t operator()(absl::monostate) const { return 0; }
810 };
811
812 template <class... T> // NOLINT
813 struct hash<absl::variant<T...>>
814 : absl::variant_internal::VariantHashBase<absl::variant<T...>, void,
815 absl::remove_const_t<T>...> {};
816
817 } // namespace std
818
819 #endif // ABSL_USES_STD_VARIANT
820
821 namespace absl {
822 ABSL_NAMESPACE_BEGIN
823 namespace variant_internal {
824
825 // Helper visitor for converting a variant<Ts...>` into another type (mostly
826 // variant) that can be constructed from any type.
827 template <typename To>
828 struct ConversionVisitor {
829 template <typename T>
830 To operator()(T&& v) const {
831 return To(std::forward<T>(v));
832 }
833 };
834
835 } // namespace variant_internal
836
837 // ConvertVariantTo()
838 //
839 // Helper functions to convert an `absl::variant` to a variant of another set of
840 // types, provided that the alternative type of the new variant type can be
841 // converted from any type in the source variant.
842 //
843 // Example:
844 //
845 // absl::variant<name1, name2, float> InternalReq(const Req&);
846 //
847 // // name1 and name2 are convertible to name
848 // absl::variant<name, float> ExternalReq(const Req& req) {
849 // return absl::ConvertVariantTo<absl::variant<name, float>>(
850 // InternalReq(req));
851 // }
852 template <typename To, typename Variant>
853 To ConvertVariantTo(Variant&& variant) {
854 return absl::visit(variant_internal::ConversionVisitor<To>{},
855 std::forward<Variant>(variant));
856 }
857
858 ABSL_NAMESPACE_END
859 } // namespace absl
860
861 #endif // ABSL_TYPES_VARIANT_H_
862