1 //
2 // composed_8.cpp
3 // ~~~~~~~~~~~~~~
4 //
5 // Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
6 //
7 // Distributed under the Boost Software License, Version 1.0. (See accompanying
8 // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
9 //
10
11 #include <boost/asio/compose.hpp>
12 #include <boost/asio/io_context.hpp>
13 #include <boost/asio/ip/tcp.hpp>
14 #include <boost/asio/steady_timer.hpp>
15 #include <boost/asio/use_future.hpp>
16 #include <boost/asio/write.hpp>
17 #include <functional>
18 #include <iostream>
19 #include <memory>
20 #include <sstream>
21 #include <string>
22 #include <type_traits>
23 #include <utility>
24
25 using boost::asio::ip::tcp;
26
27 // NOTE: This example requires the new boost::asio::async_compose function. For
28 // an example that works with the Networking TS style of completion tokens,
29 // please see an older version of asio.
30
31 //------------------------------------------------------------------------------
32
33 // This composed operation shows composition of multiple underlying operations,
34 // using asio's stackless coroutines support to express the flow of control. It
35 // automatically serialises a message, using its I/O streams insertion
36 // operator, before sending it N times on the socket. To do this, it must
37 // allocate a buffer for the encoded message and ensure this buffer's validity
38 // until all underlying async_write operation complete. A one second delay is
39 // inserted prior to each write operation, using a steady_timer.
40
41 #include <boost/asio/yield.hpp>
42
43 // In this example, the composed operation's logic is implemented as a state
44 // machine within a hand-crafted function object.
45 struct async_write_messages_implementation
46 {
47 // The implementation holds a reference to the socket as it is used for
48 // multiple async_write operations.
49 tcp::socket& socket_;
50
51 // The allocated buffer for the encoded message. The std::unique_ptr smart
52 // pointer is move-only, and as a consequence our implementation is also
53 // move-only.
54 std::unique_ptr<std::string> encoded_message_;
55
56 // The repeat count remaining.
57 std::size_t repeat_count_;
58
59 // A steady timer used for introducing a delay.
60 std::unique_ptr<boost::asio::steady_timer> delay_timer_;
61
62 // The coroutine state.
63 boost::asio::coroutine coro_;
64
65 // The first argument to our function object's call operator is a reference
66 // to the enclosing intermediate completion handler. This intermediate
67 // completion handler is provided for us by the boost::asio::async_compose
68 // function, and takes care of all the details required to implement a
69 // conforming asynchronous operation. When calling an underlying asynchronous
70 // operation, we pass it this enclosing intermediate completion handler
71 // as the completion token.
72 //
73 // All arguments after the first must be defaulted to allow the state machine
74 // to be started, as well as to allow the completion handler to match the
75 // completion signature of both the async_write and steady_timer::async_wait
76 // operations.
77 template <typename Self>
operator ()async_write_messages_implementation78 void operator()(Self& self,
79 const boost::system::error_code& error = boost::system::error_code(),
80 std::size_t = 0)
81 {
82 reenter (coro_)
83 {
84 while (repeat_count_ > 0)
85 {
86 --repeat_count_;
87
88 delay_timer_->expires_after(std::chrono::seconds(1));
89 yield delay_timer_->async_wait(std::move(self));
90 if (error)
91 break;
92
93 yield boost::asio::async_write(socket_,
94 boost::asio::buffer(*encoded_message_), std::move(self));
95 if (error)
96 break;
97 }
98
99 // Deallocate the encoded message and delay timer before calling the
100 // user-supplied completion handler.
101 encoded_message_.reset();
102 delay_timer_.reset();
103
104 // Call the user-supplied handler with the result of the operation.
105 self.complete(error);
106 }
107 }
108 };
109
110 #include <boost/asio/unyield.hpp>
111
112 template <typename T, typename CompletionToken>
async_write_messages(tcp::socket & socket,const T & message,std::size_t repeat_count,CompletionToken && token)113 auto async_write_messages(tcp::socket& socket,
114 const T& message, std::size_t repeat_count,
115 CompletionToken&& token)
116 // The return type of the initiating function is deduced from the combination
117 // of CompletionToken type and the completion handler's signature. When the
118 // completion token is a simple callback, the return type is always void.
119 // In this example, when the completion token is boost::asio::yield_context
120 // (used for stackful coroutines) the return type would be also be void, as
121 // there is no non-error argument to the completion handler. When the
122 // completion token is boost::asio::use_future it would be std::future<void>.
123 -> typename boost::asio::async_result<
124 typename std::decay<CompletionToken>::type,
125 void(boost::system::error_code)>::return_type
126 {
127 // Encode the message and copy it into an allocated buffer. The buffer will
128 // be maintained for the lifetime of the composed asynchronous operation.
129 std::ostringstream os;
130 os << message;
131 std::unique_ptr<std::string> encoded_message(new std::string(os.str()));
132
133 // Create a steady_timer to be used for the delay between messages.
134 std::unique_ptr<boost::asio::steady_timer> delay_timer(
135 new boost::asio::steady_timer(socket.get_executor()));
136
137 // The boost::asio::async_compose function takes:
138 //
139 // - our asynchronous operation implementation,
140 // - the completion token,
141 // - the completion handler signature, and
142 // - any I/O objects (or executors) used by the operation
143 //
144 // It then wraps our implementation in an intermediate completion handler
145 // that meets the requirements of a conforming asynchronous operation. This
146 // includes tracking outstanding work against the I/O executors associated
147 // with the operation (in this example, this is the socket's executor).
148 return boost::asio::async_compose<
149 CompletionToken, void(boost::system::error_code)>(
150 async_write_messages_implementation{socket,
151 std::move(encoded_message), repeat_count,
152 std::move(delay_timer), boost::asio::coroutine()},
153 token, socket);
154 }
155
156 //------------------------------------------------------------------------------
157
test_callback()158 void test_callback()
159 {
160 boost::asio::io_context io_context;
161
162 tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
163 tcp::socket socket = acceptor.accept();
164
165 // Test our asynchronous operation using a lambda as a callback.
166 async_write_messages(socket, "Testing callback\r\n", 5,
167 [](const boost::system::error_code& error)
168 {
169 if (!error)
170 {
171 std::cout << "Messages sent\n";
172 }
173 else
174 {
175 std::cout << "Error: " << error.message() << "\n";
176 }
177 });
178
179 io_context.run();
180 }
181
182 //------------------------------------------------------------------------------
183
test_future()184 void test_future()
185 {
186 boost::asio::io_context io_context;
187
188 tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
189 tcp::socket socket = acceptor.accept();
190
191 // Test our asynchronous operation using the use_future completion token.
192 // This token causes the operation's initiating function to return a future,
193 // which may be used to synchronously wait for the result of the operation.
194 std::future<void> f = async_write_messages(
195 socket, "Testing future\r\n", 5, boost::asio::use_future);
196
197 io_context.run();
198
199 try
200 {
201 // Get the result of the operation.
202 f.get();
203 std::cout << "Messages sent\n";
204 }
205 catch (const std::exception& e)
206 {
207 std::cout << "Error: " << e.what() << "\n";
208 }
209 }
210
211 //------------------------------------------------------------------------------
212
main()213 int main()
214 {
215 test_callback();
216 test_future();
217 }
218