• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //---------------------------------------------------------------------------//
2 // Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
3 //
4 // Distributed under the Boost Software License, Version 1.0
5 // See accompanying file LICENSE_1_0.txt or copy at
6 // http://www.boost.org/LICENSE_1_0.txt
7 //
8 // See http://boostorg.github.com/compute for more information.
9 //---------------------------------------------------------------------------//
10 
11 #define _USE_MATH_DEFINES
12 #include <algorithm>
13 #include <iostream>
14 #include <vector>
15 
16 #include <boost/compute/system.hpp>
17 #include <boost/compute/algorithm/copy.hpp>
18 #include <boost/compute/algorithm/copy_n.hpp>
19 #include <boost/compute/algorithm/transform.hpp>
20 #include <boost/compute/container/vector.hpp>
21 
22 #include "perf.hpp"
23 
24 namespace compute = boost::compute;
25 
26 using compute::float2_;
27 
rand_float()28 float rand_float()
29 {
30     return (float(rand()) / float(RAND_MAX)) * 1000.f;
31 }
32 
serial_cartesian_to_polar(const float * input,size_t n,float * output)33 void serial_cartesian_to_polar(const float *input, size_t n, float *output)
34 {
35     for(size_t i = 0; i < n; i++){
36         float x = input[i*2+0];
37         float y = input[i*2+1];
38 
39         float magnitude = std::sqrt(x*x + y*y);
40         float angle = std::atan2(y, x) * 180.f / M_PI;
41 
42         output[i*2+0] = magnitude;
43         output[i*2+1] = angle;
44     }
45 }
46 
serial_polar_to_cartesian(const float * input,size_t n,float * output)47 void serial_polar_to_cartesian(const float *input, size_t n, float *output)
48 {
49     for(size_t i = 0; i < n; i++){
50         float magnitude = input[i*2+0];
51         float angle = input[i*2+1];
52 
53         float x = magnitude * cos(angle);
54         float y = magnitude * sin(angle);
55 
56         output[i*2+0] = x;
57         output[i*2+1] = y;
58     }
59 }
60 
61 // converts from cartesian coordinates (x, y) to polar coordinates (magnitude, angle)
62 BOOST_COMPUTE_FUNCTION(float2_, cartesian_to_polar, (float2_ p),
63 {
64     float x = p.x;
65     float y = p.y;
66 
67     float magnitude = sqrt(x*x + y*y);
68     float angle = atan2(y, x) * 180.f / M_PI;
69 
70     return (float2)(magnitude, angle);
71 });
72 
73 // converts from polar coordinates (magnitude, angle) to cartesian coordinates (x, y)
74 BOOST_COMPUTE_FUNCTION(float2_, polar_to_cartesian, (float2_ p),
75 {
76     float magnitude = p.x;
77     float angle = p.y;
78 
79     float x = magnitude * cos(angle);
80     float y = magnitude * sin(angle);
81 
82     return (float2)(x, y)
83 });
84 
main(int argc,char * argv[])85 int main(int argc, char *argv[])
86 {
87     perf_parse_args(argc, argv);
88 
89     std::cout << "size: " << PERF_N << std::endl;
90 
91     // setup context and queue for the default device
92     compute::device device = compute::system::default_device();
93     compute::context context(device);
94     compute::command_queue queue(context, device);
95     std::cout << "device: " << device.name() << std::endl;
96 
97     // create vector of random numbers on the host
98     std::vector<float> host_vector(PERF_N*2);
99     std::generate(host_vector.begin(), host_vector.end(), rand_float);
100 
101     // create vector on the device and copy the data
102     compute::vector<float2_> device_vector(PERF_N, context);
103     compute::copy_n(
104         reinterpret_cast<float2_ *>(&host_vector[0]),
105         PERF_N,
106         device_vector.begin(),
107         queue
108     );
109 
110     perf_timer t;
111     for(size_t trial = 0; trial < PERF_TRIALS; trial++){
112         t.start();
113         compute::transform(
114             device_vector.begin(),
115             device_vector.end(),
116             device_vector.begin(),
117             cartesian_to_polar,
118             queue
119         );
120         queue.finish();
121         t.stop();
122     }
123     std::cout << "time: " << t.min_time() / 1e6 << " ms" << std::endl;
124 
125     // perform saxpy on host
126     t.clear();
127     for(size_t trial = 0; trial < PERF_TRIALS; trial++){
128         t.start();
129         serial_cartesian_to_polar(&host_vector[0], PERF_N, &host_vector[0]);
130         t.stop();
131     }
132     std::cout << "host time: " << t.min_time() / 1e6 << " ms" << std::endl;
133 
134     std::vector<float> device_data(PERF_N*2);
135     compute::copy(
136         device_vector.begin(),
137         device_vector.end(),
138         reinterpret_cast<float2_ *>(&device_data[0]),
139         queue
140     );
141 
142     for(size_t i = 0; i < PERF_N; i++){
143         float host_value = host_vector[i];
144         float device_value = device_data[i];
145 
146         if(std::abs(device_value - host_value) > 1e-3){
147             std::cout << "ERROR: "
148                       << "value at " << i << " "
149                       << "device_value (" << device_value << ") "
150                       << "!= "
151                       << "host_value (" << host_value << ")"
152                       << std::endl;
153             return -1;
154         }
155     }
156 
157     return 0;
158 }
159