• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
2<html>
3<head>
4<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
5<title>Non-standard containers</title>
6<link rel="stylesheet" href="../../../doc/src/boostbook.css" type="text/css">
7<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
8<link rel="home" href="../index.html" title="The Boost C++ Libraries BoostBook Documentation Subset">
9<link rel="up" href="../container.html" title="Chapter 9. Boost.Container">
10<link rel="prev" href="exception_handling.html" title="Boost.Container and C++ exceptions">
11<link rel="next" href="extended_functionality.html" title="Extended functionality: Basic extensions">
12</head>
13<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
14<table cellpadding="2" width="100%"><tr>
15<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
16<td align="center"><a href="../../../index.html">Home</a></td>
17<td align="center"><a href="../../../libs/libraries.htm">Libraries</a></td>
18<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
19<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
20<td align="center"><a href="../../../more/index.htm">More</a></td>
21</tr></table>
22<hr>
23<div class="spirit-nav">
24<a accesskey="p" href="exception_handling.html"><img src="../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../container.html"><img src="../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="extended_functionality.html"><img src="../../../doc/src/images/next.png" alt="Next"></a>
25</div>
26<div class="section">
27<div class="titlepage"><div><div><h2 class="title" style="clear: both">
28<a name="container.non_standard_containers"></a><a class="link" href="non_standard_containers.html" title="Non-standard containers">Non-standard containers</a>
29</h2></div></div></div>
30<div class="toc"><dl class="toc">
31<dt><span class="section"><a href="non_standard_containers.html#container.non_standard_containers.stable_vector"><span class="emphasis"><em>stable_vector</em></span></a></span></dt>
32<dt><span class="section"><a href="non_standard_containers.html#container.non_standard_containers.flat_xxx"><span class="emphasis"><em>flat_(multi)map/set</em></span>
33      associative containers</a></span></dt>
34<dt><span class="section"><a href="non_standard_containers.html#container.non_standard_containers.slist"><span class="emphasis"><em>slist</em></span></a></span></dt>
35<dt><span class="section"><a href="non_standard_containers.html#container.non_standard_containers.static_vector"><span class="emphasis"><em>static_vector</em></span></a></span></dt>
36<dt><span class="section"><a href="non_standard_containers.html#container.non_standard_containers.small_vector"><span class="emphasis"><em>small_vector</em></span></a></span></dt>
37</dl></div>
38<div class="section">
39<div class="titlepage"><div><div><h3 class="title">
40<a name="container.non_standard_containers.stable_vector"></a><a class="link" href="non_standard_containers.html#container.non_standard_containers.stable_vector" title="stable_vector"><span class="emphasis"><em>stable_vector</em></span></a>
41</h3></div></div></div>
42<p>
43        This useful, fully STL-compliant stable container <a href="http://bannalia.blogspot.com/2008/09/introducing-stablevector.html" target="_top">designed
44        by Joaquín M. López Muñoz</a> is an hybrid between <code class="computeroutput"><span class="identifier">vector</span></code> and <code class="computeroutput"><span class="identifier">list</span></code>,
45        providing most of the features of <code class="computeroutput"><span class="identifier">vector</span></code>
46        except <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#69" target="_top">element
47        contiguity</a>.
48      </p>
49<p>
50        Extremely convenient as they are, <code class="computeroutput"><span class="identifier">vector</span></code>s
51        have a limitation that many novice C++ programmers frequently stumble upon:
52        iterators and references to an element of an <code class="computeroutput"><span class="identifier">vector</span></code>
53        are invalidated when a preceding element is erased or when the vector expands
54        and needs to migrate its internal storage to a wider memory region (i.e.
55        when the required size exceeds the vector's capacity). We say then that
56        <code class="computeroutput"><span class="identifier">vector</span></code>s are unstable: by
57        contrast, stable containers are those for which references and iterators
58        to a given element remain valid as long as the element is not erased: examples
59        of stable containers within the C++ standard library are <code class="computeroutput"><span class="identifier">list</span></code>
60        and the standard associative containers (<code class="computeroutput"><span class="identifier">set</span></code>,
61        <code class="computeroutput"><span class="identifier">map</span></code>, etc.).
62      </p>
63<p>
64        Sometimes stability is too precious a feature to live without, but one particular
65        property of <code class="computeroutput"><span class="identifier">vector</span></code>s, element
66        contiguity, makes it impossible to add stability to this container. So, provided
67        we sacrifice element contiguity, how much can a stable design approach the
68        behavior of <code class="computeroutput"><span class="identifier">vector</span></code> (random
69        access iterators, amortized constant time end insertion/deletion, minimal
70        memory overhead, etc.)? The following image describes the layout of a possible
71        data structure upon which to base the design of a stable vector:
72      </p>
73<p>
74        <span class="inlinemediaobject"><img src="../../../libs/container/doc/images/stable_vector.png" align="middle" width="50%" alt="stable_vector"></span>
75      </p>
76<p>
77        Each element is stored in its own separate node. All the nodes are referenced
78        from a contiguous array of pointers, but also every node contains an "up"
79        pointer referring back to the associated array cell. This up pointer is the
80        key element to implementing stability and random accessibility:
81      </p>
82<p>
83        Iterators point to the nodes rather than to the pointer array. This ensures
84        stability, as it is only the pointer array that needs to be shifted or relocated
85        upon insertion or deletion. Random access operations can be implemented by
86        using the pointer array as a convenient intermediate zone. For instance,
87        if the iterator it holds a node pointer <code class="computeroutput"><span class="identifier">it</span><span class="special">.</span><span class="identifier">p</span></code> and
88        we want to advance it by n positions, we simply do:
89      </p>
90<pre class="programlisting"><span class="identifier">it</span><span class="special">.</span><span class="identifier">p</span> <span class="special">=</span> <span class="special">*(</span><span class="identifier">it</span><span class="special">.</span><span class="identifier">p</span><span class="special">-&gt;</span><span class="identifier">up</span><span class="special">+</span><span class="identifier">n</span><span class="special">);</span>
91</pre>
92<p>
93        That is, we go "up" to the pointer array, add n there and then
94        go "down" to the resulting node.
95      </p>
96<p>
97        <span class="bold"><strong>General properties</strong></span>. <code class="computeroutput"><span class="identifier">stable_vector</span></code>
98        satisfies all the requirements of a container, a reversible container and
99        a sequence and provides all the optional operations present in vector. Like
100        vector, iterators are random access. <code class="computeroutput"><span class="identifier">stable_vector</span></code>
101        does not provide element contiguity; in exchange for this absence, the container
102        is stable, i.e. references and iterators to an element of a <code class="computeroutput"><span class="identifier">stable_vector</span></code> remain valid as long as the
103        element is not erased, and an iterator that has been assigned the return
104        value of end() always remain valid until the destruction of the associated
105        <code class="computeroutput"><span class="identifier">stable_vector</span></code>.
106      </p>
107<p>
108        <span class="bold"><strong>Operation complexity</strong></span>. The big-O complexities
109        of <code class="computeroutput"><span class="identifier">stable_vector</span></code> operations
110        match exactly those of vector. In general, insertion/deletion is constant
111        time at the end of the sequence and linear elsewhere. Unlike vector, <code class="computeroutput"><span class="identifier">stable_vector</span></code> does not internally perform
112        any value_type destruction, copy/move construction/assignment operations
113        other than those exactly corresponding to the insertion of new elements or
114        deletion of stored elements, which can sometimes compensate in terms of performance
115        for the extra burden of doing more pointer manipulation and an additional
116        allocation per element.
117      </p>
118<p>
119        <span class="bold"><strong>Exception safety</strong></span>. (according to <a href="http://www.boost.org/community/exception_safety.html" target="_top">Abrahams'
120        terminology</a>) As <code class="computeroutput"><span class="identifier">stable_vector</span></code>
121        does not internally copy/move elements around, some operations provide stronger
122        exception safety guarantees than in vector:
123      </p>
124<div class="table">
125<a name="container.non_standard_containers.stable_vector.stable_vector_req"></a><p class="title"><b>Table 9.1. Exception safety</b></p>
126<div class="table-contents"><table class="table" summary="Exception safety">
127<colgroup>
128<col>
129<col>
130<col>
131</colgroup>
132<thead><tr>
133<th>
134                <p>
135                  operation
136                </p>
137              </th>
138<th>
139                <p>
140                  exception safety for <code class="computeroutput"><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
141                </p>
142              </th>
143<th>
144                <p>
145                  exception safety for <code class="computeroutput"><span class="identifier">stable_vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span></code>
146                </p>
147              </th>
148</tr></thead>
149<tbody>
150<tr>
151<td>
152                <p>
153                  insert
154                </p>
155              </td>
156<td>
157                <p>
158                  strong unless copy/move construction/assignment of <code class="computeroutput"><span class="identifier">T</span></code> throw (basic)
159                </p>
160              </td>
161<td>
162                <p>
163                  strong
164                </p>
165              </td>
166</tr>
167<tr>
168<td>
169                <p>
170                  erase
171                </p>
172              </td>
173<td>
174                <p>
175                  no-throw unless copy/move construction/assignment of <code class="computeroutput"><span class="identifier">T</span></code> throw (basic)
176                </p>
177              </td>
178<td>
179                <p>
180                  no-throw
181                </p>
182              </td>
183</tr>
184</tbody>
185</table></div>
186</div>
187<br class="table-break"><p>
188        <span class="bold"><strong>Memory overhead</strong></span>. The C++ standard does not
189        specify requirements on memory consumption, but virtually any implementation
190        of <code class="computeroutput"><span class="identifier">vector</span></code> has the same behavior
191        with respect to memory usage: the memory allocated by a <code class="computeroutput"><span class="identifier">vector</span></code>
192        v with n elements of type T is
193      </p>
194<p>
195        m<sub>v</sub> = c∙e,
196      </p>
197<p>
198        where c is <code class="computeroutput"><span class="identifier">v</span><span class="special">.</span><span class="identifier">capacity</span><span class="special">()</span></code>
199        and e is <code class="computeroutput"><span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">T</span><span class="special">)</span></code>. c can
200        be as low as n if the user has explicitly reserved the exact capacity required;
201        otherwise, the average value c for a growing <code class="computeroutput"><span class="identifier">vector</span></code>
202        oscillates between 1.25∙n and 1.5∙n for typical resizing policies.
203        For <code class="computeroutput"><span class="identifier">stable_vector</span></code>, the memory
204        usage is
205      </p>
206<p>
207        m<sub>sv</sub> = (c + 1)p + (n + 1)(e + p),
208      </p>
209<p>
210        where p is the size of a pointer. We have c + 1 and n + 1 rather than c and
211        n because a dummy node is needed at the end of the sequence. If we call f
212        the capacity to size ratio c/n and assume that n is large enough, we have
213        that
214      </p>
215<p>
216        m<sub>sv</sub>/m<sub>v</sub> ≃ (fp + e + p)/fe.
217      </p>
218<p>
219        So, <code class="computeroutput"><span class="identifier">stable_vector</span></code> uses less
220        memory than <code class="computeroutput"><span class="identifier">vector</span></code> only when
221        e &gt; p and the capacity to size ratio exceeds a given threshold:
222      </p>
223<p>
224        m<sub>sv</sub> &lt; m<sub>v</sub> &lt;-&gt; f &gt; (e + p)/(e - p). (provided e &gt; p)
225      </p>
226<p>
227        This threshold approaches typical values of f below 1.5 when e &gt; 5p; in
228        a 32-bit architecture, when e &gt; 20 bytes.
229      </p>
230<p>
231        <span class="bold"><strong>Summary</strong></span>. <code class="computeroutput"><span class="identifier">stable_vector</span></code>
232        is a drop-in replacement for <code class="computeroutput"><span class="identifier">vector</span></code>
233        providing stability of references and iterators, in exchange for missing
234        element contiguity and also some performance and memory overhead. When the
235        element objects are expensive to move around, the performance overhead can
236        turn into a net performance gain for <code class="computeroutput"><span class="identifier">stable_vector</span></code>
237        if many middle insertions or deletions are performed or if resizing is very
238        frequent. Similarly, if the elements are large there are situations when
239        the memory used by <code class="computeroutput"><span class="identifier">stable_vector</span></code>
240        can actually be less than required by vector.
241      </p>
242<p>
243        <span class="emphasis"><em>Note: Text and explanations taken from <a href="http://bannalia.blogspot.com/2008/09/introducing-stablevector.html" target="_top">Joaquín's
244        blog</a></em></span>
245      </p>
246</div>
247<div class="section">
248<div class="titlepage"><div><div><h3 class="title">
249<a name="container.non_standard_containers.flat_xxx"></a><a class="link" href="non_standard_containers.html#container.non_standard_containers.flat_xxx" title="flat_(multi)map/set associative containers"><span class="emphasis"><em>flat_(multi)map/set</em></span>
250      associative containers</a>
251</h3></div></div></div>
252<p>
253        Using sorted vectors instead of tree-based associative containers is a well-known
254        technique in C++ world. Matt Austern's classic article <a href="http://lafstern.org/matt/col1.pdf" target="_top">Why
255        You Shouldn't Use set, and What You Should Use Instead</a> (C++ Report
256        12:4, April 2000) was enlightening:
257      </p>
258<p>
259        <span class="quote">“<span class="quote"><span class="emphasis"><em>Red-black trees aren't the only way to organize data that
260        permits lookup in logarithmic time. One of the basic algorithms of computer
261        science is binary search, which works by successively dividing a range in
262        half. Binary search is log N and it doesn't require any fancy data structures,
263        just a sorted collection of elements. (...) You can use whatever data structure
264        is convenient, so long as it provides STL iterator; usually it's easiest
265        to use a C array, or a vector.</em></span></span>”</span>
266      </p>
267<p>
268        <span class="quote">“<span class="quote"><span class="emphasis"><em>Both std::lower_bound and set::find take time proportional
269        to log N, but the constants of proportionality are very different. Using
270        g++ (...) it takes X seconds to perform a million lookups in a sorted vector&lt;double&gt;
271        of a million elements, and almost twice as long (...) using a set. Moreover,
272        the set uses almost three times as much memory (48 million bytes) as the
273        vector (16.8 million).</em></span></span>”</span>
274      </p>
275<p>
276        <span class="quote">“<span class="quote"><span class="emphasis"><em>Using a sorted vector instead of a set gives you faster
277        lookup and much faster iteration, but at the cost of slower insertion. Insertion
278        into a set, using set::insert, is proportional to log N, but insertion into
279        a sorted vector, (...) , is proportional to N. Whenever you insert something
280        into a vector, vector::insert has to make room by shifting all of the elements
281        that follow it. On average, if you're equally likely to insert a new element
282        anywhere, you'll be shifting N/2 elements.</em></span></span>”</span>
283      </p>
284<p>
285        <span class="quote">“<span class="quote"><span class="emphasis"><em>It may sometimes be convenient to bundle all of this together
286        into a small container adaptor. This class does not satisfy the requirements
287        of a Standard Associative Container, since the complexity of insert is O(N)
288        rather than O(log N), but otherwise it is almost a drop-in replacement for
289        set.</em></span></span>”</span>
290      </p>
291<p>
292        Following Matt Austern's indications, Andrei Alexandrescu's <a href="http://www.bestwebbuys.com/Modern-C-Design-Generic-Programming-and-Design-Patterns-Applied-ISBN-9780201704310?isrc=-rd" target="_top">Modern
293        C++ Design</a> showed <code class="computeroutput"><span class="identifier">AssocVector</span></code>,
294        a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">map</span></code> drop-in replacement designed in his
295        <a href="http://loki-lib.sourceforge.net/" target="_top">Loki</a> library:
296      </p>
297<p>
298        <span class="quote">“<span class="quote"><span class="emphasis"><em>It seems as if we're better off with a sorted vector. The
299        disadvantages of a sorted vector are linear-time insertions and linear-time
300        deletions (...). In exchange, a vector offers about twice the lookup speed
301        and a much smaller working set (...). Loki saves the trouble of maintaining
302        a sorted vector by hand by defining an AssocVector class template. AssocVector
303        is a drop-in replacement for std::map (it supports the same set of member
304        functions), implemented on top of std::vector. AssocVector differs from a
305        map in the behavior of its erase functions (AssocVector::erase invalidates
306        all iterators into the object) and in the complexity guarantees of insert
307        and erase (linear as opposed to constant). </em></span></span>”</span>
308      </p>
309<p>
310        <span class="bold"><strong>Boost.Container</strong></span> <code class="computeroutput"><span class="identifier">flat_</span><span class="special">[</span><span class="identifier">multi</span><span class="special">]</span><span class="identifier">map</span><span class="special">/</span><span class="identifier">set</span></code> containers are ordered, vector-like
311        container based, associative containers following Austern's and Alexandrescu's
312        guidelines. These ordered vector containers have also benefited with the
313        addition of <code class="computeroutput"><span class="identifier">move</span> <span class="identifier">semantics</span></code>
314        to C++11, speeding up insertion and erasure times considerably. Flat associative
315        containers have the following attributes:
316      </p>
317<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
318<li class="listitem">
319            Faster lookup than standard associative containers
320          </li>
321<li class="listitem">
322            Much faster iteration than standard associative containers. Random-access
323            iterators instead of bidirectional iterators.
324          </li>
325<li class="listitem">
326            Less memory consumption for small objects (and for big objects if <code class="computeroutput"><span class="identifier">shrink_to_fit</span></code> is used)
327          </li>
328<li class="listitem">
329            Improved cache performance (data is stored in contiguous memory)
330          </li>
331<li class="listitem">
332            Non-stable iterators (iterators are invalidated when inserting and erasing
333            elements)
334          </li>
335<li class="listitem">
336            Non-copyable and non-movable values types can't be stored
337          </li>
338<li class="listitem">
339            Weaker exception safety than standard associative containers (copy/move
340            constructors can throw when shifting values in erasures and insertions)
341          </li>
342<li class="listitem">
343            Slower insertion and erasure than standard associative containers (specially
344            for non-movable types)
345          </li>
346</ul></div>
347</div>
348<div class="section">
349<div class="titlepage"><div><div><h3 class="title">
350<a name="container.non_standard_containers.slist"></a><a class="link" href="non_standard_containers.html#container.non_standard_containers.slist" title="slist"><span class="emphasis"><em>slist</em></span></a>
351</h3></div></div></div>
352<p>
353        When the standard template library was designed, it contained a singly linked
354        list called <code class="computeroutput"><span class="identifier">slist</span></code>. Unfortunately,
355        this container was not standardized and remained as an extension for many
356        standard library implementations until C++11 introduced <code class="computeroutput"><span class="identifier">forward_list</span></code>,
357        which is a bit different from the the original SGI <code class="computeroutput"><span class="identifier">slist</span></code>.
358        According to <a href="http://www.sgi.com/tech/stl/Slist.html" target="_top">SGI STL
359        documentation</a>:
360      </p>
361<p>
362        <span class="quote">“<span class="quote"><span class="emphasis"><em>An <code class="computeroutput"><span class="identifier">slist</span></code>
363        is a singly linked list: a list where each element is linked to the next
364        element, but not to the previous element. That is, it is a Sequence that
365        supports forward but not backward traversal, and (amortized) constant time
366        insertion and removal of elements. Slists, like lists, have the important
367        property that insertion and splicing do not invalidate iterators to list
368        elements, and that even removal invalidates only the iterators that point
369        to the elements that are removed. The ordering of iterators may be changed
370        (that is, slist&lt;T&gt;::iterator might have a different predecessor or
371        successor after a list operation than it did before), but the iterators themselves
372        will not be invalidated or made to point to different elements unless that
373        invalidation or mutation is explicit.</em></span></span>”</span>
374      </p>
375<p>
376        <span class="quote">“<span class="quote"><span class="emphasis"><em>The main difference between <code class="computeroutput"><span class="identifier">slist</span></code>
377        and list is that list's iterators are bidirectional iterators, while slist's
378        iterators are forward iterators. This means that <code class="computeroutput"><span class="identifier">slist</span></code>
379        is less versatile than list; frequently, however, bidirectional iterators
380        are unnecessary. You should usually use <code class="computeroutput"><span class="identifier">slist</span></code>
381        unless you actually need the extra functionality of list, because singly
382        linked lists are smaller and faster than double linked lists.</em></span></span>”</span>
383      </p>
384<p>
385        <span class="quote">“<span class="quote"><span class="emphasis"><em>Important performance note: like every other Sequence,
386        <code class="computeroutput"><span class="identifier">slist</span></code> defines the member
387        functions insert and erase. Using these member functions carelessly, however,
388        can result in disastrously slow programs. The problem is that insert's first
389        argument is an iterator pos, and that it inserts the new element(s) before
390        pos. This means that insert must find the iterator just before pos; this
391        is a constant-time operation for list, since list has bidirectional iterators,
392        but for <code class="computeroutput"><span class="identifier">slist</span></code> it must find
393        that iterator by traversing the list from the beginning up to pos. In other
394        words: insert and erase are slow operations anywhere but near the beginning
395        of the slist.</em></span></span>”</span>
396      </p>
397<p>
398        <span class="quote">“<span class="quote"><span class="emphasis"><em>Slist provides the member functions insert_after and erase_after,
399        which are constant time operations: you should always use insert_after and
400        erase_after whenever possible. If you find that insert_after and erase_after
401        aren't adequate for your needs, and that you often need to use insert and
402        erase in the middle of the list, then you should probably use list instead
403        of slist.</em></span></span>”</span>
404      </p>
405<p>
406        <span class="bold"><strong>Boost.Container</strong></span> updates the classic <code class="computeroutput"><span class="identifier">slist</span></code> container with C++11 features like
407        move semantics and placement insertion and implements it a bit differently
408        than the standard C++ <code class="computeroutput"><span class="identifier">forward_list</span></code>.
409        <code class="computeroutput"><span class="identifier">forward_list</span></code> has no <code class="computeroutput"><span class="identifier">size</span><span class="special">()</span></code>
410        method, so it's been designed to allow (or in practice, encourage) implementations
411        without tracking list size with every insertion/erasure, allowing constant-time
412        <code class="computeroutput"><span class="identifier">splice_after</span><span class="special">(</span><span class="identifier">iterator</span><span class="special">,</span> <span class="identifier">forward_list</span> <span class="special">&amp;,</span>
413        <span class="identifier">iterator</span><span class="special">,</span>
414        <span class="identifier">iterator</span><span class="special">)</span></code>-based
415        list merging. On the other hand <code class="computeroutput"><span class="identifier">slist</span></code>
416        offers constant-time <code class="computeroutput"><span class="identifier">size</span><span class="special">()</span></code> for those that don't care about linear-time
417        <code class="computeroutput"><span class="identifier">splice_after</span><span class="special">(</span><span class="identifier">iterator</span><span class="special">,</span> <span class="identifier">slist</span> <span class="special">&amp;,</span>
418        <span class="identifier">iterator</span><span class="special">,</span>
419        <span class="identifier">iterator</span><span class="special">)</span></code>
420        <code class="computeroutput"><span class="identifier">size</span><span class="special">()</span></code>
421        and offers an additional <code class="computeroutput"><span class="identifier">splice_after</span><span class="special">(</span><span class="identifier">iterator</span><span class="special">,</span> <span class="identifier">slist</span> <span class="special">&amp;,</span> <span class="identifier">iterator</span><span class="special">,</span> <span class="identifier">iterator</span><span class="special">,</span> <span class="identifier">size_type</span><span class="special">)</span></code> method that can speed up <code class="computeroutput"><span class="identifier">slist</span></code>
422        merging when the programmer already knows the size. <code class="computeroutput"><span class="identifier">slist</span></code>
423        and <code class="computeroutput"><span class="identifier">forward_list</span></code> are therefore
424        complementary.
425      </p>
426</div>
427<div class="section">
428<div class="titlepage"><div><div><h3 class="title">
429<a name="container.non_standard_containers.static_vector"></a><a class="link" href="non_standard_containers.html#container.non_standard_containers.static_vector" title="static_vector"><span class="emphasis"><em>static_vector</em></span></a>
430</h3></div></div></div>
431<p>
432        <code class="computeroutput"><span class="identifier">static_vector</span></code> is an hybrid
433        between <code class="computeroutput"><span class="identifier">vector</span></code> and <code class="computeroutput"><span class="identifier">array</span></code>: like <code class="computeroutput"><span class="identifier">vector</span></code>,
434        it's a sequence container with contiguous storage that can change in size,
435        along with the static allocation, low overhead, and fixed capacity of <code class="computeroutput"><span class="identifier">array</span></code>. <code class="computeroutput"><span class="identifier">static_vector</span></code>
436        is based on Adam Wulkiewicz and Andrew Hundt's high-performance <a href="https://svn.boost.org/svn/boost/sandbox/varray/doc/html/index.html" target="_top">varray</a>
437        class.
438      </p>
439<p>
440        The number of elements in a <code class="computeroutput"><span class="identifier">static_vector</span></code>
441        may vary dynamically up to a fixed capacity because elements are stored within
442        the object itself similarly to an array. However, objects are initialized
443        as they are inserted into <code class="computeroutput"><span class="identifier">static_vector</span></code>
444        unlike C arrays or <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span></code> which must construct all elements
445        on instantiation. The behavior of <code class="computeroutput"><span class="identifier">static_vector</span></code>
446        enables the use of statically allocated elements in cases with complex object
447        lifetime requirements that would otherwise not be trivially possible. Some
448        other properties:
449      </p>
450<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
451<li class="listitem">
452            Random access to elements
453          </li>
454<li class="listitem">
455            Constant time insertion and removal of elements at the end
456          </li>
457<li class="listitem">
458            Linear time insertion and removal of elements at the beginning or in
459            the middle.
460          </li>
461</ul></div>
462<p>
463        <code class="computeroutput"><span class="identifier">static_vector</span></code> is well suited
464        for use in a buffer, the internal implementation of other classes, or use
465        cases where there is a fixed limit to the number of elements that must be
466        stored. Embedded and realtime applications where allocation either may not
467        be available or acceptable are a particular case where <code class="computeroutput"><span class="identifier">static_vector</span></code>
468        can be beneficial.
469      </p>
470</div>
471<div class="section">
472<div class="titlepage"><div><div><h3 class="title">
473<a name="container.non_standard_containers.small_vector"></a><a class="link" href="non_standard_containers.html#container.non_standard_containers.small_vector" title="small_vector"><span class="emphasis"><em>small_vector</em></span></a>
474</h3></div></div></div>
475<p>
476        <code class="computeroutput"><span class="identifier">small_vector</span></code> is a vector-like
477        container optimized for the case when it contains few elements. It contains
478        some preallocated elements in-place, which allows it to avoid the use of
479        dynamic storage allocation when the actual number of elements is below that
480        preallocated threshold. <code class="computeroutput"><span class="identifier">small_vector</span></code>
481        is inspired by <a href="http://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h" target="_top">LLVM's
482        <code class="computeroutput"><span class="identifier">SmallVector</span></code></a> container.
483        Unlike <code class="computeroutput"><span class="identifier">static_vector</span></code>, <code class="computeroutput"><span class="identifier">small_vector</span></code>'s capacity can grow beyond
484        the initial preallocated capacity.
485      </p>
486<p>
487        <code class="computeroutput"><span class="identifier">small_vector</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">N</span><span class="special">,</span> <span class="identifier">Allocator</span><span class="special">&gt;</span></code> is convertible to <code class="computeroutput"><span class="identifier">small_vector_base</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span>
488        <span class="identifier">Allocator</span><span class="special">&gt;</span></code>,
489        a type that is independent from the preallocated element count, allowing
490        client code that does not need to be templated on that N argument. <code class="computeroutput"><span class="identifier">small_vector</span></code> inherits all <code class="computeroutput"><span class="identifier">vector</span></code>'s member functions so it supports
491        all standard features like emplacement, stateful allocators, etc.
492      </p>
493</div>
494</div>
495<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
496<td align="left"></td>
497<td align="right"><div class="copyright-footer">Copyright © 2009-2018 Ion Gaztanaga<p>
498        Distributed under the Boost Software License, Version 1.0. (See accompanying
499        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
500      </p>
501</div></td>
502</tr></table>
503<hr>
504<div class="spirit-nav">
505<a accesskey="p" href="exception_handling.html"><img src="../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../container.html"><img src="../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="extended_functionality.html"><img src="../../../doc/src/images/next.png" alt="Next"></a>
506</div>
507</body>
508</html>
509