• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright John Maddock 2005.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 //  See http://www.boost.org/libs/config/test for most recent version.
7 
8 //
9 // This test prints out informative information about <math.h>, <float.h>
10 // and <limits>.  Note that this file does require a correctly configured
11 // Boost setup, and so can't be folded into config_info which is designed
12 // to function without Boost.Confg support.  Each test is documented in
13 // more detail below.
14 //
15 
16 #include <boost/limits.hpp>
17 #include <limits.h>
18 #include <math.h>
19 #include <cmath>
20 #include <float.h>
21 #include <iostream>
22 #include <iomanip>
23 #include <cstring>
24 #include <boost/type_traits/alignment_of.hpp>
25 
26 #ifdef BOOST_NO_STDC_NAMESPACE
27 namespace std{ using ::strcmp; using ::pow; using ::fabs; using ::sqrt; using ::sin; using ::atan2; }
28 #endif
29 
30 static unsigned int indent = 4;
31 static unsigned int width = 40;
32 
print_macro(const char * name,const char * value)33 void print_macro(const char* name, const char* value)
34 {
35    // if name == value+1 then then macro is not defined,
36    // in which case we don't print anything:
37    if(0 != std::strcmp(name, value+1))
38    {
39       for(unsigned i = 0; i < indent; ++i) std::cout.put(' ');
40       std::cout << std::setw(width);
41       std::cout.setf(std::istream::left, std::istream::adjustfield);
42       std::cout << name;
43       if(value[1])
44       {
45          // macro has a value:
46          std::cout << value << "\n";
47       }
48       else
49       {
50          // macro is defined but has no value:
51          std::cout << " [no value]\n";
52       }
53    }
54 }
55 
56 #define PRINT_MACRO(X) print_macro(#X, BOOST_STRINGIZE(=X))
57 
58 template <class T>
print_expression(const char * expression,T val)59 void print_expression(const char* expression, T val)
60 {
61    for(unsigned i = 0; i < indent; ++i) std::cout.put(' ');
62    std::cout << std::setw(width);
63    std::cout.setf(std::istream::left, std::istream::adjustfield);
64    std::cout << std::setprecision(std::numeric_limits<T>::digits10+2);
65    std::cout << expression << "=" << val << std::endl;
66 }
67 
68 #define PRINT_EXPRESSION(E) print_expression(#E, E);
69 
70 
71 template <class T>
print_limits(T,const char * name)72 void print_limits(T, const char* name)
73 {
74    //
75    // Output general information on numeric_limits, as well as
76    // probing known and supected problems.
77    //
78    std::cout <<
79       "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"
80       "std::numeric_limits information for type " << name << std::endl;
81    std::cout <<
82       "    is_specialized       = " << std::numeric_limits<T>::is_specialized << std::endl;
83    std::cout <<
84       "    min" "()                = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::min)() << std::endl;
85    std::cout <<
86       "    max" "()                = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::max)() << std::endl;
87    std::cout <<
88       "    digits               = " << std::numeric_limits<T>::digits << std::endl;
89    std::cout <<
90       "    digits10             = " << std::numeric_limits<T>::digits10 << std::endl;
91    std::cout <<
92       "    is_signed            = " << std::numeric_limits<T>::is_signed << std::endl;
93    std::cout <<
94       "    is_integer           = " << std::numeric_limits<T>::is_integer << std::endl;
95    std::cout <<
96       "    is_exact             = " << std::numeric_limits<T>::is_exact << std::endl;
97    std::cout <<
98       "    radix                = " << std::numeric_limits<T>::radix << std::endl;
99 
100    std::cout <<
101       "    epsilon()            = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::epsilon)() << std::endl;
102    std::cout <<
103       "    round_error()        = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::round_error)() << std::endl;
104 
105    std::cout <<
106       "    min_exponent         = " << std::numeric_limits<T>::min_exponent << std::endl;
107    std::cout <<
108       "    min_exponent10       = " << std::numeric_limits<T>::min_exponent10 << std::endl;
109    std::cout <<
110       "    max_exponent         = " << std::numeric_limits<T>::max_exponent << std::endl;
111    std::cout <<
112       "    max_exponent10       = " << std::numeric_limits<T>::max_exponent10 << std::endl;
113    std::cout <<
114       "    has_infinity         = " << std::numeric_limits<T>::has_infinity << std::endl;
115    std::cout <<
116       "    has_quiet_NaN        = " << std::numeric_limits<T>::has_quiet_NaN << std::endl;
117    std::cout <<
118       "    has_signaling_NaN    = " << std::numeric_limits<T>::has_signaling_NaN << std::endl;
119    std::cout <<
120       "    has_denorm           = " << std::numeric_limits<T>::has_denorm << std::endl;
121    std::cout <<
122       "    has_denorm_loss      = " << std::numeric_limits<T>::has_denorm_loss << std::endl;
123 
124    std::cout <<
125       "    infinity()           = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::infinity)() << std::endl;
126    std::cout <<
127       "    quiet_NaN()          = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::quiet_NaN)() << std::endl;
128    std::cout <<
129       "    signaling_NaN()      = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::signaling_NaN)() << std::endl;
130    std::cout <<
131       "    denorm_min()         = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::denorm_min)() << std::endl;
132 
133 
134    std::cout <<
135       "    is_iec559            = " << std::numeric_limits<T>::is_iec559 << std::endl;
136    std::cout <<
137       "    is_bounded           = " << std::numeric_limits<T>::is_bounded << std::endl;
138    std::cout <<
139       "    is_modulo            = " << std::numeric_limits<T>::is_modulo << std::endl;
140    std::cout <<
141       "    traps                = " << std::numeric_limits<T>::traps << std::endl;
142    std::cout <<
143       "    tinyness_before      = " << std::numeric_limits<T>::tinyness_before << std::endl;
144    std::cout <<
145       "    round_style          = " << std::numeric_limits<T>::round_style << std::endl << std::endl;
146 
147    if(std::numeric_limits<T>::is_exact == 0)
148    {
149       bool r = std::numeric_limits<T>::epsilon() == std::pow(static_cast<T>(std::numeric_limits<T>::radix), 1-std::numeric_limits<T>::digits);
150       if(r)
151          std::cout << "Epsilon has sane value of std::pow(std::numeric_limits<T>::radix, 1-std::numeric_limits<T>::digits)." << std::endl;
152       else
153          std::cout << "CAUTION: epsilon does not have a sane value." << std::endl;
154       std::cout << std::endl;
155    }
156    std::cout <<
157       "    sizeof(" << name << ") = " << sizeof(T) << std::endl;
158    std::cout <<
159       "    alignment_of<" << name << "> = " << boost::alignment_of<T>::value << std::endl << std::endl;
160 }
161 /*
162 template <class T>
163 bool is_same_type(T, T)
164 {
165    return true;
166 }*/
is_same_type(float,float)167 bool is_same_type(float, float)
168 { return true; }
is_same_type(double,double)169 bool is_same_type(double, double)
170 { return true; }
is_same_type(long double,long double)171 bool is_same_type(long double, long double)
172 { return true; }
173 template <class T, class U>
is_same_type(T,U)174 bool is_same_type(T, U)
175 {
176    return false;
177 }
178 
179 //
180 // We need this to test whether abs has been overloaded for
181 // the floating point types or not:
182 //
183 namespace std{
184 #if !BOOST_WORKAROUND(BOOST_MSVC, == 1300) && \
185     !defined(_LIBCPP_VERSION)
186 template <class T>
abs(T)187 char abs(T)
188 {
189    return ' ';
190 }
191 #endif
192 }
193 
194 
195 template <class T>
test_overloads(T,const char * name)196 void test_overloads(T, const char* name)
197 {
198    //
199    // Probe known and suspected problems with the std lib Math functions.
200    //
201    std::cout <<
202       "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"
203       "Math function overload information for type " << name << std::endl;
204 
205    //
206    // Are the math functions overloaded for type T,
207    // or do we just get double versions?
208    //
209    bool r = is_same_type(std::fabs(T(0)), T(0));
210    r &= is_same_type(std::sqrt(T(0)), T(0));
211    r &= is_same_type(std::sin(T(0)), T(0));
212    if(r)
213       std::cout << "The Math functions are overloaded for type " << name << std::endl;
214    else
215       std::cout << "CAUTION: The Math functions are NOT overloaded for type " << name << std::endl;
216 
217    //
218    // Check that a few of the functions work OK, we do this because if these
219    // are implemented as double precision internally then we can get
220    // overflow or underflow when passing arguments of other types.
221    //
222    r = (std::fabs((std::numeric_limits<T>::max)()) == (std::numeric_limits<T>::max)());
223    r &= (std::fabs(-(std::numeric_limits<T>::max)()) == (std::numeric_limits<T>::max)());
224    r &= (std::fabs((std::numeric_limits<T>::min)()) == (std::numeric_limits<T>::min)());
225    r &= (std::fabs(-(std::numeric_limits<T>::min)()) == (std::numeric_limits<T>::min)());
226    if(r)
227       std::cout << "std::fabs looks OK for type " << name << std::endl;
228    else
229       std::cout << "CAUTION: std::fabs is broken for type " << name << std::endl;
230 
231    //
232    // abs not overloaded for real arguments with VC6 (and others?)
233    //
234    r = (std::abs((std::numeric_limits<T>::max)()) == (std::numeric_limits<T>::max)());
235    r &= (std::abs(-(std::numeric_limits<T>::max)()) == (std::numeric_limits<T>::max)());
236    r &= (std::abs((std::numeric_limits<T>::min)()) == (std::numeric_limits<T>::min)());
237    r &= (std::abs(-(std::numeric_limits<T>::min)()) == (std::numeric_limits<T>::min)());
238    if(r)
239       std::cout << "std::abs looks OK for type " << name << std::endl;
240    else
241       std::cout << "CAUTION: std::abs is broken for type " << name << std::endl;
242 
243    //
244    // std::sqrt on FreeBSD converts long double arguments to double leading to
245    // overflow/underflow:
246    //
247    r = (std::sqrt((std::numeric_limits<T>::max)()) < (std::numeric_limits<T>::max)());
248    if(r)
249       std::cout << "std::sqrt looks OK for type " << name << std::endl;
250    else
251       std::cout << "CAUTION: std::sqrt is broken for type " << name << std::endl;
252 
253    //
254    // Sanity check for atan2: verify that it returns arguments in the correct
255    // range and not just atan(x/y).
256    //
257    static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L);
258 
259    T val = std::atan2(T(-1), T(-1));
260    r = -half_pi > val;
261    val = std::atan2(T(1), T(-1));
262    r &= half_pi < val;
263    val = std::atan2(T(1), T(1));
264    r &= (val > 0) && (val < half_pi);
265    val = std::atan2(T(-1), T(1));
266    r &= (val < 0) && (val > -half_pi);
267    if(r)
268       std::cout << "std::atan2 looks OK for type " << name << std::endl;
269    else
270       std::cout << "CAUTION: std::atan2 is broken for type " << name << std::endl;
271 }
272 
273 
274 
main()275 int main()
276 {
277    //
278    // Start by printing the values of the macros from float.h
279    //
280    std::cout <<
281       "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"
282       "Macros from <math.h>" << std::endl;
283 
284 #ifdef BOOST_BORLANDC
285    // Turn off hardware exceptions so we don't just abort
286    // when calling numeric_limits members.
287    _control87(MCW_EM,MCW_EM);
288 #endif
289 
290    PRINT_EXPRESSION(HUGE_VAL);
291 #ifdef HUGE_VALF
292    PRINT_EXPRESSION(HUGE_VALF);
293 #endif
294 #ifdef HUGE_VALL
295    PRINT_EXPRESSION(HUGE_VALL);
296 #endif
297 #ifdef INFINITY
298    PRINT_EXPRESSION(INFINITY);
299 #endif
300 
301    PRINT_MACRO(NAN);
302    PRINT_MACRO(FP_INFINITE);
303    PRINT_MACRO(FP_NAN);
304    PRINT_MACRO(FP_NORMAL);
305    PRINT_MACRO(FP_SUBNORMAL);
306    PRINT_MACRO(FP_ZERO);
307    PRINT_MACRO(FP_FAST_FMA);
308    PRINT_MACRO(FP_FAST_FMAF);
309    PRINT_MACRO(FP_FAST_FMAL);
310    PRINT_MACRO(FP_ILOGB0);
311    PRINT_MACRO(FP_ILOGBNAN);
312    PRINT_MACRO(MATH_ERRNO);
313    PRINT_MACRO(MATH_ERREXCEPT);
314 
315    PRINT_EXPRESSION(FLT_MIN_10_EXP);
316    PRINT_EXPRESSION(FLT_DIG);
317    PRINT_EXPRESSION(FLT_MIN_EXP);
318    PRINT_EXPRESSION(FLT_EPSILON);
319    PRINT_EXPRESSION(FLT_RADIX);
320    PRINT_EXPRESSION(FLT_MANT_DIG);
321    PRINT_EXPRESSION(FLT_ROUNDS);
322    PRINT_EXPRESSION(FLT_MAX);
323    PRINT_EXPRESSION(FLT_MAX_10_EXP);
324    PRINT_EXPRESSION(FLT_MAX_EXP);
325    PRINT_EXPRESSION(FLT_MIN);
326    PRINT_EXPRESSION(DBL_DIG);
327    PRINT_EXPRESSION(DBL_MIN_EXP);
328    PRINT_EXPRESSION(DBL_EPSILON);
329    PRINT_EXPRESSION(DBL_MANT_DIG);
330    PRINT_EXPRESSION(DBL_MAX);
331    PRINT_EXPRESSION(DBL_MIN);
332    PRINT_EXPRESSION(DBL_MAX_10_EXP);
333    PRINT_EXPRESSION(DBL_MAX_EXP);
334    PRINT_EXPRESSION(DBL_MIN_10_EXP);
335    PRINT_EXPRESSION(LDBL_MAX_10_EXP);
336    PRINT_EXPRESSION(LDBL_MAX_EXP);
337    PRINT_EXPRESSION(LDBL_MIN);
338    PRINT_EXPRESSION(LDBL_MIN_10_EXP);
339    PRINT_EXPRESSION(LDBL_DIG);
340    PRINT_EXPRESSION(LDBL_MIN_EXP);
341    PRINT_EXPRESSION(LDBL_EPSILON);
342    PRINT_EXPRESSION(LDBL_MANT_DIG);
343    PRINT_EXPRESSION(LDBL_MAX);
344 
345    std::cout << std::endl;
346 
347    //
348    // print out numeric_limits info:
349    //
350    print_limits(float(0), "float");
351    print_limits(double(0), "double");
352    print_limits((long double)(0), "long double");
353 
354    //
355    // print out function overload information:
356    //
357    test_overloads(float(0), "float");
358    test_overloads(double(0), "double");
359    test_overloads((long double)(0), "long double");
360    return 0;
361 }
362 
363 
364 
365 
366