1 // (C) Copyright John Maddock 2005.
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0. (See accompanying file
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5
6 // See http://www.boost.org/libs/config/test for most recent version.
7
8 //
9 // This test prints out informative information about <math.h>, <float.h>
10 // and <limits>. Note that this file does require a correctly configured
11 // Boost setup, and so can't be folded into config_info which is designed
12 // to function without Boost.Confg support. Each test is documented in
13 // more detail below.
14 //
15
16 #include <boost/limits.hpp>
17 #include <limits.h>
18 #include <math.h>
19 #include <cmath>
20 #include <float.h>
21 #include <iostream>
22 #include <iomanip>
23 #include <cstring>
24 #include <boost/type_traits/alignment_of.hpp>
25
26 #ifdef BOOST_NO_STDC_NAMESPACE
27 namespace std{ using ::strcmp; using ::pow; using ::fabs; using ::sqrt; using ::sin; using ::atan2; }
28 #endif
29
30 static unsigned int indent = 4;
31 static unsigned int width = 40;
32
print_macro(const char * name,const char * value)33 void print_macro(const char* name, const char* value)
34 {
35 // if name == value+1 then then macro is not defined,
36 // in which case we don't print anything:
37 if(0 != std::strcmp(name, value+1))
38 {
39 for(unsigned i = 0; i < indent; ++i) std::cout.put(' ');
40 std::cout << std::setw(width);
41 std::cout.setf(std::istream::left, std::istream::adjustfield);
42 std::cout << name;
43 if(value[1])
44 {
45 // macro has a value:
46 std::cout << value << "\n";
47 }
48 else
49 {
50 // macro is defined but has no value:
51 std::cout << " [no value]\n";
52 }
53 }
54 }
55
56 #define PRINT_MACRO(X) print_macro(#X, BOOST_STRINGIZE(=X))
57
58 template <class T>
print_expression(const char * expression,T val)59 void print_expression(const char* expression, T val)
60 {
61 for(unsigned i = 0; i < indent; ++i) std::cout.put(' ');
62 std::cout << std::setw(width);
63 std::cout.setf(std::istream::left, std::istream::adjustfield);
64 std::cout << std::setprecision(std::numeric_limits<T>::digits10+2);
65 std::cout << expression << "=" << val << std::endl;
66 }
67
68 #define PRINT_EXPRESSION(E) print_expression(#E, E);
69
70
71 template <class T>
print_limits(T,const char * name)72 void print_limits(T, const char* name)
73 {
74 //
75 // Output general information on numeric_limits, as well as
76 // probing known and supected problems.
77 //
78 std::cout <<
79 "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"
80 "std::numeric_limits information for type " << name << std::endl;
81 std::cout <<
82 " is_specialized = " << std::numeric_limits<T>::is_specialized << std::endl;
83 std::cout <<
84 " min" "() = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::min)() << std::endl;
85 std::cout <<
86 " max" "() = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::max)() << std::endl;
87 std::cout <<
88 " digits = " << std::numeric_limits<T>::digits << std::endl;
89 std::cout <<
90 " digits10 = " << std::numeric_limits<T>::digits10 << std::endl;
91 std::cout <<
92 " is_signed = " << std::numeric_limits<T>::is_signed << std::endl;
93 std::cout <<
94 " is_integer = " << std::numeric_limits<T>::is_integer << std::endl;
95 std::cout <<
96 " is_exact = " << std::numeric_limits<T>::is_exact << std::endl;
97 std::cout <<
98 " radix = " << std::numeric_limits<T>::radix << std::endl;
99
100 std::cout <<
101 " epsilon() = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::epsilon)() << std::endl;
102 std::cout <<
103 " round_error() = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::round_error)() << std::endl;
104
105 std::cout <<
106 " min_exponent = " << std::numeric_limits<T>::min_exponent << std::endl;
107 std::cout <<
108 " min_exponent10 = " << std::numeric_limits<T>::min_exponent10 << std::endl;
109 std::cout <<
110 " max_exponent = " << std::numeric_limits<T>::max_exponent << std::endl;
111 std::cout <<
112 " max_exponent10 = " << std::numeric_limits<T>::max_exponent10 << std::endl;
113 std::cout <<
114 " has_infinity = " << std::numeric_limits<T>::has_infinity << std::endl;
115 std::cout <<
116 " has_quiet_NaN = " << std::numeric_limits<T>::has_quiet_NaN << std::endl;
117 std::cout <<
118 " has_signaling_NaN = " << std::numeric_limits<T>::has_signaling_NaN << std::endl;
119 std::cout <<
120 " has_denorm = " << std::numeric_limits<T>::has_denorm << std::endl;
121 std::cout <<
122 " has_denorm_loss = " << std::numeric_limits<T>::has_denorm_loss << std::endl;
123
124 std::cout <<
125 " infinity() = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::infinity)() << std::endl;
126 std::cout <<
127 " quiet_NaN() = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::quiet_NaN)() << std::endl;
128 std::cout <<
129 " signaling_NaN() = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::signaling_NaN)() << std::endl;
130 std::cout <<
131 " denorm_min() = " << std::setprecision(std::numeric_limits<T>::digits10 + 2) << (std::numeric_limits<T>::denorm_min)() << std::endl;
132
133
134 std::cout <<
135 " is_iec559 = " << std::numeric_limits<T>::is_iec559 << std::endl;
136 std::cout <<
137 " is_bounded = " << std::numeric_limits<T>::is_bounded << std::endl;
138 std::cout <<
139 " is_modulo = " << std::numeric_limits<T>::is_modulo << std::endl;
140 std::cout <<
141 " traps = " << std::numeric_limits<T>::traps << std::endl;
142 std::cout <<
143 " tinyness_before = " << std::numeric_limits<T>::tinyness_before << std::endl;
144 std::cout <<
145 " round_style = " << std::numeric_limits<T>::round_style << std::endl << std::endl;
146
147 if(std::numeric_limits<T>::is_exact == 0)
148 {
149 bool r = std::numeric_limits<T>::epsilon() == std::pow(static_cast<T>(std::numeric_limits<T>::radix), 1-std::numeric_limits<T>::digits);
150 if(r)
151 std::cout << "Epsilon has sane value of std::pow(std::numeric_limits<T>::radix, 1-std::numeric_limits<T>::digits)." << std::endl;
152 else
153 std::cout << "CAUTION: epsilon does not have a sane value." << std::endl;
154 std::cout << std::endl;
155 }
156 std::cout <<
157 " sizeof(" << name << ") = " << sizeof(T) << std::endl;
158 std::cout <<
159 " alignment_of<" << name << "> = " << boost::alignment_of<T>::value << std::endl << std::endl;
160 }
161 /*
162 template <class T>
163 bool is_same_type(T, T)
164 {
165 return true;
166 }*/
is_same_type(float,float)167 bool is_same_type(float, float)
168 { return true; }
is_same_type(double,double)169 bool is_same_type(double, double)
170 { return true; }
is_same_type(long double,long double)171 bool is_same_type(long double, long double)
172 { return true; }
173 template <class T, class U>
is_same_type(T,U)174 bool is_same_type(T, U)
175 {
176 return false;
177 }
178
179 //
180 // We need this to test whether abs has been overloaded for
181 // the floating point types or not:
182 //
183 namespace std{
184 #if !BOOST_WORKAROUND(BOOST_MSVC, == 1300) && \
185 !defined(_LIBCPP_VERSION)
186 template <class T>
abs(T)187 char abs(T)
188 {
189 return ' ';
190 }
191 #endif
192 }
193
194
195 template <class T>
test_overloads(T,const char * name)196 void test_overloads(T, const char* name)
197 {
198 //
199 // Probe known and suspected problems with the std lib Math functions.
200 //
201 std::cout <<
202 "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"
203 "Math function overload information for type " << name << std::endl;
204
205 //
206 // Are the math functions overloaded for type T,
207 // or do we just get double versions?
208 //
209 bool r = is_same_type(std::fabs(T(0)), T(0));
210 r &= is_same_type(std::sqrt(T(0)), T(0));
211 r &= is_same_type(std::sin(T(0)), T(0));
212 if(r)
213 std::cout << "The Math functions are overloaded for type " << name << std::endl;
214 else
215 std::cout << "CAUTION: The Math functions are NOT overloaded for type " << name << std::endl;
216
217 //
218 // Check that a few of the functions work OK, we do this because if these
219 // are implemented as double precision internally then we can get
220 // overflow or underflow when passing arguments of other types.
221 //
222 r = (std::fabs((std::numeric_limits<T>::max)()) == (std::numeric_limits<T>::max)());
223 r &= (std::fabs(-(std::numeric_limits<T>::max)()) == (std::numeric_limits<T>::max)());
224 r &= (std::fabs((std::numeric_limits<T>::min)()) == (std::numeric_limits<T>::min)());
225 r &= (std::fabs(-(std::numeric_limits<T>::min)()) == (std::numeric_limits<T>::min)());
226 if(r)
227 std::cout << "std::fabs looks OK for type " << name << std::endl;
228 else
229 std::cout << "CAUTION: std::fabs is broken for type " << name << std::endl;
230
231 //
232 // abs not overloaded for real arguments with VC6 (and others?)
233 //
234 r = (std::abs((std::numeric_limits<T>::max)()) == (std::numeric_limits<T>::max)());
235 r &= (std::abs(-(std::numeric_limits<T>::max)()) == (std::numeric_limits<T>::max)());
236 r &= (std::abs((std::numeric_limits<T>::min)()) == (std::numeric_limits<T>::min)());
237 r &= (std::abs(-(std::numeric_limits<T>::min)()) == (std::numeric_limits<T>::min)());
238 if(r)
239 std::cout << "std::abs looks OK for type " << name << std::endl;
240 else
241 std::cout << "CAUTION: std::abs is broken for type " << name << std::endl;
242
243 //
244 // std::sqrt on FreeBSD converts long double arguments to double leading to
245 // overflow/underflow:
246 //
247 r = (std::sqrt((std::numeric_limits<T>::max)()) < (std::numeric_limits<T>::max)());
248 if(r)
249 std::cout << "std::sqrt looks OK for type " << name << std::endl;
250 else
251 std::cout << "CAUTION: std::sqrt is broken for type " << name << std::endl;
252
253 //
254 // Sanity check for atan2: verify that it returns arguments in the correct
255 // range and not just atan(x/y).
256 //
257 static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L);
258
259 T val = std::atan2(T(-1), T(-1));
260 r = -half_pi > val;
261 val = std::atan2(T(1), T(-1));
262 r &= half_pi < val;
263 val = std::atan2(T(1), T(1));
264 r &= (val > 0) && (val < half_pi);
265 val = std::atan2(T(-1), T(1));
266 r &= (val < 0) && (val > -half_pi);
267 if(r)
268 std::cout << "std::atan2 looks OK for type " << name << std::endl;
269 else
270 std::cout << "CAUTION: std::atan2 is broken for type " << name << std::endl;
271 }
272
273
274
main()275 int main()
276 {
277 //
278 // Start by printing the values of the macros from float.h
279 //
280 std::cout <<
281 "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"
282 "Macros from <math.h>" << std::endl;
283
284 #ifdef BOOST_BORLANDC
285 // Turn off hardware exceptions so we don't just abort
286 // when calling numeric_limits members.
287 _control87(MCW_EM,MCW_EM);
288 #endif
289
290 PRINT_EXPRESSION(HUGE_VAL);
291 #ifdef HUGE_VALF
292 PRINT_EXPRESSION(HUGE_VALF);
293 #endif
294 #ifdef HUGE_VALL
295 PRINT_EXPRESSION(HUGE_VALL);
296 #endif
297 #ifdef INFINITY
298 PRINT_EXPRESSION(INFINITY);
299 #endif
300
301 PRINT_MACRO(NAN);
302 PRINT_MACRO(FP_INFINITE);
303 PRINT_MACRO(FP_NAN);
304 PRINT_MACRO(FP_NORMAL);
305 PRINT_MACRO(FP_SUBNORMAL);
306 PRINT_MACRO(FP_ZERO);
307 PRINT_MACRO(FP_FAST_FMA);
308 PRINT_MACRO(FP_FAST_FMAF);
309 PRINT_MACRO(FP_FAST_FMAL);
310 PRINT_MACRO(FP_ILOGB0);
311 PRINT_MACRO(FP_ILOGBNAN);
312 PRINT_MACRO(MATH_ERRNO);
313 PRINT_MACRO(MATH_ERREXCEPT);
314
315 PRINT_EXPRESSION(FLT_MIN_10_EXP);
316 PRINT_EXPRESSION(FLT_DIG);
317 PRINT_EXPRESSION(FLT_MIN_EXP);
318 PRINT_EXPRESSION(FLT_EPSILON);
319 PRINT_EXPRESSION(FLT_RADIX);
320 PRINT_EXPRESSION(FLT_MANT_DIG);
321 PRINT_EXPRESSION(FLT_ROUNDS);
322 PRINT_EXPRESSION(FLT_MAX);
323 PRINT_EXPRESSION(FLT_MAX_10_EXP);
324 PRINT_EXPRESSION(FLT_MAX_EXP);
325 PRINT_EXPRESSION(FLT_MIN);
326 PRINT_EXPRESSION(DBL_DIG);
327 PRINT_EXPRESSION(DBL_MIN_EXP);
328 PRINT_EXPRESSION(DBL_EPSILON);
329 PRINT_EXPRESSION(DBL_MANT_DIG);
330 PRINT_EXPRESSION(DBL_MAX);
331 PRINT_EXPRESSION(DBL_MIN);
332 PRINT_EXPRESSION(DBL_MAX_10_EXP);
333 PRINT_EXPRESSION(DBL_MAX_EXP);
334 PRINT_EXPRESSION(DBL_MIN_10_EXP);
335 PRINT_EXPRESSION(LDBL_MAX_10_EXP);
336 PRINT_EXPRESSION(LDBL_MAX_EXP);
337 PRINT_EXPRESSION(LDBL_MIN);
338 PRINT_EXPRESSION(LDBL_MIN_10_EXP);
339 PRINT_EXPRESSION(LDBL_DIG);
340 PRINT_EXPRESSION(LDBL_MIN_EXP);
341 PRINT_EXPRESSION(LDBL_EPSILON);
342 PRINT_EXPRESSION(LDBL_MANT_DIG);
343 PRINT_EXPRESSION(LDBL_MAX);
344
345 std::cout << std::endl;
346
347 //
348 // print out numeric_limits info:
349 //
350 print_limits(float(0), "float");
351 print_limits(double(0), "double");
352 print_limits((long double)(0), "long double");
353
354 //
355 // print out function overload information:
356 //
357 test_overloads(float(0), "float");
358 test_overloads(double(0), "double");
359 test_overloads((long double)(0), "long double");
360 return 0;
361 }
362
363
364
365
366