1<HTML> 2<!-- 3 Copyright (c) 2004 Kris Beevers 4 5 Distributed under the Boost Software License, Version 1.0. 6 (See accompanying file LICENSE_1_0.txt or copy at 7 http://www.boost.org/LICENSE_1_0.txt) 8 --> 9<Head> 10<Title>Boost Graph Library: A* Heuristic Search</Title> 11<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b" 12 ALINK="#ff0000"> 13<IMG SRC="../../../boost.png" 14 ALT="C++ Boost" width="277" height="86"> 15 16<BR Clear> 17 18<H1><A NAME="sec:astar"></A> 19<TT>astar_search</TT> 20</H1> 21 22 23<P> 24<PRE> 25<i>// Named parameter interfaces</i> 26template <typename VertexListGraph, 27 typename AStarHeuristic, 28 typename P, typename T, typename R> 29void 30astar_search 31 (const VertexListGraph &g, 32 typename graph_traits<VertexListGraph>::vertex_descriptor s, 33 <a href="AStarHeuristic.html">AStarHeuristic</a> h, const bgl_named_params<P, T, R>& params); 34 35template <typename VertexListGraph, 36 typename AStarHeuristic, 37 typename P, typename T, typename R> 38void 39astar_search_no_init 40 (const IncidenceGraph &g, 41 typename graph_traits<VertexListGraph>::vertex_descriptor s, 42 <a href="AStarHeuristic.html">AStarHeuristic</a> h, const bgl_named_params<P, T, R>& params); 43 44template <typename VertexListGraph, 45 typename AStarHeuristic, 46 typename P, typename T, typename R> 47void 48astar_search_tree 49 (const VertexListGraph &g, 50 typename graph_traits<VertexListGraph>::vertex_descriptor s, 51 <a href="AStarHeuristic.html">AStarHeuristic</a> h, const bgl_named_params<P, T, R>& params); 52 53template <typename VertexListGraph, 54 typename AStarHeuristic, 55 typename P, typename T, typename R> 56void 57astar_search_no_init_tree 58 (const IncidenceGraph &g, 59 typename graph_traits<VertexListGraph>::vertex_descriptor s, 60 <a href="AStarHeuristic.html">AStarHeuristic</a> h, const bgl_named_params<P, T, R>& params); 61 62<i>// Non-named parameter interface</i> 63template <typename VertexListGraph, typename AStarHeuristic, 64 typename <a href="AStarVisitor.html">AStarVisitor</a>, typename PredecessorMap, 65 typename CostMap, typename DistanceMap, 66 typename WeightMap, typename VertexIndexMap, 67 typename ColorMap, 68 typename <a href="http://www.boost.org/sgi/stl/BinaryPredicate.html">CompareFunction</a>, typename <a href="http://www.boost.org/sgi/stl/BinaryFunction.html">CombineFunction</a>, 69 typename CostInf, typename CostZero> 70inline void 71astar_search 72 (const VertexListGraph &g, 73 typename graph_traits<VertexListGraph>::vertex_descriptor s, 74 AStarHeuristic h, AStarVisitor vis, 75 PredecessorMap predecessor, CostMap cost, 76 DistanceMap distance, WeightMap weight, 77 VertexIndexMap index_map, ColorMap color, 78 CompareFunction compare, CombineFunction combine, 79 CostInf inf, CostZero zero); 80 81template <typename VertexListGraph, typename AStarHeuristic, 82 typename <a href="AStarVisitor.html">AStarVisitor</a>, typename PredecessorMap, 83 typename CostMap, typename DistanceMap, 84 typename WeightMap, 85 typename <a href="http://www.boost.org/sgi/stl/BinaryPredicate.html">CompareFunction</a>, typename <a href="http://www.boost.org/sgi/stl/BinaryFunction.html">CombineFunction</a>, 86 typename CostInf, typename CostZero> 87inline void 88astar_search_tree 89 (const VertexListGraph &g, 90 typename graph_traits<VertexListGraph>::vertex_descriptor s, 91 AStarHeuristic h, AStarVisitor vis, 92 PredecessorMap predecessor, CostMap cost, 93 DistanceMap distance, WeightMap weight, 94 CompareFunction compare, CombineFunction combine, 95 CostInf inf, CostZero zero); 96 97<i>// Versions that do not initialize property maps (used for implicit graphs)</i> 98template <typename IncidenceGraph, typename AStarHeuristic, 99 typename <a href="AStarVisitor.html">AStarVisitor</a>, typename PredecessorMap, 100 typename CostMap, typename DistanceMap, 101 typename WeightMap, typename ColorMap, 102 typename VertexIndexMap, 103 typename <a href="http://www.boost.org/sgi/stl/BinaryPredicate.html">CompareFunction</a>, typename <a href="http://www.boost.org/sgi/stl/BinaryFunction.html">CombineFunction</a>, 104 typename CostInf, typename CostZero> 105inline void 106astar_search_no_init 107 (const IncidenceGraph &g, 108 typename graph_traits<IncidenceGraph>::vertex_descriptor s, 109 AStarHeuristic h, AStarVisitor vis, 110 PredecessorMap predecessor, CostMap cost, 111 DistanceMap distance, WeightMap weight, 112 ColorMap color, VertexIndexMap index_map, 113 CompareFunction compare, CombineFunction combine, 114 CostInf inf, CostZero zero); 115 116<b>Note that the index_map and color parameters are swapped in 117astar_search_no_init() relative to astar_search(); the named parameter 118interfaces are not affected.</b> 119 120template <typename IncidenceGraph, typename AStarHeuristic, 121 typename <a href="AStarVisitor.html">AStarVisitor</a>, typename PredecessorMap, 122 typename CostMap, typename DistanceMap, 123 typename WeightMap, 124 typename <a href="http://www.boost.org/sgi/stl/BinaryPredicate.html">CompareFunction</a>, typename <a href="http://www.boost.org/sgi/stl/BinaryFunction.html">CombineFunction</a>, 125 typename CostInf, typename CostZero> 126inline void 127astar_search_no_init_tree 128 (const IncidenceGraph &g, 129 typename graph_traits<IncidenceGraph>::vertex_descriptor s, 130 AStarHeuristic h, AStarVisitor vis, 131 PredecessorMap predecessor, CostMap cost, 132 DistanceMap distance, WeightMap weight, 133 CompareFunction compare, CombineFunction combine, 134 CostInf inf, CostZero zero); 135</PRE> 136 137<P> 138This algorithm implements a heuristic search on a weighted, directed 139or undirected graph for the case where all edge weights are 140non-negative. 141</P> 142 143<P> 144The A* algorithm is a <i>heuristic graph search algorithm</i>: an A* 145search is "guided" by a <i>heuristic function</i>. A heuristic 146function <i>h(v)</i> is one which estimates the cost from a non-goal 147state (<i>v</i>) in the graph to some goal state, <i>g</i>. 148Intuitively, A* follows paths (through the graph) to the goal that are 149estimated by the heuristic function to be the best paths. Unlike 150best-first search, A* takes into account the known cost from the start 151of the search to <i>v</i>; the paths A* takes are guided by a function 152<i>f(v) = g(v) + h(v)</i>, where <i>h(v)</i> is the heuristic 153function, and <i>g(v)</i> (sometimes denoted <i>c(s, v)</i>) is the 154known cost from the start to <i>v</i>. Clearly, the efficiency of A* 155is highly dependent on the heuristic function with which it is used. 156</P> 157 158<P> 159The A* algorithm is very similar to Dijkstra's Shortest Paths 160algorithm. This implementation finds all the shortest paths from the 161start vertex to every other vertex by creating a search tree, 162examining vertices according to their remaining cost to some goal, as 163estimated by a heuristic function. Most commonly, A* is used to find 164some specific goal vertex or vertices in a graph, after which the 165search is terminated. 166</P> 167 168<P> 169A* is particularly useful for searching <i>implicit</i> graphs. 170Implicit graphs are graphs that are not completely known at the 171beginning of the search. Upon visiting a vertex, its neighbors are 172"generated" and added to the search. Implicit graphs are particularly 173useful for searching large state spaces -- in game-playing scenarios 174(e.g. chess), for example -- in which it may not be possible to store 175the entire graph. Implicit searches can be performed with this 176implementation of A* by creating special visitors that generate 177neighbors of newly-expanded vertices. Please note that 178<tt>astar_search_no_init()</tt> or <tt>astar_search_no_init_tree()</tt> must be 179used for implicit graphs; the basic 180<tt>astar_search()</tt> function requires a graph that models 181the <a href="VertexListGraph.html">Vertex List Graph</a> concept. Both 182versions 183also require the graph type to model the <a 184href="IncidenceGraph.html">Incidence Graph</a> concept. 185</P> 186 187<P> 188For the non-tree versions of the algorithm, 189this implementation of A* is based on an OPEN/CLOSED list formulation. 190Vertices on the OPEN list have been ``discovered'' 191by the algorithm, but not ``expanded'' (we have not discovered their 192adjacent vertices). Vertices on the CLOSED list have been completely 193examined by our search (we have expanded them and added their children 194to the OPEN list). Vertices that are on neither list have not been 195encountered in any context so far in our search. A major advantage of 196this formulation of the A* algorithm over other approaches is that it 197avoids ``cycles'' in the state space; the search will not become 198trapped by loops in the graph. The OPEN/CLOSED lists are implemented 199using BGL's vertex coloring mechanisms. Vertices in OPEN are colored 200gray, vertices in CLOSED are colored black, and undiscovered vertices 201are colored white. For the versions of the algorithm whose names end in 202<tt>_tree</tt>, all vertices are assumed to always be white, leading to 203checking for repeated vertices being done using the distance map. If a dummy 204value is used for the distance map and the graph contains cycles, the algorithm 205will probably enter an infinite loop. 206</P> 207 208<P> 209The criteria for expanding a vertex on the OPEN list is that it has 210the lowest <i>f(v) = g(v) + h(v)</i> value of all vertices on OPEN. 211Cost information about vertices is stored in a property map. 212</P> 213 214<P> 215The following is the pseudocode for the A* heuristic search algorithm. 216In the pseudocode, <i>h</i> is the heuristic function, <i>w</i> is the 217edge weight, <i>d</i> is the distance of a vertex from <i>s</i>, and 218<i>Q</i> is a priority queue, sorted by <i>f</i>, the estimated cost 219to the goal of the path through a vertex. <i>p</i> is a predecessor 220map. The visitor event points for the algorithm are indicated by the 221labels on the right. 222</P> 223 224<table> 225<tr> 226<td valign="top"> 227<pre> 228A*(<i>G</i>, <i>s</i>, <i>h</i>) 229 <b>for</b> each vertex <i>u in V</i> 230 <i>d[u] := f[u] := infinity</i> 231 <i>color[u] :=</i> WHITE 232 <i>p[u] := u</i> 233 <b>end for</b> 234 <i>color[s] :=</i> GRAY 235 <i>d[s] := 0</i> 236 <i>f[s] := h(s)</i> 237 INSERT(<i>Q, s</i>) 238 <b>while</b> (<i>Q != Ø</i>) 239 <i>u :=</i> EXTRACT-MIN(<i>Q</i>) 240 <b>for</b> each vertex <i>v in Adj[u]</i> 241 <b>if</b> (<i>w(u,v) + d[u] < d[v]</i>) 242 <i>d[v] := w(u,v) + d[u]</i> 243 <i>f[v] := d[v] + h(v)</i> 244 <i>p[v] := u</i> 245 <b>if</b> (<i>color[v] =</i> WHITE) 246 <i>color[v] :=</i> GRAY 247 INSERT(<i>Q, v</i>) 248 <b>else if</b> (<i>color[v] =</i> BLACK) 249 <i>color[v] :=</i> GRAY 250 INSERT(<i>Q, v</i>) 251 <b>end if</b> 252 <b>else</b> 253 <i>...</i> 254 <b>end for</b> 255 <i>color[u] :=</i> BLACK 256 <b>end while</b> 257</pre> 258</td> 259<td valign="top"> 260<pre> 261 262initialize vertex <i>u</i> 263 264 265 266 267 268 269 270discover vertex <i>s</i> 271 272examine vertex <i>u</i> 273examine edge <i>(u,v)</i> 274 275edge <i>(u,v)</i> relaxed 276 277 278 279 280discover vertex <i>v</i> 281 282 283reopen vertex <i>v</i> 284 285 286edge <i>(u,v)</i> not relaxed 287 288finish vertex <i>u</i> 289</pre> 290</td> 291</tr> 292</table> 293 294<h3>Where Defined</h3> 295 296<a href="../../../boost/graph/astar_search.hpp"><tt>boost/graph/astar_search.hpp</tt></a> 297 298<h3>Parameters</h3> 299 300IN: <tt>const VertexListGraph& g</tt> 301<blockquote> 302 The graph object on which the algorithm will be applied for <tt>astar_search()</tt>. The type 303 <tt>VertexListGraph</tt> must be a model of the <a 304 href="VertexListGraph.html"> 305 Vertex List Graph</a> and <a href="IncidenceGraph.html">Incidence Graph</a> 306 concepts. 307</blockquote> 308 309IN: <tt>const IncidenceGraph& g</tt> 310<blockquote> 311 The graph object on which the algorithm will be applied for <tt>astar_search_no_init()</tt>. The type 312 <tt>IncidenceGraph</tt> must be a model of the 313 <a href="IncidenceGraph.html">Incidence Graph</a> 314 concept. 315</blockquote> 316 317IN: <tt>vertex_descriptor s</tt> 318<blockquote> 319 The start vertex for the search. All distances will be calculated 320 from this vertex, and the shortest paths tree (recorded in the 321 predecessor map) will be rooted at this vertex. 322</blockquote> 323 324IN: <tt>AStarHeuristic h</tt> 325<blockquote> 326 The heuristic function that guides the search. The type 327 <tt>AStarHeuristic</tt> must be a model of the <a href="AStarHeuristic.html">AStarHeuristic</a> 328 concept. 329</blockquote> 330 331<h3>Named Parameters</h3> 332 333IN: <tt>weight_map(WeightMap w_map)</tt> 334<blockquote> 335 The weight or ``length'' of each edge in the graph. The weights 336 must all be non-negative; the algorithm will throw a <a 337 href="./exception.html#negative_edge"><tt>negative_edge</tt></a> 338 exception if one of the edges is negative. The type 339 <tt>WeightMap</tt> must be a model of <a 340 href="../../property_map/doc/ReadablePropertyMap.html"><tt>Readable 341 Property Map</tt></a>. The edge descriptor type of the graph needs 342 to be usable as the key type for the weight map. The value type 343 for this map must be the same as the value type of the distance 344 map.<br> 345 <b>Default:</b> <tt>get(edge\_weight, g)</tt> 346</blockquote> 347 348IN: <tt>vertex_index_map(VertexIndexMap i_map)</tt> 349<blockquote> 350 This maps each vertex to an integer in the range <tt>[0, 351 num_vertices(g))</tt>. This is necessary in non-tree versions of the 352 algorithm for efficient updates of 353 the heap data structure when an edge is relaxed. The type 354 <tt>VertexIndexMap</tt> must be a model of <a 355 href="../../property_map/doc/ReadablePropertyMap.html"><tt>Readable 356 Property Map</tt></a>. The value type of the map must be an integer 357 type. The vertex descriptor type of the graph needs to be usable as 358 the key type of the map.<br> 359 360 <b>Default:</b> <tt>get(vertex_index, g)</tt>. 361 Note: if you use this default, make sure your graph has 362 an internal <tt>vertex_index</tt> property. For example, 363 <tt>adjacency_list</tt> with <tt>VertexList=listS</tt> does 364 not have an internal <tt>vertex_index</tt> property. 365</blockquote> 366 367OUT: <tt>predecessor_map(PredecessorMap p_map)</tt> 368<blockquote> 369 370 The predecessor map records the edges in the minimum spanning tree. 371 Upon completion of the algorithm, the edges <tt>(p[u],u)</tt> for 372 all <tt>u</tt> in <tt>V</tt> are in the minimum spanning tree. If 373 <tt>p[u] = u</tt> then <tt>u</tt> is either the start vertex or a 374 vertex that is not reachable from the start. The 375 <tt>PredecessorMap</tt> type must be a <a 376 href="../../property_map/doc/ReadWritePropertyMap.html"><tt>Read/Write 377 Property Map</tt></a> with key and vertex types the same as the 378 vertex descriptor type of the graph.<br> 379 380 <b>Default:</b> <tt>dummy_property_map</tt> 381</blockquote> 382 383UTIL/OUT: <tt>distance_map(DistanceMap d_map)</tt> 384<blockquote> 385 386 The shortest path weight from the start vertex <tt>s</tt> to each 387 vertex in the graph <tt>g</tt> is recorded in this property map. 388 The shortest path weight is the sum of the edge weights along the 389 shortest path. The type <tt>DistanceMap</tt> must be a model of <a 390 href="../../property_map/doc/ReadWritePropertyMap.html"><tt>Read/Write 391 Property Map</tt></a>. The vertex descriptor type of the graph 392 needs to be usable as the key type of the distance map. The value 393 type of the distance map is the element type of a <a 394 href="./Monoid.html"><tt>Monoid</tt></a> formed with the 395 <tt>combine</tt> function object and the zero object for the 396 identity element. Also the distance value type must have a <a 397 href="http://www.boost.org/sgi/stl/StrictWeakOrdering.html"><tt>StrictWeakOrdering</tt></a> 398 provided by the <tt>compare</tt> function object. A 399 <tt>constant_writable_property_map</tt> returning the infinity value can be 400 used for this parameter in tree versions of the algorithm when the graph does 401 not contain a directed cycle.<br> 402 403 <b>Default:</b> <tt>shared_array_property_map</tt> 404 with the same value type as the 405 <tt>WeightMap</tt>, and of size <tt>num_vertices(g)</tt>, and using 406 the <tt>i_map</tt> for the index map. 407</blockquote> 408 409UTIL/OUT: <tt>rank_map(CostMap c_map)</tt> 410<blockquote> 411 412 The <i>f</i>-value for each vertex. The <i>f</i>-value is defined 413 as the sum of the cost to get to a vertex from the start vertex, and 414 the estimated cost (as returned by the heuristic function 415 <tt>h</tt>) from the vertex to a goal. The type <tt>CostMap</tt> 416 must be a model of <a 417 href="../../property_map/doc/ReadWritePropertyMap.html"><tt>Read/Write 418 Property Map</tt></a> in non-tree versions of the algorithm, and <a 419 href="../../property_map/doc/WritablePropertyMap.html"><tt>Writable Property 420 Map</tt></a> in tree versions of the algorithm. The vertex descriptor type 421 of the graph 422 needs to be usable as the key type of the distance map. The value 423 type of the distance map is the element type of a <a 424 href="./Monoid.html"><tt>Monoid</tt></a> formed with the 425 <tt>combine</tt> function object and the zero object for the 426 identity element. Also the distance value type must have a <a 427 href="http://www.boost.org/sgi/stl/StrictWeakOrdering.html"><tt>StrictWeakOrdering</tt></a> 428 provided by the <tt>compare</tt> function object. The value type 429 for this map must be the same as the value type for the distance 430 map. In tree versions of the algorithm, <tt>null_property_map</tt> can be 431 used for this parameter.<br> 432 433 <b>Default:</b> <tt>shared_array_property_map</tt> 434 with the same value type as the 435 <tt>DistanceMap</tt>, and of size <tt>num_vertices(g)</tt>, and using 436 the <tt>i_map</tt> for the index map. 437</blockquote> 438 439UTIL/OUT: <tt>color_map(ColorMap c_map)</tt> 440<blockquote> 441 442 This is used during the execution of non-tree versions of the algorithm to 443 mark the 444 vertices, indicating whether they are on the OPEN or CLOSED lists. 445 The vertices start out white and become gray when they are inserted 446 into the OPEN list. They then turn black when they are examined and 447 placed on the CLOSED list. At the end of the algorithm, vertices 448 reachable from the source vertex will have been colored black. All 449 other vertices will still be white. The type <tt>ColorMap</tt> must 450 be a model of <a 451 href="../../property_map/doc/ReadWritePropertyMap.html"><tt>Read/Write 452 Property Map</tt></a>. A vertex descriptor must be usable as the 453 key type of the map, and the value type of the map must be a model 454 of <a href="./ColorValue.html"><tt>Color Value</tt></a>.<br> 455 456 <b>Default:</b> <tt>shared_array_property_map</tt> 457 of value type <tt>default_color_type</tt>, with size 458 <tt>num_vertices(g)</tt>, and using 459 the <tt>i_map</tt> for the index map. 460</blockquote> 461 462IN: <tt>distance_compare(CompareFunction cmp)</tt> 463<blockquote> 464 465 This function is use to compare distances to determine which vertex 466 is closer to the start vertex, and to compare <i>f</i>-values to 467 determine which vertex on the OPEN list to examine next. The 468 <tt>CompareFunction</tt> type must be a model of <a 469 href="http://www.boost.org/sgi/stl/BinaryPredicate.html"><tt>Binary 470 Predicate</tt></a> and have argument types that match the value type 471 of the <tt>DistanceMap</tt> property map.<br> 472 473 <b>Default:</b> <tt>std::less<D></tt> with <tt>D = typename 474 property_traits<DistanceMap>::value_type</tt>. 475</blockquote> 476 477IN: <tt>distance_combine(CombineFunction cmb)</tt> 478<blockquote> 479 480 This function is used to combine distances to compute the distance 481 of a path, and to combine distance and heuristic values to compute 482 the <i>f</i>-value of a vertex. The <tt>CombineFunction</tt> type 483 must be a model of <a 484 href="http://www.boost.org/sgi/stl/BinaryFunction.html"><tt>Binary 485 Function</tt></a>. Both argument types of the binary function must 486 match the value type of the <tt>DistanceMap</tt> property map (which 487 is the same as that of the <tt>WeightMap</tt> and <tt>CostMap</tt> 488 property maps). The result type must be the same type as the 489 distance value type.<br> 490 491 <b>Default:</b> <tt>std::plus<D></tt> with <tt>D = typename 492 property_traits<DistanceMap>::value_type</tt>. 493</blockquote> 494 495IN: <tt>distance_inf(D inf)</tt> 496<blockquote> 497 498 The <tt>inf</tt> object must be the greatest value of any <tt>D</tt> 499 object. That is, <tt>compare(d, inf) == true</tt> for any <tt>d != 500 inf</tt>. The type <tt>D</tt> is the value type of the 501 <tt>DistanceMap</tt>.<br> 502 503 <b>Default:</b> <tt>std::numeric_limits<D>::max()</tt> 504</blockquote> 505 506IN: <tt>distance_zero(D zero)</tt> 507<blockquote> 508 509 The <tt>zero</tt> value must be the identity element for the <a 510 href="./Monoid.html"><tt>Monoid</tt></a> formed by the distance 511 values and the <tt>combine</tt> function object. The type 512 <tt>D</tt> is the value type of the <tt>DistanceMap</tt>.<br> 513 514 <b>Default</b>: <tt>D()</tt> with <tt>D = typename 515 property_traits<DistanceMap>::value_type</tt>. 516</blockquote> 517 518OUT: <tt>visitor(AStarVisitor v)</tt> 519<blockquote> 520 521 Use this to specify actions that you would like to happen during 522 certain event points within the algorithm. The type 523 <tt>AStarVisitor</tt> must be a model of the <a 524 href="AStarVisitor.html"><tt>AStarVisitor</tt></a> concept. The 525 visitor object is passed by value <a href="#1">[1]</a>.<br> 526 527 <b>Default:</b> <tt>astar_visitor<null_visitor></tt> 528</blockquote> 529 530<H3>Complexity</H3> 531 532<P> 533The time complexity is <i>O((E + V) log V)</i>. 534 535<h3>Visitor Event Points</h3> 536 537<ul> 538<li><b><tt>vis.initialize_vertex(u, g)</tt></b> 539 is invoked on each vertex in the graph before the start of the 540 algorithm. 541<li><b><tt>vis.discover_vertex(v, g)</tt></b> 542 is invoked when a vertex is first discovered and is added to the 543 OPEN list. 544<li><b><tt>vis.examine_vertex(u, g)</tt></b> 545 is invoked when a vertex is popped from 546 the queue (i.e., it has the lowest cost on the OPEN list). 547<li><b><tt>vis.examine_edge(e, g)</tt></b> 548 is invoked on each out-edge of a vertex immediately after it is 549 examined. 550<li><b><tt>vis.edge_relaxed(e, g)</tt></b> 551 is invoked on edge <i>(u,v)</i> if <i>d[u] + w(u,v) < d[v]</i>. 552<li><b><tt>vis.edge_not_relaxed(e, g)</tt></b> 553 is invoked if the edge is not relaxed (see above). 554<li><b><tt>vis.black_target(e, g)</tt></b> 555 is invoked when a vertex that is on the CLOSED list is 556 "rediscovered" via a more efficient path, and is re-added to the 557 OPEN list. 558<li><b><tt>vis.finish_vertex(u, g)</tt></b> 559 is invoked on a vertex when it is added to the CLOSED list, which 560 happens after all of its out edges have been examined. 561</ul> 562 563<H3>Example</H3> 564 565<P> 566See <a href="../example/astar-cities.cpp"> 567<TT>example/astar-cities.cpp</TT></a> for an example of 568using A* search. 569 570<H3>Notes</H3> 571 572<a name="1">[1]</a> Since the visitor parameter is passed by value, if 573your visitor contains state then any changes to the state during the 574algorithm will be made to a copy of the visitor object, not the 575visitor object passed in. Therefore you may want the visitor to hold 576this state by pointer or reference. 577 578<br> 579<HR> 580<TABLE> 581<TR valign=top> 582<TD nowrap>Copyright © 2004</TD><TD> 583<A HREF="http://cs.krisbeevers.com/">Kristopher Beevers</A>, 584Rensselaer Polytechnic Institute (<A 585HREF="mailto:beevek@cs.rpi.edu">beevek@cs.rpi.edu</A>) 586</TD></TR></TABLE> 587 588</BODY> 589</HTML> 590