• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#!/usr/bin/env python3
2
3#            Copyright Hans Dembinski 2018 - 2019.
4#   Distributed under the Boost Software License, Version 1.0.
5#      (See accompanying file LICENSE_1_0.txt or copy at
6#            https://www.boost.org/LICENSE_1_0.txt)
7
8import os
9import numpy as np
10import glob
11import re
12import json
13import sys
14from collections import defaultdict, OrderedDict
15from matplotlib.patches import Rectangle
16from matplotlib.lines import Line2D
17from matplotlib.text import Text
18from matplotlib.font_manager import FontProperties
19import matplotlib.pyplot as plt
20import matplotlib as mpl
21
22mpl.rcParams.update(mpl.rcParamsDefault)
23
24cpu_frequency = 0
25
26data = defaultdict(lambda: [])
27hostname = None
28for fn in sys.argv[1:]:
29    d = json.load(open(fn))
30    cpu_frequency = d["context"]["mhz_per_cpu"]
31    # make sure we don't compare benchmarks from different computers
32    if hostname is None:
33        hostname = d["context"]["host_name"]
34    else:
35        assert hostname == d["context"]["host_name"]
36    for bench in d["benchmarks"]:
37        name = bench["name"]
38        time = min(bench["cpu_time"], bench["real_time"])
39        m = re.match("fill_(n_)?([0-9])d<([^>]+)>", name)
40        if m.group(1):
41            time /= 1 << 15
42        tags = m.group(3).split(", ")
43        dim = int(m.group(2))
44        label = re.search(
45            "fill_([a-z]+)", os.path.splitext(os.path.split(fn)[1])[0]
46        ).group(1)
47        dist = tags[0]
48        if len(tags) > 1 and tags[1] in ("dynamic_tag", "static_tag"):
49            if len(tags) == 3 and "DStore" in tags[2]:
50                continue
51            label += "-" + {"dynamic_tag": "dyn", "static_tag": "sta"}[tags[1]]
52            label += "-fill" if m.group(1) else "-call"
53        data[dim].append((label, dist, time / dim))
54
55time_per_cycle_in_ns = 1.0 / (cpu_frequency * 1e6) / 1e-9
56
57plt.figure(figsize=(7, 6))
58i = 0
59for dim in sorted(data):
60    v = data[dim]
61    labels = OrderedDict()
62    for label, dist, time in v:
63        if label in labels:
64            labels[label][dist] = time / time_per_cycle_in_ns
65        else:
66            labels[label] = {dist: time / time_per_cycle_in_ns}
67    j = 0
68    for label, d in labels.items():
69        t1 = d["uniform"]
70        t2 = d["normal"]
71        i -= 1
72        z = float(j) / len(labels)
73        col = (1.0 - z) * np.array((1.0, 0.0, 0.0)) + z * np.array((1.0, 1.0, 0.0))
74        if label == "root":
75            col = "k"
76            label = "ROOT 6"
77        if "numpy" in label:
78            col = "0.6"
79        if "gsl" in label:
80            col = "0.3"
81            label = "GSL"
82        tmin = min(t1, t2)
83        tmax = max(t1, t2)
84        r1 = Rectangle((0, i), tmax, 1, facecolor=col)
85        r2 = Rectangle(
86            (tmin, i), tmax - tmin, 1, facecolor="none", edgecolor="w", hatch="//////"
87        )
88        plt.gca().add_artist(r1)
89        plt.gca().add_artist(r2)
90        font = FontProperties(size=9)
91        tx = Text(
92            -0.5,
93            i + 0.5,
94            "%s" % label,
95            fontproperties=font,
96            va="center",
97            ha="right",
98            clip_on=False,
99        )
100        plt.gca().add_artist(tx)
101        j += 1
102    i -= 1
103    font = FontProperties()
104    font.set_weight("bold")
105    tx = Text(
106        -0.5,
107        i + 0.6,
108        "%iD" % dim,
109        fontproperties=font,
110        va="center",
111        ha="right",
112        clip_on=False,
113    )
114    plt.gca().add_artist(tx)
115plt.ylim(0, i)
116plt.xlim(0, 80)
117from matplotlib.ticker import MultipleLocator
118
119plt.gca().xaxis.set_major_locator(MultipleLocator(5))
120
121plt.tick_params("y", left=False, labelleft=False)
122plt.xlabel("average CPU cycles per random input value (smaller is better)")
123
124plt.tight_layout()
125
126plt.savefig("fill_performance.svg")
127plt.show()
128