• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 //  Copyright John Maddock 2006-7, 2013-14.
3 //  Copyright Paul A. Bristow 2007, 2013-14.
4 //  Copyright Nikhar Agrawal 2013-14
5 //  Copyright Christopher Kormanyos 2013-14
6 
7 //  Use, modification and distribution are subject to the
8 //  Boost Software License, Version 1.0. (See accompanying file
9 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
10 
11 #ifndef BOOST_MATH_SF_GAMMA_HPP
12 #define BOOST_MATH_SF_GAMMA_HPP
13 
14 #ifdef _MSC_VER
15 #pragma once
16 #endif
17 
18 #include <boost/config.hpp>
19 #include <boost/math/tools/series.hpp>
20 #include <boost/math/tools/fraction.hpp>
21 #include <boost/math/tools/precision.hpp>
22 #include <boost/math/tools/promotion.hpp>
23 #include <boost/math/policies/error_handling.hpp>
24 #include <boost/math/constants/constants.hpp>
25 #include <boost/math/special_functions/math_fwd.hpp>
26 #include <boost/math/special_functions/log1p.hpp>
27 #include <boost/math/special_functions/trunc.hpp>
28 #include <boost/math/special_functions/powm1.hpp>
29 #include <boost/math/special_functions/sqrt1pm1.hpp>
30 #include <boost/math/special_functions/lanczos.hpp>
31 #include <boost/math/special_functions/fpclassify.hpp>
32 #include <boost/math/special_functions/detail/igamma_large.hpp>
33 #include <boost/math/special_functions/detail/unchecked_factorial.hpp>
34 #include <boost/math/special_functions/detail/lgamma_small.hpp>
35 #include <boost/math/special_functions/bernoulli.hpp>
36 #include <boost/math/special_functions/polygamma.hpp>
37 #include <boost/type_traits/is_convertible.hpp>
38 #include <boost/assert.hpp>
39 #include <boost/mpl/greater.hpp>
40 #include <boost/mpl/equal_to.hpp>
41 #include <boost/mpl/greater.hpp>
42 
43 #include <boost/config/no_tr1/cmath.hpp>
44 #include <algorithm>
45 
46 #ifdef BOOST_MSVC
47 # pragma warning(push)
48 # pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
49 # pragma warning(disable: 4127) // conditional expression is constant.
50 # pragma warning(disable: 4100) // unreferenced formal parameter.
51 // Several variables made comments,
52 // but some difficulty as whether referenced on not may depend on macro values.
53 // So to be safe, 4100 warnings suppressed.
54 // TODO - revisit this?
55 #endif
56 
57 namespace boost{ namespace math{
58 
59 namespace detail{
60 
61 template <class T>
is_odd(T v,const boost::true_type &)62 inline bool is_odd(T v, const boost::true_type&)
63 {
64    int i = static_cast<int>(v);
65    return i&1;
66 }
67 template <class T>
is_odd(T v,const boost::false_type &)68 inline bool is_odd(T v, const boost::false_type&)
69 {
70    // Oh dear can't cast T to int!
71    BOOST_MATH_STD_USING
72    T modulus = v - 2 * floor(v/2);
73    return static_cast<bool>(modulus != 0);
74 }
75 template <class T>
is_odd(T v)76 inline bool is_odd(T v)
77 {
78    return is_odd(v, ::boost::is_convertible<T, int>());
79 }
80 
81 template <class T>
sinpx(T z)82 T sinpx(T z)
83 {
84    // Ad hoc function calculates x * sin(pi * x),
85    // taking extra care near when x is near a whole number.
86    BOOST_MATH_STD_USING
87    int sign = 1;
88    if(z < 0)
89    {
90       z = -z;
91    }
92    T fl = floor(z);
93    T dist;
94    if(is_odd(fl))
95    {
96       fl += 1;
97       dist = fl - z;
98       sign = -sign;
99    }
100    else
101    {
102       dist = z - fl;
103    }
104    BOOST_ASSERT(fl >= 0);
105    if(dist > 0.5)
106       dist = 1 - dist;
107    T result = sin(dist*boost::math::constants::pi<T>());
108    return sign*z*result;
109 } // template <class T> T sinpx(T z)
110 //
111 // tgamma(z), with Lanczos support:
112 //
113 template <class T, class Policy, class Lanczos>
gamma_imp(T z,const Policy & pol,const Lanczos & l)114 T gamma_imp(T z, const Policy& pol, const Lanczos& l)
115 {
116    BOOST_MATH_STD_USING
117 
118    T result = 1;
119 
120 #ifdef BOOST_MATH_INSTRUMENT
121    static bool b = false;
122    if(!b)
123    {
124       std::cout << "tgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl;
125       b = true;
126    }
127 #endif
128    static const char* function = "boost::math::tgamma<%1%>(%1%)";
129 
130    if(z <= 0)
131    {
132       if(floor(z) == z)
133          return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%.", z, pol);
134       if(z <= -20)
135       {
136          result = gamma_imp(T(-z), pol, l) * sinpx(z);
137          BOOST_MATH_INSTRUMENT_VARIABLE(result);
138          if((fabs(result) < 1) && (tools::max_value<T>() * fabs(result) < boost::math::constants::pi<T>()))
139             return -boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
140          result = -boost::math::constants::pi<T>() / result;
141          if(result == 0)
142             return policies::raise_underflow_error<T>(function, "Result of tgamma is too small to represent.", pol);
143          if((boost::math::fpclassify)(result) == (int)FP_SUBNORMAL)
144             return policies::raise_denorm_error<T>(function, "Result of tgamma is denormalized.", result, pol);
145          BOOST_MATH_INSTRUMENT_VARIABLE(result);
146          return result;
147       }
148 
149       // shift z to > 1:
150       while(z < 0)
151       {
152          result /= z;
153          z += 1;
154       }
155    }
156    BOOST_MATH_INSTRUMENT_VARIABLE(result);
157    if((floor(z) == z) && (z < max_factorial<T>::value))
158    {
159       result *= unchecked_factorial<T>(itrunc(z, pol) - 1);
160       BOOST_MATH_INSTRUMENT_VARIABLE(result);
161    }
162    else if (z < tools::root_epsilon<T>())
163    {
164       if (z < 1 / tools::max_value<T>())
165          result = policies::raise_overflow_error<T>(function, 0, pol);
166       result *= 1 / z - constants::euler<T>();
167    }
168    else
169    {
170       result *= Lanczos::lanczos_sum(z);
171       T zgh = (z + static_cast<T>(Lanczos::g()) - boost::math::constants::half<T>());
172       T lzgh = log(zgh);
173       BOOST_MATH_INSTRUMENT_VARIABLE(result);
174       BOOST_MATH_INSTRUMENT_VARIABLE(tools::log_max_value<T>());
175       if(z * lzgh > tools::log_max_value<T>())
176       {
177          // we're going to overflow unless this is done with care:
178          BOOST_MATH_INSTRUMENT_VARIABLE(zgh);
179          if(lzgh * z / 2 > tools::log_max_value<T>())
180             return boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
181          T hp = pow(zgh, (z / 2) - T(0.25));
182          BOOST_MATH_INSTRUMENT_VARIABLE(hp);
183          result *= hp / exp(zgh);
184          BOOST_MATH_INSTRUMENT_VARIABLE(result);
185          if(tools::max_value<T>() / hp < result)
186             return boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
187          result *= hp;
188          BOOST_MATH_INSTRUMENT_VARIABLE(result);
189       }
190       else
191       {
192          BOOST_MATH_INSTRUMENT_VARIABLE(zgh);
193          BOOST_MATH_INSTRUMENT_VARIABLE(pow(zgh, z - boost::math::constants::half<T>()));
194          BOOST_MATH_INSTRUMENT_VARIABLE(exp(zgh));
195          result *= pow(zgh, z - boost::math::constants::half<T>()) / exp(zgh);
196          BOOST_MATH_INSTRUMENT_VARIABLE(result);
197       }
198    }
199    return result;
200 }
201 //
202 // lgamma(z) with Lanczos support:
203 //
204 template <class T, class Policy, class Lanczos>
lgamma_imp(T z,const Policy & pol,const Lanczos & l,int * sign=0)205 T lgamma_imp(T z, const Policy& pol, const Lanczos& l, int* sign = 0)
206 {
207 #ifdef BOOST_MATH_INSTRUMENT
208    static bool b = false;
209    if(!b)
210    {
211       std::cout << "lgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl;
212       b = true;
213    }
214 #endif
215 
216    BOOST_MATH_STD_USING
217 
218    static const char* function = "boost::math::lgamma<%1%>(%1%)";
219 
220    T result = 0;
221    int sresult = 1;
222    if(z <= -tools::root_epsilon<T>())
223    {
224       // reflection formula:
225       if(floor(z) == z)
226          return policies::raise_pole_error<T>(function, "Evaluation of lgamma at a negative integer %1%.", z, pol);
227 
228       T t = sinpx(z);
229       z = -z;
230       if(t < 0)
231       {
232          t = -t;
233       }
234       else
235       {
236          sresult = -sresult;
237       }
238       result = log(boost::math::constants::pi<T>()) - lgamma_imp(z, pol, l) - log(t);
239    }
240    else if (z < tools::root_epsilon<T>())
241    {
242       if (0 == z)
243          return policies::raise_pole_error<T>(function, "Evaluation of lgamma at %1%.", z, pol);
244       if (fabs(z) < 1 / tools::max_value<T>())
245          result = -log(fabs(z));
246       else
247          result = log(fabs(1 / z - constants::euler<T>()));
248       if (z < 0)
249          sresult = -1;
250    }
251    else if(z < 15)
252    {
253       typedef typename policies::precision<T, Policy>::type precision_type;
254       typedef boost::integral_constant<int,
255          precision_type::value <= 0 ? 0 :
256          precision_type::value <= 64 ? 64 :
257          precision_type::value <= 113 ? 113 : 0
258       > tag_type;
259 
260       result = lgamma_small_imp<T>(z, T(z - 1), T(z - 2), tag_type(), pol, l);
261    }
262    else if((z >= 3) && (z < 100) && (std::numeric_limits<T>::max_exponent >= 1024))
263    {
264       // taking the log of tgamma reduces the error, no danger of overflow here:
265       result = log(gamma_imp(z, pol, l));
266    }
267    else
268    {
269       // regular evaluation:
270       T zgh = static_cast<T>(z + Lanczos::g() - boost::math::constants::half<T>());
271       result = log(zgh) - 1;
272       result *= z - 0.5f;
273       //
274       // Only add on the lanczos sum part if we're going to need it:
275       //
276       if(result * tools::epsilon<T>() < 20)
277          result += log(Lanczos::lanczos_sum_expG_scaled(z));
278    }
279 
280    if(sign)
281       *sign = sresult;
282    return result;
283 }
284 
285 //
286 // Incomplete gamma functions follow:
287 //
288 template <class T>
289 struct upper_incomplete_gamma_fract
290 {
291 private:
292    T z, a;
293    int k;
294 public:
295    typedef std::pair<T,T> result_type;
296 
upper_incomplete_gamma_fractboost::math::detail::upper_incomplete_gamma_fract297    upper_incomplete_gamma_fract(T a1, T z1)
298       : z(z1-a1+1), a(a1), k(0)
299    {
300    }
301 
operator ()boost::math::detail::upper_incomplete_gamma_fract302    result_type operator()()
303    {
304       ++k;
305       z += 2;
306       return result_type(k * (a - k), z);
307    }
308 };
309 
310 template <class T>
upper_gamma_fraction(T a,T z,T eps)311 inline T upper_gamma_fraction(T a, T z, T eps)
312 {
313    // Multiply result by z^a * e^-z to get the full
314    // upper incomplete integral.  Divide by tgamma(z)
315    // to normalise.
316    upper_incomplete_gamma_fract<T> f(a, z);
317    return 1 / (z - a + 1 + boost::math::tools::continued_fraction_a(f, eps));
318 }
319 
320 template <class T>
321 struct lower_incomplete_gamma_series
322 {
323 private:
324    T a, z, result;
325 public:
326    typedef T result_type;
lower_incomplete_gamma_seriesboost::math::detail::lower_incomplete_gamma_series327    lower_incomplete_gamma_series(T a1, T z1) : a(a1), z(z1), result(1){}
328 
operator ()boost::math::detail::lower_incomplete_gamma_series329    T operator()()
330    {
331       T r = result;
332       a += 1;
333       result *= z/a;
334       return r;
335    }
336 };
337 
338 template <class T, class Policy>
lower_gamma_series(T a,T z,const Policy & pol,T init_value=0)339 inline T lower_gamma_series(T a, T z, const Policy& pol, T init_value = 0)
340 {
341    // Multiply result by ((z^a) * (e^-z) / a) to get the full
342    // lower incomplete integral. Then divide by tgamma(a)
343    // to get the normalised value.
344    lower_incomplete_gamma_series<T> s(a, z);
345    boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
346    T factor = policies::get_epsilon<T, Policy>();
347    T result = boost::math::tools::sum_series(s, factor, max_iter, init_value);
348    policies::check_series_iterations<T>("boost::math::detail::lower_gamma_series<%1%>(%1%)", max_iter, pol);
349    return result;
350 }
351 
352 //
353 // Fully generic tgamma and lgamma use Stirling's approximation
354 // with Bernoulli numbers.
355 //
356 template<class T>
highest_bernoulli_index()357 std::size_t highest_bernoulli_index()
358 {
359    const float digits10_of_type = (std::numeric_limits<T>::is_specialized
360                                       ? static_cast<float>(std::numeric_limits<T>::digits10)
361                                       : static_cast<float>(boost::math::tools::digits<T>() * 0.301F));
362 
363    // Find the high index n for Bn to produce the desired precision in Stirling's calculation.
364    return static_cast<std::size_t>(18.0F + (0.6F * digits10_of_type));
365 }
366 
367 template<class T>
minimum_argument_for_bernoulli_recursion()368 int minimum_argument_for_bernoulli_recursion()
369 {
370    const float digits10_of_type = (std::numeric_limits<T>::is_specialized
371                                       ? static_cast<float>(std::numeric_limits<T>::digits10)
372                                       : static_cast<float>(boost::math::tools::digits<T>() * 0.301F));
373 
374    const float limit = std::ceil(std::pow(1.0f / std::ldexp(1.0f, 1-boost::math::tools::digits<T>()), 1.0f / 20.0f));
375 
376    return (int)((std::min)(digits10_of_type * 1.7F, limit));
377 }
378 
379 template <class T, class Policy>
scaled_tgamma_no_lanczos(const T & z,const Policy & pol,bool islog=false)380 T scaled_tgamma_no_lanczos(const T& z, const Policy& pol, bool islog = false)
381 {
382    BOOST_MATH_STD_USING
383    //
384    // Calculates tgamma(z) / (z/e)^z
385    // Requires that our argument is large enough for Sterling's approximation to hold.
386    // Used internally when combining gamma's of similar magnitude without logarithms.
387    //
388    BOOST_ASSERT(minimum_argument_for_bernoulli_recursion<T>() <= z);
389 
390    // Perform the Bernoulli series expansion of Stirling's approximation.
391 
392    const std::size_t number_of_bernoullis_b2n = policies::get_max_series_iterations<Policy>();
393 
394    T one_over_x_pow_two_n_minus_one = 1 / z;
395    const T one_over_x2 = one_over_x_pow_two_n_minus_one * one_over_x_pow_two_n_minus_one;
396    T sum = (boost::math::bernoulli_b2n<T>(1) / 2) * one_over_x_pow_two_n_minus_one;
397    const T target_epsilon_to_break_loop = sum * boost::math::tools::epsilon<T>();
398    const T half_ln_two_pi_over_z = sqrt(boost::math::constants::two_pi<T>() / z);
399    T last_term = 2 * sum;
400 
401    for (std::size_t n = 2U;; ++n)
402    {
403       one_over_x_pow_two_n_minus_one *= one_over_x2;
404 
405       const std::size_t n2 = static_cast<std::size_t>(n * 2U);
406 
407       const T term = (boost::math::bernoulli_b2n<T>(static_cast<int>(n)) * one_over_x_pow_two_n_minus_one) / (n2 * (n2 - 1U));
408 
409       if ((n >= 3U) && (abs(term) < target_epsilon_to_break_loop))
410       {
411          // We have reached the desired precision in Stirling's expansion.
412          // Adding additional terms to the sum of this divergent asymptotic
413          // expansion will not improve the result.
414 
415          // Break from the loop.
416          break;
417       }
418       if (n > number_of_bernoullis_b2n)
419          return policies::raise_evaluation_error("scaled_tgamma_no_lanczos<%1%>()", "Exceeded maximum series iterations without reaching convergence, best approximation was %1%", T(exp(sum) * half_ln_two_pi_over_z), pol);
420 
421       sum += term;
422 
423       // Sanity check for divergence:
424       T fterm = fabs(term);
425       if(fterm > last_term)
426          return policies::raise_evaluation_error("scaled_tgamma_no_lanczos<%1%>()", "Series became divergent without reaching convergence, best approximation was %1%", T(exp(sum) * half_ln_two_pi_over_z), pol);
427       last_term = fterm;
428    }
429 
430    // Complete Stirling's approximation.
431    T scaled_gamma_value = islog ? T(sum + log(half_ln_two_pi_over_z)) : T(exp(sum) * half_ln_two_pi_over_z);
432    return scaled_gamma_value;
433 }
434 
435 // Forward declaration of the lgamma_imp template specialization.
436 template <class T, class Policy>
437 T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&, int* sign = 0);
438 
439 template <class T, class Policy>
gamma_imp(T z,const Policy & pol,const lanczos::undefined_lanczos &)440 T gamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&)
441 {
442    BOOST_MATH_STD_USING
443 
444    static const char* function = "boost::math::tgamma<%1%>(%1%)";
445 
446    // Check if the argument of tgamma is identically zero.
447    const bool is_at_zero = (z == 0);
448 
449    if((boost::math::isnan)(z) || (is_at_zero) || ((boost::math::isinf)(z) && (z < 0)))
450       return policies::raise_domain_error<T>(function, "Evaluation of tgamma at %1%.", z, pol);
451 
452    const bool b_neg = (z < 0);
453 
454    const bool floor_of_z_is_equal_to_z = (floor(z) == z);
455 
456    // Special case handling of small factorials:
457    if((!b_neg) && floor_of_z_is_equal_to_z && (z < boost::math::max_factorial<T>::value))
458    {
459       return boost::math::unchecked_factorial<T>(itrunc(z) - 1);
460    }
461 
462    // Make a local, unsigned copy of the input argument.
463    T zz((!b_neg) ? z : -z);
464 
465    // Special case for ultra-small z:
466    if(zz < tools::cbrt_epsilon<T>())
467    {
468       const T a0(1);
469       const T a1(boost::math::constants::euler<T>());
470       const T six_euler_squared((boost::math::constants::euler<T>() * boost::math::constants::euler<T>()) * 6);
471       const T a2((six_euler_squared -  boost::math::constants::pi_sqr<T>()) / 12);
472 
473       const T inverse_tgamma_series = z * ((a2 * z + a1) * z + a0);
474 
475       return 1 / inverse_tgamma_series;
476    }
477 
478    // Scale the argument up for the calculation of lgamma,
479    // and use downward recursion later for the final result.
480    const int min_arg_for_recursion = minimum_argument_for_bernoulli_recursion<T>();
481 
482    int n_recur;
483 
484    if(zz < min_arg_for_recursion)
485    {
486       n_recur = boost::math::itrunc(min_arg_for_recursion - zz) + 1;
487 
488       zz += n_recur;
489    }
490    else
491    {
492       n_recur = 0;
493    }
494    if (!n_recur)
495    {
496       if (zz > tools::log_max_value<T>())
497          return policies::raise_overflow_error<T>(function, 0, pol);
498       if (log(zz) * zz / 2 > tools::log_max_value<T>())
499          return policies::raise_overflow_error<T>(function, 0, pol);
500    }
501    T gamma_value = scaled_tgamma_no_lanczos(zz, pol);
502    T power_term = pow(zz, zz / 2);
503    T exp_term = exp(-zz);
504    gamma_value *= (power_term * exp_term);
505    if(!n_recur && (tools::max_value<T>() / power_term < gamma_value))
506       return policies::raise_overflow_error<T>(function, 0, pol);
507    gamma_value *= power_term;
508 
509    // Rescale the result using downward recursion if necessary.
510    if(n_recur)
511    {
512       // The order of divides is important, if we keep subtracting 1 from zz
513       // we DO NOT get back to z (cancellation error).  Further if z < epsilon
514       // we would end up dividing by zero.  Also in order to prevent spurious
515       // overflow with the first division, we must save dividing by |z| till last,
516       // so the optimal order of divides is z+1, z+2, z+3...z+n_recur-1,z.
517       zz = fabs(z) + 1;
518       for(int k = 1; k < n_recur; ++k)
519       {
520          gamma_value /= zz;
521          zz += 1;
522       }
523       gamma_value /= fabs(z);
524    }
525 
526    // Return the result, accounting for possible negative arguments.
527    if(b_neg)
528    {
529       // Provide special error analysis for:
530       // * arguments in the neighborhood of a negative integer
531       // * arguments exactly equal to a negative integer.
532 
533       // Check if the argument of tgamma is exactly equal to a negative integer.
534       if(floor_of_z_is_equal_to_z)
535          return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%.", z, pol);
536 
537       gamma_value *= sinpx(z);
538 
539       BOOST_MATH_INSTRUMENT_VARIABLE(gamma_value);
540 
541       const bool result_is_too_large_to_represent = (   (abs(gamma_value) < 1)
542                                                      && ((tools::max_value<T>() * abs(gamma_value)) < boost::math::constants::pi<T>()));
543 
544       if(result_is_too_large_to_represent)
545          return policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
546 
547       gamma_value = -boost::math::constants::pi<T>() / gamma_value;
548       BOOST_MATH_INSTRUMENT_VARIABLE(gamma_value);
549 
550       if(gamma_value == 0)
551          return policies::raise_underflow_error<T>(function, "Result of tgamma is too small to represent.", pol);
552 
553       if((boost::math::fpclassify)(gamma_value) == static_cast<int>(FP_SUBNORMAL))
554          return policies::raise_denorm_error<T>(function, "Result of tgamma is denormalized.", gamma_value, pol);
555    }
556 
557    return gamma_value;
558 }
559 
560 template <class T, class Policy>
log_gamma_near_1(const T & z,Policy const & pol)561 inline T log_gamma_near_1(const T& z, Policy const& pol)
562 {
563    //
564    // This is for the multiprecision case where there is
565    // no lanczos support, use a taylor series at z = 1,
566    // see https://www.wolframalpha.com/input/?i=taylor+series+lgamma(x)+at+x+%3D+1
567    //
568    BOOST_MATH_STD_USING // ADL of std names
569 
570    BOOST_ASSERT(fabs(z) < 1);
571 
572    T result = -constants::euler<T>() * z;
573 
574    T power_term = z * z / 2;
575    int n = 2;
576    T term = 0;
577 
578    do
579    {
580       term = power_term * boost::math::polygamma(n - 1, T(1));
581       result += term;
582       ++n;
583       power_term *= z / n;
584    } while (fabs(result) * tools::epsilon<T>() < fabs(term));
585 
586    return result;
587 }
588 
589 template <class T, class Policy>
lgamma_imp(T z,const Policy & pol,const lanczos::undefined_lanczos &,int * sign)590 T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&, int* sign)
591 {
592    BOOST_MATH_STD_USING
593 
594    static const char* function = "boost::math::lgamma<%1%>(%1%)";
595 
596    // Check if the argument of lgamma is identically zero.
597    const bool is_at_zero = (z == 0);
598 
599    if(is_at_zero)
600       return policies::raise_domain_error<T>(function, "Evaluation of lgamma at zero %1%.", z, pol);
601    if((boost::math::isnan)(z))
602       return policies::raise_domain_error<T>(function, "Evaluation of lgamma at %1%.", z, pol);
603    if((boost::math::isinf)(z))
604       return policies::raise_overflow_error<T>(function, 0, pol);
605 
606    const bool b_neg = (z < 0);
607 
608    const bool floor_of_z_is_equal_to_z = (floor(z) == z);
609 
610    // Special case handling of small factorials:
611    if((!b_neg) && floor_of_z_is_equal_to_z && (z < boost::math::max_factorial<T>::value))
612    {
613       if (sign)
614          *sign = 1;
615       return log(boost::math::unchecked_factorial<T>(itrunc(z) - 1));
616    }
617 
618    // Make a local, unsigned copy of the input argument.
619    T zz((!b_neg) ? z : -z);
620 
621    const int min_arg_for_recursion = minimum_argument_for_bernoulli_recursion<T>();
622 
623    T log_gamma_value;
624 
625    if (zz < min_arg_for_recursion)
626    {
627       // Here we simply take the logarithm of tgamma(). This is somewhat
628       // inefficient, but simple. The rationale is that the argument here
629       // is relatively small and overflow is not expected to be likely.
630       if (sign)
631          * sign = 1;
632       if(fabs(z - 1) < 0.25)
633       {
634          log_gamma_value = log_gamma_near_1(T(zz - 1), pol);
635       }
636       else if(fabs(z - 2) < 0.25)
637       {
638          log_gamma_value = log_gamma_near_1(T(zz - 2), pol) + log(zz - 1);
639       }
640       else if (z > -tools::root_epsilon<T>())
641       {
642          // Reflection formula may fail if z is very close to zero, let the series
643          // expansion for tgamma close to zero do the work:
644          if (sign)
645             *sign = z < 0 ? -1 : 1;
646          return log(abs(gamma_imp(z, pol, lanczos::undefined_lanczos())));
647       }
648       else
649       {
650          // No issue with spurious overflow in reflection formula,
651          // just fall through to regular code:
652          T g = gamma_imp(zz, pol, lanczos::undefined_lanczos());
653          if (sign)
654          {
655             *sign = g < 0 ? -1 : 1;
656          }
657          log_gamma_value = log(abs(g));
658       }
659    }
660    else
661    {
662       // Perform the Bernoulli series expansion of Stirling's approximation.
663       T sum = scaled_tgamma_no_lanczos(zz, pol, true);
664       log_gamma_value = zz * (log(zz) - 1) + sum;
665    }
666 
667    int sign_of_result = 1;
668 
669    if(b_neg)
670    {
671       // Provide special error analysis if the argument is exactly
672       // equal to a negative integer.
673 
674       // Check if the argument of lgamma is exactly equal to a negative integer.
675       if(floor_of_z_is_equal_to_z)
676          return policies::raise_pole_error<T>(function, "Evaluation of lgamma at a negative integer %1%.", z, pol);
677 
678       T t = sinpx(z);
679 
680       if(t < 0)
681       {
682          t = -t;
683       }
684       else
685       {
686          sign_of_result = -sign_of_result;
687       }
688 
689       log_gamma_value = - log_gamma_value
690                         + log(boost::math::constants::pi<T>())
691                         - log(t);
692    }
693 
694    if(sign != static_cast<int*>(0U)) { *sign = sign_of_result; }
695 
696    return log_gamma_value;
697 }
698 
699 //
700 // This helper calculates tgamma(dz+1)-1 without cancellation errors,
701 // used by the upper incomplete gamma with z < 1:
702 //
703 template <class T, class Policy, class Lanczos>
tgammap1m1_imp(T dz,Policy const & pol,const Lanczos & l)704 T tgammap1m1_imp(T dz, Policy const& pol, const Lanczos& l)
705 {
706    BOOST_MATH_STD_USING
707 
708    typedef typename policies::precision<T,Policy>::type precision_type;
709 
710    typedef boost::integral_constant<int,
711       precision_type::value <= 0 ? 0 :
712       precision_type::value <= 64 ? 64 :
713       precision_type::value <= 113 ? 113 : 0
714    > tag_type;
715 
716    T result;
717    if(dz < 0)
718    {
719       if(dz < -0.5)
720       {
721          // Best method is simply to subtract 1 from tgamma:
722          result = boost::math::tgamma(1+dz, pol) - 1;
723          BOOST_MATH_INSTRUMENT_CODE(result);
724       }
725       else
726       {
727          // Use expm1 on lgamma:
728          result = boost::math::expm1(-boost::math::log1p(dz, pol)
729             + lgamma_small_imp<T>(dz+2, dz + 1, dz, tag_type(), pol, l));
730          BOOST_MATH_INSTRUMENT_CODE(result);
731       }
732    }
733    else
734    {
735       if(dz < 2)
736       {
737          // Use expm1 on lgamma:
738          result = boost::math::expm1(lgamma_small_imp<T>(dz+1, dz, dz-1, tag_type(), pol, l), pol);
739          BOOST_MATH_INSTRUMENT_CODE(result);
740       }
741       else
742       {
743          // Best method is simply to subtract 1 from tgamma:
744          result = boost::math::tgamma(1+dz, pol) - 1;
745          BOOST_MATH_INSTRUMENT_CODE(result);
746       }
747    }
748 
749    return result;
750 }
751 
752 template <class T, class Policy>
tgammap1m1_imp(T z,Policy const & pol,const::boost::math::lanczos::undefined_lanczos &)753 inline T tgammap1m1_imp(T z, Policy const& pol,
754                  const ::boost::math::lanczos::undefined_lanczos&)
755 {
756    BOOST_MATH_STD_USING // ADL of std names
757 
758    if(fabs(z) < 0.55)
759    {
760       return boost::math::expm1(log_gamma_near_1(z, pol));
761    }
762    return boost::math::expm1(boost::math::lgamma(1 + z, pol));
763 }
764 
765 //
766 // Series representation for upper fraction when z is small:
767 //
768 template <class T>
769 struct small_gamma2_series
770 {
771    typedef T result_type;
772 
small_gamma2_seriesboost::math::detail::small_gamma2_series773    small_gamma2_series(T a_, T x_) : result(-x_), x(-x_), apn(a_+1), n(1){}
774 
operator ()boost::math::detail::small_gamma2_series775    T operator()()
776    {
777       T r = result / (apn);
778       result *= x;
779       result /= ++n;
780       apn += 1;
781       return r;
782    }
783 
784 private:
785    T result, x, apn;
786    int n;
787 };
788 //
789 // calculate power term prefix (z^a)(e^-z) used in the non-normalised
790 // incomplete gammas:
791 //
792 template <class T, class Policy>
full_igamma_prefix(T a,T z,const Policy & pol)793 T full_igamma_prefix(T a, T z, const Policy& pol)
794 {
795    BOOST_MATH_STD_USING
796 
797    T prefix;
798    if (z > tools::max_value<T>())
799       return 0;
800    T alz = a * log(z);
801 
802    if(z >= 1)
803    {
804       if((alz < tools::log_max_value<T>()) && (-z > tools::log_min_value<T>()))
805       {
806          prefix = pow(z, a) * exp(-z);
807       }
808       else if(a >= 1)
809       {
810          prefix = pow(z / exp(z/a), a);
811       }
812       else
813       {
814          prefix = exp(alz - z);
815       }
816    }
817    else
818    {
819       if(alz > tools::log_min_value<T>())
820       {
821          prefix = pow(z, a) * exp(-z);
822       }
823       else if(z/a < tools::log_max_value<T>())
824       {
825          prefix = pow(z / exp(z/a), a);
826       }
827       else
828       {
829          prefix = exp(alz - z);
830       }
831    }
832    //
833    // This error handling isn't very good: it happens after the fact
834    // rather than before it...
835    //
836    if((boost::math::fpclassify)(prefix) == (int)FP_INFINITE)
837       return policies::raise_overflow_error<T>("boost::math::detail::full_igamma_prefix<%1%>(%1%, %1%)", "Result of incomplete gamma function is too large to represent.", pol);
838 
839    return prefix;
840 }
841 //
842 // Compute (z^a)(e^-z)/tgamma(a)
843 // most if the error occurs in this function:
844 //
845 template <class T, class Policy, class Lanczos>
regularised_gamma_prefix(T a,T z,const Policy & pol,const Lanczos & l)846 T regularised_gamma_prefix(T a, T z, const Policy& pol, const Lanczos& l)
847 {
848    BOOST_MATH_STD_USING
849    if (z >= tools::max_value<T>())
850       return 0;
851    T agh = a + static_cast<T>(Lanczos::g()) - T(0.5);
852    T prefix;
853    T d = ((z - a) - static_cast<T>(Lanczos::g()) + T(0.5)) / agh;
854 
855    if(a < 1)
856    {
857       //
858       // We have to treat a < 1 as a special case because our Lanczos
859       // approximations are optimised against the factorials with a > 1,
860       // and for high precision types especially (128-bit reals for example)
861       // very small values of a can give rather erroneous results for gamma
862       // unless we do this:
863       //
864       // TODO: is this still required?  Lanczos approx should be better now?
865       //
866       if(z <= tools::log_min_value<T>())
867       {
868          // Oh dear, have to use logs, should be free of cancellation errors though:
869          return exp(a * log(z) - z - lgamma_imp(a, pol, l));
870       }
871       else
872       {
873          // direct calculation, no danger of overflow as gamma(a) < 1/a
874          // for small a.
875          return pow(z, a) * exp(-z) / gamma_imp(a, pol, l);
876       }
877    }
878    else if((fabs(d*d*a) <= 100) && (a > 150))
879    {
880       // special case for large a and a ~ z.
881       prefix = a * boost::math::log1pmx(d, pol) + z * static_cast<T>(0.5 - Lanczos::g()) / agh;
882       prefix = exp(prefix);
883    }
884    else
885    {
886       //
887       // general case.
888       // direct computation is most accurate, but use various fallbacks
889       // for different parts of the problem domain:
890       //
891       T alz = a * log(z / agh);
892       T amz = a - z;
893       if(((std::min)(alz, amz) <= tools::log_min_value<T>()) || ((std::max)(alz, amz) >= tools::log_max_value<T>()))
894       {
895          T amza = amz / a;
896          if(((std::min)(alz, amz)/2 > tools::log_min_value<T>()) && ((std::max)(alz, amz)/2 < tools::log_max_value<T>()))
897          {
898             // compute square root of the result and then square it:
899             T sq = pow(z / agh, a / 2) * exp(amz / 2);
900             prefix = sq * sq;
901          }
902          else if(((std::min)(alz, amz)/4 > tools::log_min_value<T>()) && ((std::max)(alz, amz)/4 < tools::log_max_value<T>()) && (z > a))
903          {
904             // compute the 4th root of the result then square it twice:
905             T sq = pow(z / agh, a / 4) * exp(amz / 4);
906             prefix = sq * sq;
907             prefix *= prefix;
908          }
909          else if((amza > tools::log_min_value<T>()) && (amza < tools::log_max_value<T>()))
910          {
911             prefix = pow((z * exp(amza)) / agh, a);
912          }
913          else
914          {
915             prefix = exp(alz + amz);
916          }
917       }
918       else
919       {
920          prefix = pow(z / agh, a) * exp(amz);
921       }
922    }
923    prefix *= sqrt(agh / boost::math::constants::e<T>()) / Lanczos::lanczos_sum_expG_scaled(a);
924    return prefix;
925 }
926 //
927 // And again, without Lanczos support:
928 //
929 template <class T, class Policy>
regularised_gamma_prefix(T a,T z,const Policy & pol,const lanczos::undefined_lanczos & l)930 T regularised_gamma_prefix(T a, T z, const Policy& pol, const lanczos::undefined_lanczos& l)
931 {
932    BOOST_MATH_STD_USING
933 
934    if((a < 1) && (z < 1))
935    {
936       // No overflow possible since the power terms tend to unity as a,z -> 0
937       return pow(z, a) * exp(-z) / boost::math::tgamma(a, pol);
938    }
939    else if(a > minimum_argument_for_bernoulli_recursion<T>())
940    {
941       T scaled_gamma = scaled_tgamma_no_lanczos(a, pol);
942       T power_term = pow(z / a, a / 2);
943       T a_minus_z = a - z;
944       if ((0 == power_term) || (fabs(a_minus_z) > tools::log_max_value<T>()))
945       {
946          // The result is probably zero, but we need to be sure:
947          return exp(a * log(z / a) + a_minus_z - log(scaled_gamma));
948       }
949       return (power_term * exp(a_minus_z)) * (power_term / scaled_gamma);
950    }
951    else
952    {
953       //
954       // Usual case is to calculate the prefix at a+shift and recurse down
955       // to the value we want:
956       //
957       const int min_z = minimum_argument_for_bernoulli_recursion<T>();
958       long shift = 1 + ltrunc(min_z - a);
959       T result = regularised_gamma_prefix(T(a + shift), z, pol, l);
960       if (result != 0)
961       {
962          for (long i = 0; i < shift; ++i)
963          {
964             result /= z;
965             result *= a + i;
966          }
967          return result;
968       }
969       else
970       {
971          //
972          // We failed, most probably we have z << 1, try again, this time
973          // we calculate z^a e^-z / tgamma(a+shift), combining power terms
974          // as we go.  And again recurse down to the result.
975          //
976          T scaled_gamma = scaled_tgamma_no_lanczos(T(a + shift), pol);
977          T power_term_1 = pow(z / (a + shift), a);
978          T power_term_2 = pow(a + shift, -shift);
979          T power_term_3 = exp(a + shift - z);
980          if ((0 == power_term_1) || (0 == power_term_2) || (0 == power_term_3) || (fabs(a + shift - z) > tools::log_max_value<T>()))
981          {
982             // We have no test case that gets here, most likely the type T
983             // has a high precision but low exponent range:
984             return exp(a * log(z) - z - boost::math::lgamma(a, pol));
985          }
986          result = power_term_1 * power_term_2 * power_term_3 / scaled_gamma;
987          for (long i = 0; i < shift; ++i)
988          {
989             result *= a + i;
990          }
991          return result;
992       }
993    }
994 }
995 //
996 // Upper gamma fraction for very small a:
997 //
998 template <class T, class Policy>
tgamma_small_upper_part(T a,T x,const Policy & pol,T * pgam=0,bool invert=false,T * pderivative=0)999 inline T tgamma_small_upper_part(T a, T x, const Policy& pol, T* pgam = 0, bool invert = false, T* pderivative = 0)
1000 {
1001    BOOST_MATH_STD_USING  // ADL of std functions.
1002    //
1003    // Compute the full upper fraction (Q) when a is very small:
1004    //
1005    T result;
1006    result = boost::math::tgamma1pm1(a, pol);
1007    if(pgam)
1008       *pgam = (result + 1) / a;
1009    T p = boost::math::powm1(x, a, pol);
1010    result -= p;
1011    result /= a;
1012    detail::small_gamma2_series<T> s(a, x);
1013    boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>() - 10;
1014    p += 1;
1015    if(pderivative)
1016       *pderivative = p / (*pgam * exp(x));
1017    T init_value = invert ? *pgam : 0;
1018    result = -p * tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, (init_value - result) / p);
1019    policies::check_series_iterations<T>("boost::math::tgamma_small_upper_part<%1%>(%1%, %1%)", max_iter, pol);
1020    if(invert)
1021       result = -result;
1022    return result;
1023 }
1024 //
1025 // Upper gamma fraction for integer a:
1026 //
1027 template <class T, class Policy>
finite_gamma_q(T a,T x,Policy const & pol,T * pderivative=0)1028 inline T finite_gamma_q(T a, T x, Policy const& pol, T* pderivative = 0)
1029 {
1030    //
1031    // Calculates normalised Q when a is an integer:
1032    //
1033    BOOST_MATH_STD_USING
1034    T e = exp(-x);
1035    T sum = e;
1036    if(sum != 0)
1037    {
1038       T term = sum;
1039       for(unsigned n = 1; n < a; ++n)
1040       {
1041          term /= n;
1042          term *= x;
1043          sum += term;
1044       }
1045    }
1046    if(pderivative)
1047    {
1048       *pderivative = e * pow(x, a) / boost::math::unchecked_factorial<T>(itrunc(T(a - 1), pol));
1049    }
1050    return sum;
1051 }
1052 //
1053 // Upper gamma fraction for half integer a:
1054 //
1055 template <class T, class Policy>
finite_half_gamma_q(T a,T x,T * p_derivative,const Policy & pol)1056 T finite_half_gamma_q(T a, T x, T* p_derivative, const Policy& pol)
1057 {
1058    //
1059    // Calculates normalised Q when a is a half-integer:
1060    //
1061    BOOST_MATH_STD_USING
1062    T e = boost::math::erfc(sqrt(x), pol);
1063    if((e != 0) && (a > 1))
1064    {
1065       T term = exp(-x) / sqrt(constants::pi<T>() * x);
1066       term *= x;
1067       static const T half = T(1) / 2;
1068       term /= half;
1069       T sum = term;
1070       for(unsigned n = 2; n < a; ++n)
1071       {
1072          term /= n - half;
1073          term *= x;
1074          sum += term;
1075       }
1076       e += sum;
1077       if(p_derivative)
1078       {
1079          *p_derivative = 0;
1080       }
1081    }
1082    else if(p_derivative)
1083    {
1084       // We'll be dividing by x later, so calculate derivative * x:
1085       *p_derivative = sqrt(x) * exp(-x) / constants::root_pi<T>();
1086    }
1087    return e;
1088 }
1089 //
1090 // Asymptotic approximation for large argument, see: https://dlmf.nist.gov/8.11#E2
1091 //
1092 template <class T>
1093 struct incomplete_tgamma_large_x_series
1094 {
1095    typedef T result_type;
incomplete_tgamma_large_x_seriesboost::math::detail::incomplete_tgamma_large_x_series1096    incomplete_tgamma_large_x_series(const T& a, const T& x)
1097       : a_poch(a - 1), z(x), term(1) {}
operator ()boost::math::detail::incomplete_tgamma_large_x_series1098    T operator()()
1099    {
1100       T result = term;
1101       term *= a_poch / z;
1102       a_poch -= 1;
1103       return result;
1104    }
1105    T a_poch, z, term;
1106 };
1107 
1108 template <class T, class Policy>
incomplete_tgamma_large_x(const T & a,const T & x,const Policy & pol)1109 T incomplete_tgamma_large_x(const T& a, const T& x, const Policy& pol)
1110 {
1111    BOOST_MATH_STD_USING
1112    incomplete_tgamma_large_x_series<T> s(a, x);
1113    boost::uintmax_t max_iter = boost::math::policies::get_max_series_iterations<Policy>();
1114    T result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
1115    boost::math::policies::check_series_iterations<T>("boost::math::tgamma<%1%>(%1%,%1%)", max_iter, pol);
1116    return result;
1117 }
1118 
1119 
1120 //
1121 // Main incomplete gamma entry point, handles all four incomplete gamma's:
1122 //
1123 template <class T, class Policy>
gamma_incomplete_imp(T a,T x,bool normalised,bool invert,const Policy & pol,T * p_derivative)1124 T gamma_incomplete_imp(T a, T x, bool normalised, bool invert,
1125                        const Policy& pol, T* p_derivative)
1126 {
1127    static const char* function = "boost::math::gamma_p<%1%>(%1%, %1%)";
1128    if(a <= 0)
1129       return policies::raise_domain_error<T>(function, "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol);
1130    if(x < 0)
1131       return policies::raise_domain_error<T>(function, "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol);
1132 
1133    BOOST_MATH_STD_USING
1134 
1135    typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
1136 
1137    T result = 0; // Just to avoid warning C4701: potentially uninitialized local variable 'result' used
1138 
1139    if(a >= max_factorial<T>::value && !normalised)
1140    {
1141       //
1142       // When we're computing the non-normalized incomplete gamma
1143       // and a is large the result is rather hard to compute unless
1144       // we use logs.  There are really two options - if x is a long
1145       // way from a in value then we can reliably use methods 2 and 4
1146       // below in logarithmic form and go straight to the result.
1147       // Otherwise we let the regularized gamma take the strain
1148       // (the result is unlikely to underflow in the central region anyway)
1149       // and combine with lgamma in the hopes that we get a finite result.
1150       //
1151       if(invert && (a * 4 < x))
1152       {
1153          // This is method 4 below, done in logs:
1154          result = a * log(x) - x;
1155          if(p_derivative)
1156             *p_derivative = exp(result);
1157          result += log(upper_gamma_fraction(a, x, policies::get_epsilon<T, Policy>()));
1158       }
1159       else if(!invert && (a > 4 * x))
1160       {
1161          // This is method 2 below, done in logs:
1162          result = a * log(x) - x;
1163          if(p_derivative)
1164             *p_derivative = exp(result);
1165          T init_value = 0;
1166          result += log(detail::lower_gamma_series(a, x, pol, init_value) / a);
1167       }
1168       else
1169       {
1170          result = gamma_incomplete_imp(a, x, true, invert, pol, p_derivative);
1171          if(result == 0)
1172          {
1173             if(invert)
1174             {
1175                // Try http://functions.wolfram.com/06.06.06.0039.01
1176                result = 1 + 1 / (12 * a) + 1 / (288 * a * a);
1177                result = log(result) - a + (a - 0.5f) * log(a) + log(boost::math::constants::root_two_pi<T>());
1178                if(p_derivative)
1179                   *p_derivative = exp(a * log(x) - x);
1180             }
1181             else
1182             {
1183                // This is method 2 below, done in logs, we're really outside the
1184                // range of this method, but since the result is almost certainly
1185                // infinite, we should probably be OK:
1186                result = a * log(x) - x;
1187                if(p_derivative)
1188                   *p_derivative = exp(result);
1189                T init_value = 0;
1190                result += log(detail::lower_gamma_series(a, x, pol, init_value) / a);
1191             }
1192          }
1193          else
1194          {
1195             result = log(result) + boost::math::lgamma(a, pol);
1196          }
1197       }
1198       if(result > tools::log_max_value<T>())
1199          return policies::raise_overflow_error<T>(function, 0, pol);
1200       return exp(result);
1201    }
1202 
1203    BOOST_ASSERT((p_derivative == 0) || (normalised == true));
1204 
1205    bool is_int, is_half_int;
1206    bool is_small_a = (a < 30) && (a <= x + 1) && (x < tools::log_max_value<T>());
1207    if(is_small_a)
1208    {
1209       T fa = floor(a);
1210       is_int = (fa == a);
1211       is_half_int = is_int ? false : (fabs(fa - a) == 0.5f);
1212    }
1213    else
1214    {
1215       is_int = is_half_int = false;
1216    }
1217 
1218    int eval_method;
1219 
1220    if(is_int && (x > 0.6))
1221    {
1222       // calculate Q via finite sum:
1223       invert = !invert;
1224       eval_method = 0;
1225    }
1226    else if(is_half_int && (x > 0.2))
1227    {
1228       // calculate Q via finite sum for half integer a:
1229       invert = !invert;
1230       eval_method = 1;
1231    }
1232    else if((x < tools::root_epsilon<T>()) && (a > 1))
1233    {
1234       eval_method = 6;
1235    }
1236    else if ((x > 1000) && ((a < x) || (fabs(a - 50) / x < 1)))
1237    {
1238       // calculate Q via asymptotic approximation:
1239       invert = !invert;
1240       eval_method = 7;
1241    }
1242    else if(x < 0.5)
1243    {
1244       //
1245       // Changeover criterion chosen to give a changeover at Q ~ 0.33
1246       //
1247       if(-0.4 / log(x) < a)
1248       {
1249          eval_method = 2;
1250       }
1251       else
1252       {
1253          eval_method = 3;
1254       }
1255    }
1256    else if(x < 1.1)
1257    {
1258       //
1259       // Changover here occurs when P ~ 0.75 or Q ~ 0.25:
1260       //
1261       if(x * 0.75f < a)
1262       {
1263          eval_method = 2;
1264       }
1265       else
1266       {
1267          eval_method = 3;
1268       }
1269    }
1270    else
1271    {
1272       //
1273       // Begin by testing whether we're in the "bad" zone
1274       // where the result will be near 0.5 and the usual
1275       // series and continued fractions are slow to converge:
1276       //
1277       bool use_temme = false;
1278       if(normalised && std::numeric_limits<T>::is_specialized && (a > 20))
1279       {
1280          T sigma = fabs((x-a)/a);
1281          if((a > 200) && (policies::digits<T, Policy>() <= 113))
1282          {
1283             //
1284             // This limit is chosen so that we use Temme's expansion
1285             // only if the result would be larger than about 10^-6.
1286             // Below that the regular series and continued fractions
1287             // converge OK, and if we use Temme's method we get increasing
1288             // errors from the dominant erfc term as it's (inexact) argument
1289             // increases in magnitude.
1290             //
1291             if(20 / a > sigma * sigma)
1292                use_temme = true;
1293          }
1294          else if(policies::digits<T, Policy>() <= 64)
1295          {
1296             // Note in this zone we can't use Temme's expansion for
1297             // types longer than an 80-bit real:
1298             // it would require too many terms in the polynomials.
1299             if(sigma < 0.4)
1300                use_temme = true;
1301          }
1302       }
1303       if(use_temme)
1304       {
1305          eval_method = 5;
1306       }
1307       else
1308       {
1309          //
1310          // Regular case where the result will not be too close to 0.5.
1311          //
1312          // Changeover here occurs at P ~ Q ~ 0.5
1313          // Note that series computation of P is about x2 faster than continued fraction
1314          // calculation of Q, so try and use the CF only when really necessary, especially
1315          // for small x.
1316          //
1317          if(x - (1 / (3 * x)) < a)
1318          {
1319             eval_method = 2;
1320          }
1321          else
1322          {
1323             eval_method = 4;
1324             invert = !invert;
1325          }
1326       }
1327    }
1328 
1329    switch(eval_method)
1330    {
1331    case 0:
1332       {
1333          result = finite_gamma_q(a, x, pol, p_derivative);
1334          if(normalised == false)
1335             result *= boost::math::tgamma(a, pol);
1336          break;
1337       }
1338    case 1:
1339       {
1340          result = finite_half_gamma_q(a, x, p_derivative, pol);
1341          if(normalised == false)
1342             result *= boost::math::tgamma(a, pol);
1343          if(p_derivative && (*p_derivative == 0))
1344             *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type());
1345          break;
1346       }
1347    case 2:
1348       {
1349          // Compute P:
1350          result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol);
1351          if(p_derivative)
1352             *p_derivative = result;
1353          if(result != 0)
1354          {
1355             //
1356             // If we're going to be inverting the result then we can
1357             // reduce the number of series evaluations by quite
1358             // a few iterations if we set an initial value for the
1359             // series sum based on what we'll end up subtracting it from
1360             // at the end.
1361             // Have to be careful though that this optimization doesn't
1362             // lead to spurious numeric overflow.  Note that the
1363             // scary/expensive overflow checks below are more often
1364             // than not bypassed in practice for "sensible" input
1365             // values:
1366             //
1367             T init_value = 0;
1368             bool optimised_invert = false;
1369             if(invert)
1370             {
1371                init_value = (normalised ? 1 : boost::math::tgamma(a, pol));
1372                if(normalised || (result >= 1) || (tools::max_value<T>() * result > init_value))
1373                {
1374                   init_value /= result;
1375                   if(normalised || (a < 1) || (tools::max_value<T>() / a > init_value))
1376                   {
1377                      init_value *= -a;
1378                      optimised_invert = true;
1379                   }
1380                   else
1381                      init_value = 0;
1382                }
1383                else
1384                   init_value = 0;
1385             }
1386             result *= detail::lower_gamma_series(a, x, pol, init_value) / a;
1387             if(optimised_invert)
1388             {
1389                invert = false;
1390                result = -result;
1391             }
1392          }
1393          break;
1394       }
1395    case 3:
1396       {
1397          // Compute Q:
1398          invert = !invert;
1399          T g;
1400          result = tgamma_small_upper_part(a, x, pol, &g, invert, p_derivative);
1401          invert = false;
1402          if(normalised)
1403             result /= g;
1404          break;
1405       }
1406    case 4:
1407       {
1408          // Compute Q:
1409          result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol);
1410          if(p_derivative)
1411             *p_derivative = result;
1412          if(result != 0)
1413             result *= upper_gamma_fraction(a, x, policies::get_epsilon<T, Policy>());
1414          break;
1415       }
1416    case 5:
1417       {
1418          //
1419          // Use compile time dispatch to the appropriate
1420          // Temme asymptotic expansion.  This may be dead code
1421          // if T does not have numeric limits support, or has
1422          // too many digits for the most precise version of
1423          // these expansions, in that case we'll be calling
1424          // an empty function.
1425          //
1426          typedef typename policies::precision<T, Policy>::type precision_type;
1427 
1428          typedef boost::integral_constant<int,
1429             precision_type::value <= 0 ? 0 :
1430             precision_type::value <= 53 ? 53 :
1431             precision_type::value <= 64 ? 64 :
1432             precision_type::value <= 113 ? 113 : 0
1433          > tag_type;
1434 
1435          result = igamma_temme_large(a, x, pol, static_cast<tag_type const*>(0));
1436          if(x >= a)
1437             invert = !invert;
1438          if(p_derivative)
1439             *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type());
1440          break;
1441       }
1442    case 6:
1443       {
1444          // x is so small that P is necessarily very small too,
1445          // use http://functions.wolfram.com/GammaBetaErf/GammaRegularized/06/01/05/01/01/
1446          result = !normalised ? pow(x, a) / (a) : pow(x, a) / boost::math::tgamma(a + 1, pol);
1447          result *= 1 - a * x / (a + 1);
1448          if (p_derivative)
1449             *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type());
1450          break;
1451       }
1452    case 7:
1453    {
1454       // x is large,
1455       // Compute Q:
1456       result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol);
1457       if (p_derivative)
1458          *p_derivative = result;
1459       result /= x;
1460       if (result != 0)
1461          result *= incomplete_tgamma_large_x(a, x, pol);
1462       break;
1463    }
1464    }
1465 
1466    if(normalised && (result > 1))
1467       result = 1;
1468    if(invert)
1469    {
1470       T gam = normalised ? 1 : boost::math::tgamma(a, pol);
1471       result = gam - result;
1472    }
1473    if(p_derivative)
1474    {
1475       //
1476       // Need to convert prefix term to derivative:
1477       //
1478       if((x < 1) && (tools::max_value<T>() * x < *p_derivative))
1479       {
1480          // overflow, just return an arbitrarily large value:
1481          *p_derivative = tools::max_value<T>() / 2;
1482       }
1483 
1484       *p_derivative /= x;
1485    }
1486 
1487    return result;
1488 }
1489 
1490 //
1491 // Ratios of two gamma functions:
1492 //
1493 template <class T, class Policy, class Lanczos>
tgamma_delta_ratio_imp_lanczos(T z,T delta,const Policy & pol,const Lanczos & l)1494 T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const Lanczos& l)
1495 {
1496    BOOST_MATH_STD_USING
1497    if(z < tools::epsilon<T>())
1498    {
1499       //
1500       // We get spurious numeric overflow unless we're very careful, this
1501       // can occur either inside Lanczos::lanczos_sum(z) or in the
1502       // final combination of terms, to avoid this, split the product up
1503       // into 2 (or 3) parts:
1504       //
1505       // G(z) / G(L) = 1 / (z * G(L)) ; z < eps, L = z + delta = delta
1506       //    z * G(L) = z * G(lim) * (G(L)/G(lim)) ; lim = largest factorial
1507       //
1508       if(boost::math::max_factorial<T>::value < delta)
1509       {
1510          T ratio = tgamma_delta_ratio_imp_lanczos(delta, T(boost::math::max_factorial<T>::value - delta), pol, l);
1511          ratio *= z;
1512          ratio *= boost::math::unchecked_factorial<T>(boost::math::max_factorial<T>::value - 1);
1513          return 1 / ratio;
1514       }
1515       else
1516       {
1517          return 1 / (z * boost::math::tgamma(z + delta, pol));
1518       }
1519    }
1520    T zgh = static_cast<T>(z + Lanczos::g() - constants::half<T>());
1521    T result;
1522    if(z + delta == z)
1523    {
1524       if(fabs(delta) < 10)
1525          result = exp((constants::half<T>() - z) * boost::math::log1p(delta / zgh, pol));
1526       else
1527          result = 1;
1528    }
1529    else
1530    {
1531       if(fabs(delta) < 10)
1532       {
1533          result = exp((constants::half<T>() - z) * boost::math::log1p(delta / zgh, pol));
1534       }
1535       else
1536       {
1537          result = pow(zgh / (zgh + delta), z - constants::half<T>());
1538       }
1539       // Split the calculation up to avoid spurious overflow:
1540       result *= Lanczos::lanczos_sum(z) / Lanczos::lanczos_sum(T(z + delta));
1541    }
1542    result *= pow(constants::e<T>() / (zgh + delta), delta);
1543    return result;
1544 }
1545 //
1546 // And again without Lanczos support this time:
1547 //
1548 template <class T, class Policy>
tgamma_delta_ratio_imp_lanczos(T z,T delta,const Policy & pol,const lanczos::undefined_lanczos & l)1549 T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const lanczos::undefined_lanczos& l)
1550 {
1551    BOOST_MATH_STD_USING
1552 
1553    //
1554    // We adjust z and delta so that both z and z+delta are large enough for
1555    // Sterling's approximation to hold.  We can then calculate the ratio
1556    // for the adjusted values, and rescale back down to z and z+delta.
1557    //
1558    // Get the required shifts first:
1559    //
1560    long numerator_shift = 0;
1561    long denominator_shift = 0;
1562    const int min_z = minimum_argument_for_bernoulli_recursion<T>();
1563 
1564    if (min_z > z)
1565       numerator_shift = 1 + ltrunc(min_z - z);
1566    if (min_z > z + delta)
1567       denominator_shift = 1 + ltrunc(min_z - z - delta);
1568    //
1569    // If the shifts are zero, then we can just combine scaled tgamma's
1570    // and combine the remaining terms:
1571    //
1572    if (numerator_shift == 0 && denominator_shift == 0)
1573    {
1574       T scaled_tgamma_num = scaled_tgamma_no_lanczos(z, pol);
1575       T scaled_tgamma_denom = scaled_tgamma_no_lanczos(T(z + delta), pol);
1576       T result = scaled_tgamma_num / scaled_tgamma_denom;
1577       result *= exp(z * boost::math::log1p(-delta / (z + delta), pol)) * pow((delta + z) / constants::e<T>(), -delta);
1578       return result;
1579    }
1580    //
1581    // We're going to have to rescale first, get the adjusted z and delta values,
1582    // plus the ratio for the adjusted values:
1583    //
1584    T zz = z + numerator_shift;
1585    T dd = delta - (numerator_shift - denominator_shift);
1586    T ratio = tgamma_delta_ratio_imp_lanczos(zz, dd, pol, l);
1587    //
1588    // Use gamma recurrence relations to get back to the original
1589    // z and z+delta:
1590    //
1591    for (long long i = 0; i < numerator_shift; ++i)
1592    {
1593       ratio /= (z + i);
1594       if (i < denominator_shift)
1595          ratio *= (z + delta + i);
1596    }
1597    for (long long i = numerator_shift; i < denominator_shift; ++i)
1598    {
1599       ratio *= (z + delta + i);
1600    }
1601    return ratio;
1602 }
1603 
1604 template <class T, class Policy>
tgamma_delta_ratio_imp(T z,T delta,const Policy & pol)1605 T tgamma_delta_ratio_imp(T z, T delta, const Policy& pol)
1606 {
1607    BOOST_MATH_STD_USING
1608 
1609    if((z <= 0) || (z + delta <= 0))
1610    {
1611       // This isn't very sophisticated, or accurate, but it does work:
1612       return boost::math::tgamma(z, pol) / boost::math::tgamma(z + delta, pol);
1613    }
1614 
1615    if(floor(delta) == delta)
1616    {
1617       if(floor(z) == z)
1618       {
1619          //
1620          // Both z and delta are integers, see if we can just use table lookup
1621          // of the factorials to get the result:
1622          //
1623          if((z <= max_factorial<T>::value) && (z + delta <= max_factorial<T>::value))
1624          {
1625             return unchecked_factorial<T>((unsigned)itrunc(z, pol) - 1) / unchecked_factorial<T>((unsigned)itrunc(T(z + delta), pol) - 1);
1626          }
1627       }
1628       if(fabs(delta) < 20)
1629       {
1630          //
1631          // delta is a small integer, we can use a finite product:
1632          //
1633          if(delta == 0)
1634             return 1;
1635          if(delta < 0)
1636          {
1637             z -= 1;
1638             T result = z;
1639             while(0 != (delta += 1))
1640             {
1641                z -= 1;
1642                result *= z;
1643             }
1644             return result;
1645          }
1646          else
1647          {
1648             T result = 1 / z;
1649             while(0 != (delta -= 1))
1650             {
1651                z += 1;
1652                result /= z;
1653             }
1654             return result;
1655          }
1656       }
1657    }
1658    typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
1659    return tgamma_delta_ratio_imp_lanczos(z, delta, pol, lanczos_type());
1660 }
1661 
1662 template <class T, class Policy>
tgamma_ratio_imp(T x,T y,const Policy & pol)1663 T tgamma_ratio_imp(T x, T y, const Policy& pol)
1664 {
1665    BOOST_MATH_STD_USING
1666 
1667    if((x <= 0) || (boost::math::isinf)(x))
1668       return policies::raise_domain_error<T>("boost::math::tgamma_ratio<%1%>(%1%, %1%)", "Gamma function ratios only implemented for positive arguments (got a=%1%).", x, pol);
1669    if((y <= 0) || (boost::math::isinf)(y))
1670       return policies::raise_domain_error<T>("boost::math::tgamma_ratio<%1%>(%1%, %1%)", "Gamma function ratios only implemented for positive arguments (got b=%1%).", y, pol);
1671 
1672    if(x <= tools::min_value<T>())
1673    {
1674       // Special case for denorms...Ugh.
1675       T shift = ldexp(T(1), tools::digits<T>());
1676       return shift * tgamma_ratio_imp(T(x * shift), y, pol);
1677    }
1678 
1679    if((x < max_factorial<T>::value) && (y < max_factorial<T>::value))
1680    {
1681       // Rather than subtracting values, lets just call the gamma functions directly:
1682       return boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
1683    }
1684    T prefix = 1;
1685    if(x < 1)
1686    {
1687       if(y < 2 * max_factorial<T>::value)
1688       {
1689          // We need to sidestep on x as well, otherwise we'll underflow
1690          // before we get to factor in the prefix term:
1691          prefix /= x;
1692          x += 1;
1693          while(y >=  max_factorial<T>::value)
1694          {
1695             y -= 1;
1696             prefix /= y;
1697          }
1698          return prefix * boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
1699       }
1700       //
1701       // result is almost certainly going to underflow to zero, try logs just in case:
1702       //
1703       return exp(boost::math::lgamma(x, pol) - boost::math::lgamma(y, pol));
1704    }
1705    if(y < 1)
1706    {
1707       if(x < 2 * max_factorial<T>::value)
1708       {
1709          // We need to sidestep on y as well, otherwise we'll overflow
1710          // before we get to factor in the prefix term:
1711          prefix *= y;
1712          y += 1;
1713          while(x >= max_factorial<T>::value)
1714          {
1715             x -= 1;
1716             prefix *= x;
1717          }
1718          return prefix * boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
1719       }
1720       //
1721       // Result will almost certainly overflow, try logs just in case:
1722       //
1723       return exp(boost::math::lgamma(x, pol) - boost::math::lgamma(y, pol));
1724    }
1725    //
1726    // Regular case, x and y both large and similar in magnitude:
1727    //
1728    return boost::math::tgamma_delta_ratio(x, y - x, pol);
1729 }
1730 
1731 template <class T, class Policy>
gamma_p_derivative_imp(T a,T x,const Policy & pol)1732 T gamma_p_derivative_imp(T a, T x, const Policy& pol)
1733 {
1734    BOOST_MATH_STD_USING
1735    //
1736    // Usual error checks first:
1737    //
1738    if(a <= 0)
1739       return policies::raise_domain_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol);
1740    if(x < 0)
1741       return policies::raise_domain_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol);
1742    //
1743    // Now special cases:
1744    //
1745    if(x == 0)
1746    {
1747       return (a > 1) ? 0 :
1748          (a == 1) ? 1 : policies::raise_overflow_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", 0, pol);
1749    }
1750    //
1751    // Normal case:
1752    //
1753    typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
1754    T f1 = detail::regularised_gamma_prefix(a, x, pol, lanczos_type());
1755    if((x < 1) && (tools::max_value<T>() * x < f1))
1756    {
1757       // overflow:
1758       return policies::raise_overflow_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", 0, pol);
1759    }
1760    if(f1 == 0)
1761    {
1762       // Underflow in calculation, use logs instead:
1763       f1 = a * log(x) - x - lgamma(a, pol) - log(x);
1764       f1 = exp(f1);
1765    }
1766    else
1767       f1 /= x;
1768 
1769    return f1;
1770 }
1771 
1772 template <class T, class Policy>
1773 inline typename tools::promote_args<T>::type
tgamma(T z,const Policy &,const boost::true_type)1774    tgamma(T z, const Policy& /* pol */, const boost::true_type)
1775 {
1776    BOOST_FPU_EXCEPTION_GUARD
1777    typedef typename tools::promote_args<T>::type result_type;
1778    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1779    typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1780    typedef typename policies::normalise<
1781       Policy,
1782       policies::promote_float<false>,
1783       policies::promote_double<false>,
1784       policies::discrete_quantile<>,
1785       policies::assert_undefined<> >::type forwarding_policy;
1786    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::gamma_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma<%1%>(%1%)");
1787 }
1788 
1789 template <class T, class Policy>
1790 struct igamma_initializer
1791 {
1792    struct init
1793    {
initboost::math::detail::igamma_initializer::init1794       init()
1795       {
1796          typedef typename policies::precision<T, Policy>::type precision_type;
1797 
1798          typedef boost::integral_constant<int,
1799             precision_type::value <= 0 ? 0 :
1800             precision_type::value <= 53 ? 53 :
1801             precision_type::value <= 64 ? 64 :
1802             precision_type::value <= 113 ? 113 : 0
1803          > tag_type;
1804 
1805          do_init(tag_type());
1806       }
1807       template <int N>
do_initboost::math::detail::igamma_initializer::init1808       static void do_init(const boost::integral_constant<int, N>&)
1809       {
1810          // If std::numeric_limits<T>::digits is zero, we must not call
1811          // our initialization code here as the precision presumably
1812          // varies at runtime, and will not have been set yet.  Plus the
1813          // code requiring initialization isn't called when digits == 0.
1814          if(std::numeric_limits<T>::digits)
1815          {
1816             boost::math::gamma_p(static_cast<T>(400), static_cast<T>(400), Policy());
1817          }
1818       }
do_initboost::math::detail::igamma_initializer::init1819       static void do_init(const boost::integral_constant<int, 53>&){}
force_instantiateboost::math::detail::igamma_initializer::init1820       void force_instantiate()const{}
1821    };
1822    static const init initializer;
force_instantiateboost::math::detail::igamma_initializer1823    static void force_instantiate()
1824    {
1825       initializer.force_instantiate();
1826    }
1827 };
1828 
1829 template <class T, class Policy>
1830 const typename igamma_initializer<T, Policy>::init igamma_initializer<T, Policy>::initializer;
1831 
1832 template <class T, class Policy>
1833 struct lgamma_initializer
1834 {
1835    struct init
1836    {
initboost::math::detail::lgamma_initializer::init1837       init()
1838       {
1839          typedef typename policies::precision<T, Policy>::type precision_type;
1840          typedef boost::integral_constant<int,
1841             precision_type::value <= 0 ? 0 :
1842             precision_type::value <= 64 ? 64 :
1843             precision_type::value <= 113 ? 113 : 0
1844          > tag_type;
1845 
1846          do_init(tag_type());
1847       }
do_initboost::math::detail::lgamma_initializer::init1848       static void do_init(const boost::integral_constant<int, 64>&)
1849       {
1850          boost::math::lgamma(static_cast<T>(2.5), Policy());
1851          boost::math::lgamma(static_cast<T>(1.25), Policy());
1852          boost::math::lgamma(static_cast<T>(1.75), Policy());
1853       }
do_initboost::math::detail::lgamma_initializer::init1854       static void do_init(const boost::integral_constant<int, 113>&)
1855       {
1856          boost::math::lgamma(static_cast<T>(2.5), Policy());
1857          boost::math::lgamma(static_cast<T>(1.25), Policy());
1858          boost::math::lgamma(static_cast<T>(1.5), Policy());
1859          boost::math::lgamma(static_cast<T>(1.75), Policy());
1860       }
do_initboost::math::detail::lgamma_initializer::init1861       static void do_init(const boost::integral_constant<int, 0>&)
1862       {
1863       }
force_instantiateboost::math::detail::lgamma_initializer::init1864       void force_instantiate()const{}
1865    };
1866    static const init initializer;
force_instantiateboost::math::detail::lgamma_initializer1867    static void force_instantiate()
1868    {
1869       initializer.force_instantiate();
1870    }
1871 };
1872 
1873 template <class T, class Policy>
1874 const typename lgamma_initializer<T, Policy>::init lgamma_initializer<T, Policy>::initializer;
1875 
1876 template <class T1, class T2, class Policy>
1877 inline typename tools::promote_args<T1, T2>::type
tgamma(T1 a,T2 z,const Policy &,const boost::false_type)1878    tgamma(T1 a, T2 z, const Policy&, const boost::false_type)
1879 {
1880    BOOST_FPU_EXCEPTION_GUARD
1881    typedef typename tools::promote_args<T1, T2>::type result_type;
1882    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1883    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1884    typedef typename policies::normalise<
1885       Policy,
1886       policies::promote_float<false>,
1887       policies::promote_double<false>,
1888       policies::discrete_quantile<>,
1889       policies::assert_undefined<> >::type forwarding_policy;
1890 
1891    igamma_initializer<value_type, forwarding_policy>::force_instantiate();
1892 
1893    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
1894       detail::gamma_incomplete_imp(static_cast<value_type>(a),
1895       static_cast<value_type>(z), false, true,
1896       forwarding_policy(), static_cast<value_type*>(0)), "boost::math::tgamma<%1%>(%1%, %1%)");
1897 }
1898 
1899 template <class T1, class T2>
1900 inline typename tools::promote_args<T1, T2>::type
tgamma(T1 a,T2 z,const boost::false_type & tag)1901    tgamma(T1 a, T2 z, const boost::false_type& tag)
1902 {
1903    return tgamma(a, z, policies::policy<>(), tag);
1904 }
1905 
1906 
1907 } // namespace detail
1908 
1909 template <class T>
1910 inline typename tools::promote_args<T>::type
tgamma(T z)1911    tgamma(T z)
1912 {
1913    return tgamma(z, policies::policy<>());
1914 }
1915 
1916 template <class T, class Policy>
1917 inline typename tools::promote_args<T>::type
lgamma(T z,int * sign,const Policy &)1918    lgamma(T z, int* sign, const Policy&)
1919 {
1920    BOOST_FPU_EXCEPTION_GUARD
1921    typedef typename tools::promote_args<T>::type result_type;
1922    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1923    typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1924    typedef typename policies::normalise<
1925       Policy,
1926       policies::promote_float<false>,
1927       policies::promote_double<false>,
1928       policies::discrete_quantile<>,
1929       policies::assert_undefined<> >::type forwarding_policy;
1930 
1931    detail::lgamma_initializer<value_type, forwarding_policy>::force_instantiate();
1932 
1933    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::lgamma_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type(), sign), "boost::math::lgamma<%1%>(%1%)");
1934 }
1935 
1936 template <class T>
1937 inline typename tools::promote_args<T>::type
lgamma(T z,int * sign)1938    lgamma(T z, int* sign)
1939 {
1940    return lgamma(z, sign, policies::policy<>());
1941 }
1942 
1943 template <class T, class Policy>
1944 inline typename tools::promote_args<T>::type
lgamma(T x,const Policy & pol)1945    lgamma(T x, const Policy& pol)
1946 {
1947    return ::boost::math::lgamma(x, 0, pol);
1948 }
1949 
1950 template <class T>
1951 inline typename tools::promote_args<T>::type
lgamma(T x)1952    lgamma(T x)
1953 {
1954    return ::boost::math::lgamma(x, 0, policies::policy<>());
1955 }
1956 
1957 template <class T, class Policy>
1958 inline typename tools::promote_args<T>::type
tgamma1pm1(T z,const Policy &)1959    tgamma1pm1(T z, const Policy& /* pol */)
1960 {
1961    BOOST_FPU_EXCEPTION_GUARD
1962    typedef typename tools::promote_args<T>::type result_type;
1963    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1964    typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
1965    typedef typename policies::normalise<
1966       Policy,
1967       policies::promote_float<false>,
1968       policies::promote_double<false>,
1969       policies::discrete_quantile<>,
1970       policies::assert_undefined<> >::type forwarding_policy;
1971 
1972    return policies::checked_narrowing_cast<typename remove_cv<result_type>::type, forwarding_policy>(detail::tgammap1m1_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma1pm1<%!%>(%1%)");
1973 }
1974 
1975 template <class T>
1976 inline typename tools::promote_args<T>::type
tgamma1pm1(T z)1977    tgamma1pm1(T z)
1978 {
1979    return tgamma1pm1(z, policies::policy<>());
1980 }
1981 
1982 //
1983 // Full upper incomplete gamma:
1984 //
1985 template <class T1, class T2>
1986 inline typename tools::promote_args<T1, T2>::type
tgamma(T1 a,T2 z)1987    tgamma(T1 a, T2 z)
1988 {
1989    //
1990    // Type T2 could be a policy object, or a value, select the
1991    // right overload based on T2:
1992    //
1993    typedef typename policies::is_policy<T2>::type maybe_policy;
1994    return detail::tgamma(a, z, maybe_policy());
1995 }
1996 template <class T1, class T2, class Policy>
1997 inline typename tools::promote_args<T1, T2>::type
tgamma(T1 a,T2 z,const Policy & pol)1998    tgamma(T1 a, T2 z, const Policy& pol)
1999 {
2000    return detail::tgamma(a, z, pol, boost::false_type());
2001 }
2002 //
2003 // Full lower incomplete gamma:
2004 //
2005 template <class T1, class T2, class Policy>
2006 inline typename tools::promote_args<T1, T2>::type
tgamma_lower(T1 a,T2 z,const Policy &)2007    tgamma_lower(T1 a, T2 z, const Policy&)
2008 {
2009    BOOST_FPU_EXCEPTION_GUARD
2010    typedef typename tools::promote_args<T1, T2>::type result_type;
2011    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2012    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
2013    typedef typename policies::normalise<
2014       Policy,
2015       policies::promote_float<false>,
2016       policies::promote_double<false>,
2017       policies::discrete_quantile<>,
2018       policies::assert_undefined<> >::type forwarding_policy;
2019 
2020    detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
2021 
2022    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
2023       detail::gamma_incomplete_imp(static_cast<value_type>(a),
2024       static_cast<value_type>(z), false, false,
2025       forwarding_policy(), static_cast<value_type*>(0)), "tgamma_lower<%1%>(%1%, %1%)");
2026 }
2027 template <class T1, class T2>
2028 inline typename tools::promote_args<T1, T2>::type
tgamma_lower(T1 a,T2 z)2029    tgamma_lower(T1 a, T2 z)
2030 {
2031    return tgamma_lower(a, z, policies::policy<>());
2032 }
2033 //
2034 // Regularised upper incomplete gamma:
2035 //
2036 template <class T1, class T2, class Policy>
2037 inline typename tools::promote_args<T1, T2>::type
gamma_q(T1 a,T2 z,const Policy &)2038    gamma_q(T1 a, T2 z, const Policy& /* pol */)
2039 {
2040    BOOST_FPU_EXCEPTION_GUARD
2041    typedef typename tools::promote_args<T1, T2>::type result_type;
2042    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2043    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
2044    typedef typename policies::normalise<
2045       Policy,
2046       policies::promote_float<false>,
2047       policies::promote_double<false>,
2048       policies::discrete_quantile<>,
2049       policies::assert_undefined<> >::type forwarding_policy;
2050 
2051    detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
2052 
2053    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
2054       detail::gamma_incomplete_imp(static_cast<value_type>(a),
2055       static_cast<value_type>(z), true, true,
2056       forwarding_policy(), static_cast<value_type*>(0)), "gamma_q<%1%>(%1%, %1%)");
2057 }
2058 template <class T1, class T2>
2059 inline typename tools::promote_args<T1, T2>::type
gamma_q(T1 a,T2 z)2060    gamma_q(T1 a, T2 z)
2061 {
2062    return gamma_q(a, z, policies::policy<>());
2063 }
2064 //
2065 // Regularised lower incomplete gamma:
2066 //
2067 template <class T1, class T2, class Policy>
2068 inline typename tools::promote_args<T1, T2>::type
gamma_p(T1 a,T2 z,const Policy &)2069    gamma_p(T1 a, T2 z, const Policy&)
2070 {
2071    BOOST_FPU_EXCEPTION_GUARD
2072    typedef typename tools::promote_args<T1, T2>::type result_type;
2073    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2074    // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
2075    typedef typename policies::normalise<
2076       Policy,
2077       policies::promote_float<false>,
2078       policies::promote_double<false>,
2079       policies::discrete_quantile<>,
2080       policies::assert_undefined<> >::type forwarding_policy;
2081 
2082    detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
2083 
2084    return policies::checked_narrowing_cast<result_type, forwarding_policy>(
2085       detail::gamma_incomplete_imp(static_cast<value_type>(a),
2086       static_cast<value_type>(z), true, false,
2087       forwarding_policy(), static_cast<value_type*>(0)), "gamma_p<%1%>(%1%, %1%)");
2088 }
2089 template <class T1, class T2>
2090 inline typename tools::promote_args<T1, T2>::type
gamma_p(T1 a,T2 z)2091    gamma_p(T1 a, T2 z)
2092 {
2093    return gamma_p(a, z, policies::policy<>());
2094 }
2095 
2096 // ratios of gamma functions:
2097 template <class T1, class T2, class Policy>
2098 inline typename tools::promote_args<T1, T2>::type
tgamma_delta_ratio(T1 z,T2 delta,const Policy &)2099    tgamma_delta_ratio(T1 z, T2 delta, const Policy& /* pol */)
2100 {
2101    BOOST_FPU_EXCEPTION_GUARD
2102    typedef typename tools::promote_args<T1, T2>::type result_type;
2103    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2104    typedef typename policies::normalise<
2105       Policy,
2106       policies::promote_float<false>,
2107       policies::promote_double<false>,
2108       policies::discrete_quantile<>,
2109       policies::assert_undefined<> >::type forwarding_policy;
2110 
2111    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::tgamma_delta_ratio_imp(static_cast<value_type>(z), static_cast<value_type>(delta), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)");
2112 }
2113 template <class T1, class T2>
2114 inline typename tools::promote_args<T1, T2>::type
tgamma_delta_ratio(T1 z,T2 delta)2115    tgamma_delta_ratio(T1 z, T2 delta)
2116 {
2117    return tgamma_delta_ratio(z, delta, policies::policy<>());
2118 }
2119 template <class T1, class T2, class Policy>
2120 inline typename tools::promote_args<T1, T2>::type
tgamma_ratio(T1 a,T2 b,const Policy &)2121    tgamma_ratio(T1 a, T2 b, const Policy&)
2122 {
2123    typedef typename tools::promote_args<T1, T2>::type result_type;
2124    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2125    typedef typename policies::normalise<
2126       Policy,
2127       policies::promote_float<false>,
2128       policies::promote_double<false>,
2129       policies::discrete_quantile<>,
2130       policies::assert_undefined<> >::type forwarding_policy;
2131 
2132    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::tgamma_ratio_imp(static_cast<value_type>(a), static_cast<value_type>(b), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)");
2133 }
2134 template <class T1, class T2>
2135 inline typename tools::promote_args<T1, T2>::type
tgamma_ratio(T1 a,T2 b)2136    tgamma_ratio(T1 a, T2 b)
2137 {
2138    return tgamma_ratio(a, b, policies::policy<>());
2139 }
2140 
2141 template <class T1, class T2, class Policy>
2142 inline typename tools::promote_args<T1, T2>::type
gamma_p_derivative(T1 a,T2 x,const Policy &)2143    gamma_p_derivative(T1 a, T2 x, const Policy&)
2144 {
2145    BOOST_FPU_EXCEPTION_GUARD
2146    typedef typename tools::promote_args<T1, T2>::type result_type;
2147    typedef typename policies::evaluation<result_type, Policy>::type value_type;
2148    typedef typename policies::normalise<
2149       Policy,
2150       policies::promote_float<false>,
2151       policies::promote_double<false>,
2152       policies::discrete_quantile<>,
2153       policies::assert_undefined<> >::type forwarding_policy;
2154 
2155    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::gamma_p_derivative_imp(static_cast<value_type>(a), static_cast<value_type>(x), forwarding_policy()), "boost::math::gamma_p_derivative<%1%>(%1%, %1%)");
2156 }
2157 template <class T1, class T2>
2158 inline typename tools::promote_args<T1, T2>::type
gamma_p_derivative(T1 a,T2 x)2159    gamma_p_derivative(T1 a, T2 x)
2160 {
2161    return gamma_p_derivative(a, x, policies::policy<>());
2162 }
2163 
2164 } // namespace math
2165 } // namespace boost
2166 
2167 #ifdef BOOST_MSVC
2168 # pragma warning(pop)
2169 #endif
2170 
2171 #include <boost/math/special_functions/detail/igamma_inverse.hpp>
2172 #include <boost/math/special_functions/detail/gamma_inva.hpp>
2173 #include <boost/math/special_functions/erf.hpp>
2174 
2175 #endif // BOOST_MATH_SF_GAMMA_HPP
2176 
2177 
2178 
2179 
2180