1[/license 2 3Boost.Bimap 4 5Copyright (c) 2006-2007 Matias Capeletto 6 7Distributed under the Boost Software License, Version 1.0. 8(See accompanying file LICENSE_1_0.txt or copy at 9http://www.boost.org/LICENSE_1_0.txt) 10 11] 12 13[/ QuickBook Document version 1.4 ] 14 15[section unordered_set_of Reference] 16 17[section Header "boost/bimap/unordered_set_of.hpp" synopsis] 18 19 namespace boost { 20 namespace bimaps { 21 22 23 template 24 < 25 class KeyType, 26 class HashFunctor = hash< KeyType >, 27 class EqualKey = std::equal_to< KeyType > 28 > 29 struct unordered_set_of; 30 31 32 template 33 < 34 class HashFunctor = hash< _relation >, 35 class EqualKey = std::equal_to< _relation > 36 > 37 struct unordered_set_of_relation; 38 39 40 } // namespace bimap 41 } // namespace boost 42 43 44[endsect] 45 46[section Header "boost/bimap/unordered_multiset_of.hpp" synopsis] 47 48 namespace boost { 49 namespace bimaps { 50 51 52 template 53 < 54 class KeyType, 55 class HashFunctor = hash< KeyType >, 56 class EqualKey = std::equal_to< KeyType > 57 > 58 struct unordered_multiset_of; 59 60 61 template 62 < 63 class HashFunctor = hash< _relation >, 64 class EqualKey = std::equal_to< _relation > 65 > 66 struct unordered_multiset_of_relation; 67 68 69 } // namespace bimap 70 } // namespace boost 71 72 73[endsect] 74 75[section Collection type specifiers unordered_set_of and unordered_multiset_of] 76 77These collection types specifiers allow for set views without and 78with allowance of duplicate elements, respectively. The syntax of 79`set_of` and `multiset_of` coincide, thus we describe them 80in a grouped manner. 81 82[endsect] 83 84[section unordered_\[multi\]set_of Views] 85 86An unordered_\[multi\]set_of set view is a tr1::unordered\[multi\]set signature compatible 87interface to the underlying heap of elements contained in a `bimap`. 88 89The interface and semantics of `unordered_[multi]set_of` views are 90modeled according to the proposal for unordered associative containers given 91in the __CPP_STANDARD_LIBRARY_TECHNICAL_REPORT__, also known as TR1. 92An `unordered_[multi]set_of` view is particularized according to a given 93`Hash` function object which returns hash values for the keys and a 94binary predicate `Pred` acting as an equivalence relation on values of Key. 95 96There are two variants: unordered_set_of, which do not allow duplicate elements 97(with respect to its associated comparison predicate) and unordered_multiset_of, 98which accept those duplicates. The interface of these two variants is the same 99to a great extent, so they are documented together with their differences 100explicitly noted when they exist. 101 102If you look the bimap by a side, you will use a map view and if you looked 103it as a whole you will be using a set view. 104 105Except where noted, `unordered_[multi]set_of` views (both unique and non-unique) are models 106of [^Unordered Associative Container]. 107Validity of iterators and references to elements is preserved in all cases. 108Occasionally, the exception safety guarantees provided are actually stronger 109than required by the extension draft. We only provide descriptions of those 110types and operations that are either not present in the concepts modeled or 111do not exactly conform to the requirements for unordered associative containers. 112 113 114 namespace boost { 115 namespace bimap { 116 namespace views { 117 118 template< ``['-implementation defined parameter list-]`` > 119 class ``['-implementation defined view name-]`` 120 { 121 public: 122 123 // types 124 125 typedef ``['-unspecified-]`` key_type; 126 typedef ``['-unspecified-]`` value_type; 127 typedef ``['-unspecified-]`` key_compare; 128 typedef ``['-unspecified-]`` value_compare; 129 typedef ``['-unspecified-]`` hasher; 130 typedef ``['-unspecified-]`` key_equal; 131 typedef ``['-unspecified-]`` allocator_type; 132 typedef ``['-unspecified-]`` reference; 133 typedef ``['-unspecified-]`` const_reference; 134 typedef ``['-unspecified-]`` iterator; 135 typedef ``['-unspecified-]`` const_iterator; 136 typedef ``['-unspecified-]`` size_type; 137 typedef ``['-unspecified-]`` difference_type; 138 typedef ``['-unspecified-]`` pointer; 139 typedef ``['-unspecified-]`` const_pointer; 140 typedef ``['-unspecified-]`` local_iterator; 141 typedef ``['-unspecified-]`` const_local_iterator; 142 143 typedef ``['-unspecified-]`` info_type; 144 145 // construct/destroy/copy: 146 147 this_type & operator=(const this_type & x); 148 149 allocator_type get_allocator() const; 150 151 // size and capacity 152 153 bool empty() const; 154 size_type size() const; 155 size_type max_size() const; 156 157 // iterators 158 159 iterator begin(); 160 const_iterator begin() const; 161 iterator end(); 162 const_iterator end() const; 163 164 // modifiers 165 166 std::pair< iterator, bool > ``[link reference_unordered_set_of_insert_value insert]``(const value_type & x); 167 168 iterator ``[link reference_unordered_set_of_insert_iterator_value insert]``(iterator position, const value_type & x); 169 170 template< class InputIterator > 171 void ``[link reference_unordered_set_of_insert_iterator_iterator insert]``(InputIterator first, InputIterator last); 172 173 iterator ``[link reference_unordered_set_of_erase_iterator erase]``(iterator position); 174 175 template< class CompatibleKey > 176 size_type ``[link reference_unordered_set_of_erase_key erase]``(const CompatibleKey & x); 177 178 iterator ``[link reference_unordered_set_of_erase_iterator_iterator erase]``(iterator first, iterator last); 179 180 bool ``[link reference_unordered_set_of_replace_iterator_value replace]``(iterator position, const value_type & x); 181 182 // Only in map views 183 // { 184 185 typedef ``['-unspecified-]`` mapped_type; 186 typedef ``['-unspecified-]`` data_type; // Equal to mapped_type 187 188 template< class CompatibleKey > 189 bool ``[link reference_unordered_set_of_replace_key_iterator_key replace_key]``(iterator position, const CompatibleKey & x); 190 191 template< class CompatibleData > 192 bool ``[link reference_unordered_set_of_replace_data_iterator_data replace_data]``(iterator position, const CompatibleData & x); 193 194 template< class KeyModifier > 195 bool ``[link reference_unordered_set_of_modify_key_iterator_modifier modify_key]``(iterator position, KeyModifier mod); 196 197 template< class DataModifier > 198 bool ``[link reference_unordered_set_of_modify_data_iterator_modifier modify_data]``(iterator position, DataModifier mod); 199 200 // } 201 202 203 void clear(); 204 205 // observers 206 207 key_from_value key_extractor() const; 208 hasher hash_function() const; 209 key_equal key_eq() const; 210 211 // lookup 212 213 template< class CompatibleKey > 214 iterator ``[link reference_unordered_set_of_find_key find]``(const CompatibleKey & x); 215 216 template< class CompatibleKey > 217 const_iterator ``[link reference_unordered_set_of_find_key find]``(const CompatibleKey & x) const; 218 219 template< class CompatibleKey > 220 size_type ``[link reference_unordered_set_of_count_key count]``(const CompatibleKey & x) const; 221 222 template< class CompatibleKey > 223 std::pair<iterator,iterator> 224 ``[link reference_unordered_set_of_equal_range_key equal_range]``(const CompatibleKey & x); 225 226 template< class CompatibleKey > 227 std::pair<const_iterator,const_iterator> 228 ``[link reference_unordered_set_of_equal_range_key equal_range]``(const CompatibleKey & x) const; 229 230 // bucket interface 231 232 size_type bucket_count() const; 233 size_type max_bucket_count() const; 234 size_type bucket_size(size_type n) const; 235 size_type bucket(const key_type & k) const; 236 237 local_iterator begin(size_type n); 238 const_local_iterator begin(size_type n) const; 239 local_iterator end(size_type n); 240 const_local_iterator end(size_type n) const; 241 242 // hash policy 243 244 float load_factor() const; 245 float max_load_factor() const; 246 void max_load_factor(float z); 247 void ``[link reference_unordered_set_of_rehash_size rehash]``(size_type n); 248 249 // Only in maps views 250 // { 251 252 typedef ``['-unspecified-]`` mapped_type; 253 254 // Only in for `unordered_set_of` collection type 255 // { 256 257 template<class CompatibleKey> 258 const mapped_type & ``[link reference_unordered_set_of_at_key_const at]``(const CompatibleKey & k) const; 259 260 // Only if the other collection type is mutable 261 // { 262 263 template<class CompatibleKey> 264 mapped_type & ``[link reference_unordered_set_of_operator_bracket_key operator\[\]]``(const CompatibleKey & k); 265 266 template<class CompatibleKey> 267 mapped_type & ``[link reference_unordered_set_of_at_key at]``(const CompatibleKey & k); 268 269 // } 270 271 // Only if info_hook is used 272 // { 273 274 template< class CompatibleKey > 275 info_type & ``[link reference_unordered_set_of_info_at_key info_at]``(const CompatibleKey & k); 276 277 template< class CompatibleKey > 278 const info_type & ``[link reference_unordered_set_of_info_at_key info_at]``(const CompatibleKey & k) const; 279 280 // } 281 282 // } 283 284 }; 285 286 } // namespace views 287 } // namespace bimap 288 } // namespace boost 289 290 291 292In the case of a `bimap< unordered_{multi}set_of<Left>, ... >` 293 294In the set view: 295 296 typedef signature-compatible with relation< Left, ... > key_type; 297 typedef signature-compatible with relation< const Left, ... > value_type; 298 299In the left map view: 300 301 typedef Left key_type; 302 typedef ... mapped_type; 303 304 typedef signature-compatible with std::pair< const Left, ... > value_type; 305 306In the right map view: 307 308 typedef ... key_type; 309 typedef Left mapped_type; 310 311 typedef signature-compatible with std::pair< ... ,const Left > value_type; 312 313 314 315[#unordered_set_of_complexity_signature] 316 317[section Complexity signature] 318 319Here and in the descriptions of operations of `unordered_[multi]set_of` views, 320we adopt the scheme outlined in the 321[link complexity_signature_explanation complexity signature section]. 322The complexity signature of `unordered_[multi]set_of` view is: 323 324* copying: `c(n) = n * log(n)`, 325* insertion: average case `i(n) = 1` (constant), worst case `i(n) = n`, 326* hinted insertion: average case `h(n) = 1` (constant), worst case `h(n) = n`, 327* deletion: average case `d(n) = 1` (constant), worst case `d(n) = n`, 328* replacement: 329 * if the new element key is equivalent to the original, `r(n) = 1` (constant), 330 * otherwise, average case `r(n) = 1` (constant), worst case `r(n) = n`, 331* modifying: average case `m(n) = 1` (constant), worst case `m(n) = n`. 332 333[endsect] 334 335 336[section Instantiation types] 337 338`unordered_[multi]set_of` views are instantiated internally to `bimap` 339specified by means of the collection type specifiers and the `bimap` itself. 340Instantiations are dependent on the following types: 341 342* `Value` from `bimap`, 343* `Allocator` from `bimap`, 344* `Hash` from the collection type specifier, 345* `Pred` from the collection type specifier. 346 347`Hash` is a __SGI_UNARY_FUNCTION__ taking a single argument of type 348`key_type` and returning a value of type `std::size_t` in the range 349`[0, std::numeric_limits<std::size_t>::max())`. 350Pred is a __SGI_BINARY_PREDICATE__ inducing an equivalence relation on elements of 351`key_type`. It is required that the `Hash` object return the same value for 352keys equivalent under `Pred`. 353 354[endsect] 355 356[section Nested types] 357 358 iterator 359 const_iterator 360 local_iterator 361 const_local_iterator 362 363[: These types are models of __SGI_FORWARD_ITERATOR__. 364] 365 366 367[endsect] 368 369[section Constructors, copy and assignment] 370 371As explained in the concepts section, 372views do not have public constructors or destructors. Assignment, on the other 373hand, is provided. 374Upon construction, `max_load_factor()` is 1.0. 375 376 this_type & operator=(const this_type & x); 377 378* [*Effects: ] `a = b`; 379where a and b are the `bimap` objects to which `*this` 380and x belong, respectively. 381* [*Returns: ] `*this.` 382 383 384 385[endsect] 386 387[section Modifiers] 388 389[#reference_unordered_set_of_insert_value] 390 391 std::pair<iterator,bool> insert(const value_type & x); 392 393* [*Effects:] Inserts `x` into the `bimap` to which the view belongs if 394 * the view is non-unique OR no other element with equivalent key exists, 395 * AND insertion is allowed by all other views of the `bimap`. 396* [*Returns:] The return value is a pair `p`. `p.second` is `true` if and only if 397insertion took place. On successful insertion, `p.first` points to the element 398inserted; otherwise, `p.first` points to an element that caused the insertion to 399be banned. Note that more than one element can be causing insertion not to be 400allowed. 401* [link unordered_set_of_complexity_signature 402[*Complexity:]] O(I(n)). 403* [*Exception safety:] Strong. 404 405[#reference_unordered_set_of_insert_iterator_value] 406 407 iterator insert(iterator position, const value_type & x); 408 409* [*Requires: ] `position` is a valid iterator of the view. 410* [*Effects: ] `position` is used as a hint to improve the efficiency of the operation. 411Inserts `x` into the `bimap` to which the view belongs if 412 * the view is non-unique OR no other element with equivalent key exists, 413 * AND insertion is allowed by all other views of the `bimap`. 414* [*Returns:] On successful insertion, an iterator to the newly inserted element. 415Otherwise, an iterator to an element that caused the insertion to be banned. 416Note that more than one element can be causing insertion not to be allowed. 417* [link unordered_set_of_complexity_signature [*Complexity:]] O(H(n)). 418* [*Exception safety:] Strong. 419 420[#reference_unordered_set_of_insert_iterator_iterator] 421 422 template< class InputIterator> 423 void insert(InputIterator first, InputIterator last); 424 425* [*Requires: ] `InputIterator` is a model of __SGI_INPUT_ITERATOR__ over elements of type 426`value_type`. `first` and `last` are not iterators into any views of the 427`bimap` to which this view belongs. `last` is reachable from first. 428* [*Effects: ] 429`iterator hint = end();` 430`while(first != last) hint = insert(hint, *first++);` 431* [link unordered_set_of_complexity_signature 432[*Complexity:]] O(m*H(n+m)), where m is the number of elements in `[first, last)`. 433* [*Exception safety:] Basic. 434 435[#reference_unordered_set_of_erase_iterator] 436 437 iterator erase(iterator position); 438 439* [*Requires: ] `position` is a valid dereferenceable `iterator` of the view. 440* [*Effects:] Deletes the element pointed to by `position`. 441* [*Returns:] An `iterator` pointing to the element immediately following the one 442that was deleted, or `end()` if no such element exists. 443* [link unordered_set_of_complexity_signature 444[*Complexity:]] O(D(n)). 445* [*Exception safety:] nothrow. 446 447 448[#reference_unordered_set_of_erase_key] 449 450 template< class CompatibleKey > 451 size_type erase(const CompatibleKey & x); 452 453* [*Effects:] Deletes the elements with key equivalent to `x`. 454* [*Returns:] Number of elements deleted. 455* [link unordered_set_of_complexity_signature 456[*Complexity:]] Average case, O(1 + m*D(n)), worst case O(n + m*D(n)), 457where m is the number of elements deleted. 458* [*Exception safety:] Basic. 459 460 461[#reference_unordered_set_of_erase_iterator_iterator] 462 463 iterator erase(iterator first, iterator last); 464 465* [*Requires: ] `[first,last)` is a valid range of the view. 466* [*Effects:] Deletes the elements in `[first,last)`. 467* [*Returns: ] `last`. 468* [link unordered_set_of_complexity_signature 469[*Complexity:]] O(m*D(n)), where m is the number of elements in `[first,last)`. 470* [*Exception safety:] nothrow. 471 472 473[#reference_unordered_set_of_replace_iterator_value] 474 475 bool replace(iterator position, const value_type & x); 476 477* [*Requires: ] `position` is a valid dereferenceable `iterator` of the view. 478* [*Effects:] Assigns the value `x` to the element pointed to by `position` into 479the `bimap` to which the view belongs if, for the value `x` 480 * the view is non-unique OR no other element with equivalent key exists 481(except possibly `*position`), 482 * AND replacing is allowed by all other views of the `bimap`. 483* [*Postconditions:] Validity of position is preserved in all cases. 484* [*Returns: ] `true` if the replacement took place, `false` otherwise. 485* [link unordered_set_of_complexity_signature 486[*Complexity:]] O(R(n)). 487* [*Exception safety:] Strong. If an exception is thrown by some user-provided 488operation the `bimap` to which the view belongs remains in its original state. 489 490 491[#reference_unordered_set_of_replace_key_iterator_key] 492 493 template< class CompatibleKey > 494 bool replace_key(iterator position, const CompatibleKey & x); 495 496* [*Requires: ] `position` is a valid dereferenceable iterator of the set view. 497`CompatibleKey` can be assigned to `key_type`. 498* [*Effects:] Assigns the value `x` to `e.first`, where `e` is the element pointed 499to by `position` into the `bimap` to which the set view belongs if, 500 * the map view is non-unique OR no other element with equivalent key exists 501(except possibly `*position`), 502 * AND replacing is allowed by all other views of the `bimap`. 503* [*Postconditions:] Validity of position is preserved in all cases. 504* [*Returns: ] `true` if the replacement took place, `false` otherwise. 505* [link unordered_set_of_complexity_signature 506[*Complexity:]] O(R(n)). 507* [*Exception safety:] Strong. If an exception is thrown by some user-provided 508operation, the `bimap` to which the set view belongs remains in 509its original state. 510 511 512[#reference_unordered_set_of_replace_data_iterator_data] 513 514 template< class CompatibleData > 515 bool replace_data(iterator position, const CompatibleData & x); 516 517* [*Requires: ] `position` is a valid dereferenceable iterator of the set view. 518`CompatibleKey` can be assigned to `mapped_type`. 519* [*Effects:] Assigns the value `x` to `e.second`, where `e` is the element pointed 520to by `position` into the `bimap` to which the set view belongs if, 521 * the map view is non-unique OR no other element with equivalent key exists 522(except possibly `*position`), 523 * AND replacing is allowed by all other views of the `bimap`. 524* [*Postconditions:] Validity of position is preserved in all cases. 525* [*Returns: ] `true` if the replacement took place, `false` otherwise. 526* [link unordered_set_of_complexity_signature 527[*Complexity:]] O(R(n)). 528* [*Exception safety:] Strong. If an exception is thrown by some user-provided 529operation, the `bimap` to which the set view belongs remains in 530its original state. 531 532 533[#reference_unordered_set_of_modify_key_iterator_modifier] 534 535 template< class KeyModifier > 536 bool modify_key(iterator position, KeyModifier mod); 537 538* [*Requires: ] `KeyModifier` is a model of __SGI_UNARY_FUNCTION__ accepting arguments of 539type: `key_type&`; `position` is a valid dereferenceable iterator of the view. 540* [*Effects:] Calls `mod(e.first)` where e is the element pointed to by position and 541rearranges `*position` into all the views of the `bimap`. 542If the rearrangement fails, the element is erased. 543Rearrangement is successful if 544 * the map view is non-unique OR no other element with equivalent key exists, 545 * AND rearrangement is allowed by all other views of the `bimap`. 546* [*Postconditions:] Validity of `position` is preserved if the operation succeeds. 547* [*Returns: ] `true` if the operation succeeded, `false` otherwise. 548* [link unordered_set_of_complexity_signature 549[*Complexity:]] O(M(n)). 550* [*Exception safety:] Basic. If an exception is thrown by some user-provided 551operation (except possibly mod), then the element pointed to by position is erased. 552* [*Note:] Only provided for map views. 553 554 555[#reference_unordered_set_of_modify_data_iterator_modifier] 556 557 template< class DataModifier > 558 bool modify_data(iterator position, DataModifier mod); 559 560* [*Requires: ] `DataModifier` is a model of __SGI_UNARY_FUNCTION__ accepting arguments of 561type: `mapped_type&`; `position` is a valid dereferenceable iterator of the view. 562* [*Effects:] Calls `mod(e.second)` where e is the element pointed to by position and 563rearranges `*position` into all the views of the `bimap`. 564If the rearrangement fails, the element is erased. 565Rearrangement is successful if 566 * the oppositte map view is non-unique OR no other element with equivalent key in that 567view exists, 568 * AND rearrangement is allowed by all other views of the `bimap`. 569* [*Postconditions:] Validity of `position` is preserved if the operation succeeds. 570* [*Returns: ] `true` if the operation succeeded, `false` otherwise. 571* [link unordered_set_of_complexity_signature 572[*Complexity:]] O(M(n)). 573* [*Exception safety:] Basic. If an exception is thrown by some user-provided 574operation (except possibly mod), then the element pointed to by position is erased. 575* [*Note:] Only provided for map views. 576 577[/ 578[#reference_unordered_set_of_modify_iterator_modifier] 579 580 template< class Modifier> 581 bool modify(iterator position, Modifier mod); 582 583* [*Requires: ] `Modifier` is a model of __SGI_BINARY_FUNCTION__ accepting arguments of 584type: `first_type&` and `second_type&` for ['Map View] or `left_type&` and `right_type&` 585for ['Set View]; `position` is a valid dereferenceable iterator of the view. 586* [*Effects:] Calls `mod(e.first,e.second)` for ['Map View:] or calls `mod(e.left,e.right)` 587for ['Set View] where `e` is the element pointed to by `position` and 588rearranges `*position` into all the views of the `bimap`. 589If the rearrangement fails, the element is erased. 590Rearrangement is successful if 591 * the view is non-unique OR no other element with equivalent key exists, 592 * AND rearrangement is allowed by all other views of the `bimap`. 593* [*Postconditions:] Validity of position is preserved if the operation succeeds. 594* [*Returns: ] `true` if the operation succeeded, `false` otherwise. 595* [link unordered_set_of_complexity_signature 596[*Complexity:]] O(M(n)). 597* [*Exception safety:] Basic. If an exception is thrown by some user-provided 598operation (except possibly `mod`), then the element pointed to by `position` is erased. 599/] 600 601[endsect] 602 603[section Lookup] 604 605`unordered_[multi]set_of` views provide the full lookup functionality required by unordered 606associative containers, namely `find`, `count`, and `equal_range`. Additionally, 607these member functions are templatized to allow for non-standard arguments, 608so extending the types of search operations allowed. The kind of arguments 609permissible when invoking the lookup member functions is defined by the 610following concept. 611 612[/ 613Consider a pair `(Hash, Pred)` where `Hash` is a hash functor over values of type 614`Key` and `Pred` is a __SGI_BINARY_PREDICATE__ inducing an equivalence relation on `Key`, 615with the additional constraint that equivalent keys have the same hash value. 616A triplet of types `(CompatibleKey, CompatibleHash, CompatiblePred)` is said to 617be a ['compatible extension] of `(Hash, Pred)` if 618 619* `CompatibleHash` is a hash functor on values of type `CompatibleKey`, 620* `CompatiblePred` is a __SGI_BINARY_PREDICATE__ over `(Key, CompatibleKey)`, 621* `CompatiblePred` is a __SGI_BINARY_PREDICATE__ over `(CompatibleKey, Key)`, 622* if `c_eq(ck,k1)` then `c_eq(k1,ck)`, 623* if `c_eq(ck,k1)` and `eq(k1,k2)` then `c_eq(ck,k2)`, 624* if `c_eq(ck,k1)` and `c_eq(ck,k2)` then `eq(k1,k2)`, 625* if `c_eq(ck,k1)` then `c_hash(ck)==hash(k1)`, 626 627for every `c_hash` of type `CompatibleHash`, `c_eq` of type `CompatiblePred`, hash of 628type `Hash`, `eq` of type `Pred`, `ck` of type `CompatibleKey` and `k1`, `k2` of type `Key`. 629] 630 631A type `CompatibleKey` is said to be a ['compatible key] of `(Hash, Pred)` 632if `(CompatibleKey, Hash, Pred)` is a compatible extension of `(Hash, Pred)`. This 633implies that `Hash` and `Pred` accept arguments of type `CompatibleKey`, which usually 634means they have several overloads of their corresponding `operator()` member 635functions. 636 637[/ 638In the context of a compatible extension or a compatible key, the expression 639"equivalent key" takes on its obvious interpretation. 640] 641 642[#reference_unordered_set_of_find_key] 643 644 template< class CompatibleKey > 645 iterator find(const CompatibleKey & x); 646 647 template< class CompatibleKey > 648 const_iterator find(const CompatibleKey & x) const; 649 650* [*Effects:] Returns a pointer to an element whose key is equivalent to `x`, 651or `end()` if such an element does not exist. 652* [*Complexity:] Average case O(1) (constant), worst case O(n). 653 654 655[#reference_unordered_set_of_count_key] 656 657 template< class CompatibleKey > 658 size_type count(const CompatibleKey & x) const; 659 660* [*Effects:] Returns the number of elements with key equivalent to `x`. 661* [*Complexity:] Average case O(count(x)), worst case O(n). 662 663 664[#reference_unordered_set_of_equal_range_key] 665 666 template< class CompatibleKey > 667 std::pair<iterator,iterator> 668 equal_range(const CompatibleKey & x); 669 670 template< class CompatibleKey > 671 std::pair<const_iterator,const_iterator> 672 equal_range(const CompatibleKey & x) const; 673 674* [*Effects:] Returns a range containing all elements with keys equivalent 675to `x` (and only those). 676* [*Complexity:] Average case O(count(x)), worst case O(n). 677 678 679 680[endsect] 681 682[section at(), info_at() and operator\[\] - set_of only] 683 684 685[#reference_unordered_set_of_at_key_const] 686 687 template< class CompatibleKey > 688 const mapped_type & at(const CompatibleKey & k) const; 689 690* [*Requires: ] `CompatibleKey` is a compatible key of `key_compare`. 691* [*Effects:] Returns the `mapped_type` reference that is associated with `k`, or 692throws `std::out_of_range` if such key does not exist. 693* [*Complexity:] Average case O(1) (constant), worst case O(n). 694* [*Note:] Only provided when `unordered_set_of` is used. 695 696The symmetry of bimap imposes some constraints on `operator[]` and the 697non constant version of at() that are not found in `std::maps`. 698They are only provided if the other collection type is mutable 699(`list_of`, `vector_of` and `unconstrained_set_of`). 700 701 702[#reference_unordered_set_of_operator_bracket_key] 703 704 template< class CompatibleKey > 705 mapped_type & operator[](const CompatibleKey & k); 706 707* [*Requires: ] `CompatibleKey` is a compatible key of `key_compare`. 708* [*Effects: ] `return insert(value_type(k,mapped_type()))->second;` 709* [*Complexity:] If the insertion is performed O(I(n)), else: Average case 710O(1) (constant), worst case O(n). 711* [*Note:] Only provided when `unordered_set_of` is used and the other collection 712type is mutable. 713 714 715[#reference_unordered_set_of_at_key] 716 717 template< class CompatibleKey > 718 mapped_type & at(const CompatibleKey & k); 719 720* [*Requires: ] `CompatibleKey` is a compatible key of `key_compare`. 721* [*Effects: ] Returns the `mapped_type` reference that is associated with `k`, or 722throws `std::out_of_range` if such key does not exist. 723* [*Complexity:] Average case O(1) (constant), worst case O(n). 724* [*Note:] Only provided when `unordered_set_of` is used and the other collection 725type is mutable. 726 727[/ 728 729The symmetry of bimap imposes some constraints to the `operator[]` that are not 730found in `std::maps`. 731If other views are unique, `bimap::duplicate_value` is thrown whenever an assignment is 732attempted to a value that is already a key in this views. 733As for bimap::value_not_found, this exception is thrown while trying to access 734a non-existent key: this behavior differs from that of std::map, which automatically 735assigns a default value to non-existent keys referred to by `operator[]`. 736 737 const mapped_type & operator[](const typename key_type & k) const; 738 739* [*Effects:] Returns the `mapped_type` reference that is associated with `k`, or 740throws `bimap::value_not_found` if such an element does not exist. 741* [*Complexity:] O(log(n)). 742 743 744 ``['-unspecified mapped_type proxy-]`` operator[](const typename key_type & k); 745 746* [*Effects:] Returns a proxy to a `mapped_type` associated with `k` and the 747bimap. The proxy behaves as a reference to the `mapped_type` object. If this 748proxy is read and `k` was not in the bimap, the bimap::value_not_found is 749thrown. If it is written then `bimap::duplicate_value` is thrown if the 750assignment is not allowed by one of the other views of the `bimap`. 751* [link unordered_set_of_complexity_signature 752[*Complexity:]] If the assignment operator of the proxy is not used, then 753the order is O(log(n)). If it is used, the order is O(I(n)) if `k` was not 754in the bimap and O(R(n)) if it existed in the bimap. 755 756] 757 758[#reference_unordered_set_of_info_at_key] 759 760 template< class CompatibleKey > 761 info_type & info_at(const CompatibleKey & k); 762 763 template< class CompatibleKey > 764 const info_type & info_at(const CompatibleKey & k) const; 765 766* [*Requires: ] `CompatibleKey` is a compatible key of `key_compare`. 767* [*Effects:] Returns the `info_type` reference that is associated with `k`, or 768throws `std::out_of_range` if such key does not exist. 769* [*Complexity:] Average case O(1) (constant), worst case O(n). 770* [*Note:] Only provided when `unordered_set_of` and `info_hook` are used 771 772 773[endsect] 774 775[section Hash policy] 776 777 778[#reference_unordered_set_of_rehash_size] 779 780 void rehash(size_type n); 781 782* [*Effects:] Increases if necessary the number of internal buckets so that 783`size()/bucket_count()` does not exceed the maximum load factor, and 784`bucket_count()>=n`. 785* [*Postconditions:] Validity of iterators and references to the elements 786contained is preserved. 787* [*Complexity:] Average case O(size()), worst case O(size(n)2). 788* [*Exception safety:] Strong. 789 790 791[endsect] 792 793[section Serialization] 794 795Views cannot be serialized on their own, but only as part of the 796`bimap` into which they are embedded. In describing the 797additional preconditions and guarantees associated to `unordered_[multi]set_of` views 798with respect to serialization of their embedding containers, we use 799the concepts defined in the `bimap` serialization section. 800 801[blurb [*Operation:] saving of a `bimap` b to an output archive 802(XML archive) ar.] 803 804* [*Requires:] No additional requirements to those imposed by the container. 805 806 807[blurb [*Operation:] loading of a `bimap` b' from an input 808archive (XML archive) ar.] 809 810* [*Requires:] Additionally to the general requirements, `key_eq()` must 811be serialization-compatible with `m.get<i>().key_eq()`, where i is the 812position of the `unordered_[multi]set_of` view in the container. 813* [*Postconditions:] On successful loading, the range `[begin(), end())` 814contains restored copies of every element in 815`[m.get<i>().begin(), m.get<i>().end())`, though not necessarily in 816the same order. 817 818 819[blurb [*Operation:] saving of an `iterator` or `const_iterator` `it` to an output 820archive (XML archive) ar.] 821 822* [*Requires: ] `it` is a valid `iterator` of the view. The associated 823`bimap` has been previously saved. 824 825 826[blurb [*Operation:] loading of an iterator or `const_iterator it`' from an 827input archive (XML archive) ar.] 828 829* [*Postconditions:] On successful loading, if `it` was dereferenceable then 830`*it`' is the restored copy of `*it`, otherwise `it`'` == end()`. 831* [*Note:] It is allowed that `it` be a `const_iterator` and the restored 832`it`' an `iterator`, or viceversa. 833 834 835[blurb [*Operation:] saving of a local_iterator or const_local_iterator it 836to an output archive (XML archive) ar.] 837 838* [*Requires: ] `it` is a valid local iterator of the view. The associated 839`bimap` has been previously saved. 840 841 842[blurb [*Operation:] loading of a `local_iterator` or `const_local_iterator` 843`it`' from an input archive (XML archive) ar.] 844 845* [*Postconditions:] On successful loading, if `it` was dereferenceable then 846`*it`' is the restored copy of `*it`; if `it` was `m.get<i>().end(n)` for some n, 847then `it`'` == m`'`.get<i>().end(n)` (where `b` is the original `bimap`, 848`b`' its restored copy and `i` is the ordinal of the index.) 849* [*Note:] It is allowed that `it` be a `const_local_iterator` and the restored 850`it`' a `local_iterator`, or viceversa. 851 852 853[endsect] 854[endsect] 855 856[endsect]