• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<HTML>
2<!--
3     Copyright (c) Jeremy Siek 2000
4
5     Distributed under the Boost Software License, Version 1.0.
6     (See accompanying file LICENSE_1_0.txt or copy at
7     http://www.boost.org/LICENSE_1_0.txt)
8  -->
9<Head>
10<Title>Boost Graph Library: Edmonds-Karp Maximum Flow</Title>
11<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
12        ALINK="#ff0000">
13<IMG SRC="../../../boost.png"
14     ALT="C++ Boost" width="277" height="86">
15
16<BR Clear>
17
18<H1><A NAME="sec:edmonds_karp_max_flow">
19<TT>edmonds_karp_max_flow</TT>
20</H1>
21
22<PRE>
23<i>// named parameter version</i>
24template &lt;class <a href="./Graph.html">Graph</a>, class P, class T, class R&gt;
25typename detail::edge_capacity_value&lt;Graph, P, T, R&gt;::value_type
26edmonds_karp_max_flow(Graph& g,
27   typename graph_traits&lt;Graph&gt;::vertex_descriptor src,
28   typename graph_traits&lt;Graph&gt;::vertex_descriptor sink,
29   const bgl_named_params&lt;P, T, R&gt;&amp; params = <i>all defaults</i>)
30
31<i>// non-named parameter version</i>
32template &lt;class <a href="./Graph.html">Graph</a>,
33	  class CapacityEdgeMap, class ResidualCapacityEdgeMap,
34	  class ReverseEdgeMap, class ColorMap, class PredEdgeMap&gt;
35typename property_traits&lt;CapacityEdgeMap&gt;::value_type
36edmonds_karp_max_flow(Graph&amp; g,
37   typename graph_traits&lt;Graph&gt;::vertex_descriptor src,
38   typename graph_traits&lt;Graph&gt;::vertex_descriptor sink,
39   CapacityEdgeMap cap, ResidualCapacityEdgeMap res, ReverseEdgeMap rev,
40   ColorMap color, PredEdgeMap pred)
41</PRE>
42
43<P>
44The <tt>edmonds_karp_max_flow()</tt> function calculates the maximum flow
45of a network. See Section <a
46href="./graph_theory_review.html#sec:network-flow-algorithms">Network
47Flow Algorithms</a> for a description of maximum flow.  The calculated
48maximum flow will be the return value of the function. The function
49also calculates the flow values <i>f(u,v)</i> for all <i>(u,v)</i> in
50<i>E</i>, which are returned in the form of the residual capacity
51<i>r(u,v) = c(u,v) - f(u,v)</i>.
52
53<p>
54There are several special requirements on the input graph and property
55map parameters for this algorithm. First, the directed graph
56<i>G=(V,E)</i> that represents the network must be augmented to
57include the reverse edge for every edge in <i>E</i>.  That is, the
58input graph should be <i>G<sub>in</sub> = (V,{E U
59E<sup>T</sup>})</i>. The <tt>ReverseEdgeMap</tt> argument <tt>rev</tt>
60must map each edge in the original graph to its reverse edge, that is
61<i>(u,v) -> (v,u)</i> for all <i>(u,v)</i> in <i>E</i>. The
62<tt>CapacityEdgeMap</tt> argument <tt>cap</tt> must map each edge in
63<i>E</i> to a positive number, and each edge in <i>E<sup>T</sup></i>
64to 0.
65
66<p>
67The algorithm is due to <a
68href="./bibliography.html#edmonds72:_improvements_netflow">Edmonds and
69Karp</a>, though we are using the variation called the ``labeling
70algorithm'' described in <a
71href="./bibliography.html#ahuja93:_network_flows">Network Flows</a>.
72
73<p>
74This algorithm provides a very simple and easy to implement solution to
75the maximum flow problem. However, there are several reasons why this
76algorithm is not as good as the <a
77href="./push_relabel_max_flow.html"><tt>push_relabel_max_flow()</tt></a>
78or the <a
79href="./boykov_kolmogorov_max_flow.html"><tt>boykov_kolmogorov_max_flow()</tt></a>
80algorithm.
81
82<ul>
83  <li>In the non-integer capacity case, the time complexity is <i>O(V
84   E<sup>2</sup>)</i> which is worse than the time complexity of the
85   push-relabel algorithm <i>O(V<sup>2</sup>E<sup>1/2</sup>)</i>
86   for all but the sparsest of graphs.</li>
87
88  <li>In the integer capacity case, if the capacity bound <i>U</i> is
89    very large then the algorithm will take a long time.</li>
90</ul>
91
92
93<H3>Where Defined</H3>
94
95<P>
96<a href="../../../boost/graph/edmonds_karp_max_flow.hpp"><TT>boost/graph/edmonds_karp_max_flow.hpp</TT></a>
97
98<P>
99
100<h3>Parameters</h3>
101
102IN: <tt>Graph&amp; g</tt>
103<blockquote>
104  A directed graph. The
105  graph's type must be a model of <a
106  href="./VertexListGraph.html">VertexListGraph</a> and <a href="./IncidenceGraph.html">IncidenceGraph</a> For each edge
107  <i>(u,v)</i> in the graph, the reverse edge <i>(v,u)</i> must also
108  be in the graph.
109</blockquote>
110
111IN: <tt>vertex_descriptor src</tt>
112<blockquote>
113  The source vertex for the flow network graph.
114</blockquote>
115
116IN: <tt>vertex_descriptor sink</tt>
117<blockquote>
118  The sink vertex for the flow network graph.
119</blockquote>
120
121<h3>Named Parameters</h3>
122
123
124IN: <tt>capacity_map(CapacityEdgeMap cap)</tt>
125<blockquote>
126  The edge capacity property map. The type must be a model of a
127  constant <a
128  href="../../property_map/doc/LvaluePropertyMap.html">Lvalue Property Map</a>. The
129  key type of the map must be the graph's edge descriptor type.<br>
130  <b>Default:</b> <tt>get(edge_capacity, g)</tt>
131</blockquote>
132
133OUT: <tt>residual_capacity_map(ResidualCapacityEdgeMap res)</tt>
134<blockquote>
135  This maps edges to their residual capacity. The type must be a model
136  of a mutable <a
137  href="../../property_map/doc/LvaluePropertyMap.html">Lvalue Property
138  Map</a>. The key type of the map must be the graph's edge descriptor
139  type.<br>
140  <b>Default:</b> <tt>get(edge_residual_capacity, g)</tt>
141</blockquote>
142
143IN: <tt>reverse_edge_map(ReverseEdgeMap rev)</tt>
144<blockquote>
145  An edge property map that maps every edge <i>(u,v)</i> in the graph
146  to the reverse edge <i>(v,u)</i>. The map must be a model of
147  constant <a href="../../property_map/doc/LvaluePropertyMap.html">Lvalue
148  Property Map</a>. The key type of the map must be the graph's edge
149  descriptor type.<br>
150  <b>Default:</b> <tt>get(edge_reverse, g)</tt>
151</blockquote>
152
153UTIL: <tt>color_map(ColorMap color)</tt>
154<blockquote>
155  Used by the algorithm to keep track of progress during the
156  breadth-first search stage. At the end of the algorithm, the white
157  vertices define the minimum cut set. The map must be a model of
158  mutable <a
159  href="../../property_map/doc/LvaluePropertyMap.html">Lvalue Property Map</a>.
160  The key type of the map should be the graph's vertex descriptor type, and
161  the value type must be a model of <a
162  href="./ColorValue.html">ColorValue</a>.<br>
163
164  <b>Default:</b> an <a
165  href="../../property_map/doc/iterator_property_map.html">
166  <tt>iterator_property_map</tt></a> created from a <tt>std::vector</tt>
167  of <tt>default_color_type</tt> of size <tt>num_vertices(g)</tt> and
168  using the <tt>i_map</tt> for the index map.
169</blockquote>
170
171UTIL: <tt>predecessor_map(PredEdgeMap pred)</tt>
172<blockquote>
173  Use by the algorithm to store augmenting paths. The map must be a
174  model of mutable <a
175  href="../../property_map/doc/LvaluePropertyMap.html">Lvalue Property Map</a>.
176  The key type must be the graph's vertex descriptor type and the
177  value type must be the graph's edge descriptor type.<br>
178
179  <b>Default:</b> an <a
180  href="../../property_map/doc/iterator_property_map.html">
181  <tt>iterator_property_map</tt></a> created from a <tt>std::vector</tt>
182  of edge descriptors of size <tt>num_vertices(g)</tt> and
183  using the <tt>i_map</tt> for the index map.
184</blockquote>
185
186IN: <tt>vertex_index_map(VertexIndexMap i_map)</tt>
187<blockquote>
188  Maps each vertex of the graph to a unique integer in the range
189  <tt>[0, num_vertices(g))</tt>. This property map is only needed
190  if the default for the color or predecessor map is used.
191  The vertex index map must be a model of <a
192  href="../../property_map/doc/ReadablePropertyMap.html">Readable Property
193  Map</a>. The key type of the map must be the graph's vertex
194  descriptor type.<br>
195  <b>Default:</b> <tt>get(vertex_index, g)</tt>
196    Note: if you use this default, make sure your graph has
197    an internal <tt>vertex_index</tt> property. For example,
198    <tt>adjacency_list</tt> with <tt>VertexList=listS</tt> does
199    not have an internal <tt>vertex_index</tt> property.
200</blockquote>
201
202
203<h3>Complexity</h3>
204
205The time complexity is <i>O(V E<sup>2</sup>)</i> in the general case
206or <i>O(V E U)</i> if capacity values are integers bounded by
207some constant <i>U</i>.
208
209<h3>Example</h3>
210
211The program in <a
212href="../example/edmonds-karp-eg.cpp"><tt>example/edmonds-karp-eg.cpp</tt></a>
213reads an example maximum flow problem (a graph with edge capacities)
214from a file in the DIMACS format and computes the maximum flow.
215
216
217<h3>See Also</h3>
218
219<a href="./push_relabel_max_flow.html"><tt>push_relabel_max_flow()</tt></a><br>
220<a href="./boykov_kolmogorov_max_flow.html"><tt>boykov_kolmogorov_max_flow()</tt></a>.
221
222<br>
223<HR>
224<TABLE>
225<TR valign=top>
226<TD nowrap>Copyright &copy; 2000-2001</TD><TD>
227<A HREF="http://www.boost.org/users/people/jeremy_siek.html">Jeremy Siek</A>, Indiana University (<A HREF="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</A>)
228</TD></TR></TABLE>
229
230</BODY>
231</HTML>
232<!--  LocalWords:  HTML Siek Edmonds BGCOLOR ffffff ee VLINK ALINK ff IMG SRC
233 -->
234<!--  LocalWords:  gif ALT BR sec edmonds karp TT DIV CELLPADDING TR TD PRE lt
235 -->
236<!--  LocalWords:  typename VertexListGraph CapacityEdgeMap ReverseEdgeMap gt
237 -->
238<!--  LocalWords:  ResidualCapacityEdgeMap VertexIndexMap src rev ColorMap pred
239 -->
240<!--  LocalWords:  PredEdgeMap tt href html hpp ul li nbsp br LvaluePropertyMap
241 -->
242<!--  LocalWords:  num ColorValue DIMACS cpp pre config iostream dimacs int std
243 -->
244<!--  LocalWords:  namespace vecS directedS cout endl iter ei HR valign nowrap
245 -->
246<!--  LocalWords:  jeremy siek htm Univ mailto jsiek lsc edu
247p -->
248