1<?xml version="1.0" encoding="ISO-Latin-1"?> 2<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN" 3 "http://www.boost.org/tools/boostbook/dtd/boostbook.dtd"> 4<library name="Lambda" dirname="lambda" id="lambda" 5 last-revision="$Date$" 6 xmlns:xi="http://www.w3.org/2001/XInclude"> 7<libraryinfo> 8 <author> 9 <firstname>Jaakko</firstname> 10 <surname>J�rvi</surname> 11 <email>jarvi at cs tamu edu</email> 12 </author> 13 14 <copyright> 15 <year>1999</year> 16 <year>2000</year> 17 <year>2001</year> 18 <year>2002</year> 19 <year>2003</year> 20 <year>2004</year> 21 <holder>Jaakko J�rvi</holder> 22 <holder>Gary Powell</holder> 23 </copyright> 24 25 <legalnotice> 26 <para>Use, modification and distribution is subject to the Boost 27 Software License, Version 1.0. (See accompanying file 28 <filename>LICENSE_1_0.txt</filename> or copy at <ulink 29 url="http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</ulink>)</para> 30 </legalnotice> 31 32 <librarypurpose>Define small unnamed function objects at the actual call site, and more</librarypurpose> 33 <librarycategory name="category:higher-order"/> 34</libraryinfo> 35 36<title>Boost.Lambda</title> 37 38 <!-- --> 39 40 <section id="introduction"> 41 42 <title>In a nutshell</title> 43 44 <para> 45 46 The Boost Lambda Library (BLL in the sequel) is a C++ template 47 library, which implements a form of <emphasis>lambda abstractions</emphasis> for C++. 48The term originates from functional programming and lambda calculus, where a lambda abstraction defines an unnamed function. 49 The primary motivation for the BLL is to provide flexible and 50 convenient means to define unnamed function objects for STL algorithms. 51In explaining what the library is about, a line of code says more than a thousand words; the 52 following line outputs the elements of some STL container 53 <literal>a</literal> separated by spaces: 54 55 <programlisting><![CDATA[for_each(a.begin(), a.end(), std::cout << _1 << ' ');]]></programlisting> 56 57 The expression <literal><![CDATA[std::cout << _1 << ' ']]></literal> defines a unary function object. 58 The variable <literal>_1</literal> is the parameter of this function, a <emphasis>placeholder</emphasis> for the actual argument. 59 Within each iteration of <literal>for_each</literal>, the function is 60 called with an element of <literal>a</literal> as the actual argument. 61 This actual argument is substituted for the placeholder, and the <quote>body</quote> of the function is evaluated. 62 </para> 63 64 <para>The essence of BLL is letting you define small unnamed function objects, such as the one above, directly on the call site of an STL algorithm. 65 </para> 66 </section> 67 68 <section id="lambda.getting_started"> 69 <title>Getting Started</title> 70 71 <section> 72 <title>Installing the library</title> 73 74 75 <para> 76 The library consists of include files only, hence there is no 77 installation procedure. The <literal>boost</literal> include directory 78 must be on the include path. 79 There are a number of include files that give different functionality: 80 81 <!-- TODO: tarkista viel� riippuvuudet--> 82 <itemizedlist> 83 84 <listitem><para> 85 <filename>lambda/lambda.hpp</filename> defines lambda expressions for different C++ 86 operators, see <xref linkend="lambda.operator_expressions"/>. 87 </para></listitem> 88 89 <listitem><para> 90 <filename>lambda/bind.hpp</filename> defines <literal>bind</literal> functions for up to 9 arguments, see <xref linkend="lambda.bind_expressions"/>.</para></listitem> 91 92 93 <listitem><para> 94 <filename>lambda/if.hpp</filename> defines lambda function equivalents for if statements and the conditional operator, see <xref linkend="lambda.lambda_expressions_for_control_structures"/> (includes <filename>lambda.hpp</filename>). 95 </para></listitem> 96 97 <listitem><para> 98 <filename>lambda/loops.hpp</filename> defines lambda function equivalent for looping constructs, see <xref linkend="lambda.lambda_expressions_for_control_structures"/>. 99 </para></listitem> 100 101 <listitem><para> 102 <filename>lambda/switch.hpp</filename> defines lambda function equivalent for the switch statement, see <xref linkend="lambda.lambda_expressions_for_control_structures"/>. 103 </para></listitem> 104 105 <listitem><para> 106 <filename>lambda/construct.hpp</filename> provides tools for writing lambda expressions with constructor, destructor, new and delete invocations, see <xref linkend="lambda.construction_and_destruction"/> (includes <filename>lambda.hpp</filename>). 107 </para></listitem> 108 109 <listitem><para> 110 <filename>lambda/casts.hpp</filename> provides lambda versions of different casts, as well as <literal>sizeof</literal> and <literal>typeid</literal>, see <xref linkend="lambda.cast_expressions"/>. 111 </para></listitem> 112 113 <listitem><para> 114 <filename>lambda/exceptions.hpp</filename> gives tools for throwing and catching 115 exceptions within lambda functions, <xref linkend="lambda.exceptions"/> (includes 116 <filename>lambda.hpp</filename>). 117 </para></listitem> 118 119 <listitem><para> 120 <filename>lambda/algorithm.hpp</filename> and <filename>lambda/numeric.hpp</filename> (cf. standard <filename>algortihm</filename> and <filename>numeric</filename> headers) allow nested STL algorithm invocations, see <xref linkend="lambda.nested_stl_algorithms"/>. 121 </para></listitem> 122 123 </itemizedlist> 124 125 Any other header files in the package are for internal use. 126 Additionally, the library depends on two other Boost Libraries, the 127 <emphasis>Tuple</emphasis> <xref linkend="cit:boost::tuple"/> and the <emphasis>type_traits</emphasis> <xref linkend="cit:boost::type_traits"/> libraries, and on the <filename>boost/ref.hpp</filename> header. 128 </para> 129 130 <para> 131 All definitions are placed in the namespace <literal>boost::lambda</literal> and its subnamespaces. 132 </para> 133 134 </section> 135 136 <section> 137 <title>Conventions used in this document</title> 138 139 <para>In most code examples, we omit the namespace prefixes for names in the <literal moreinfo="none">std</literal> and <literal moreinfo="none">boost::lambda</literal> namespaces. 140Implicit using declarations 141<programlisting> 142using namespace std; 143using namespace boost::lambda; 144</programlisting> 145are assumed to be in effect. 146</para> 147 148 </section> 149 </section> 150 151 <section> 152 <title>Introduction</title> 153 154 <section> 155 <title>Motivation</title> 156 <para>The Standard Template Library (STL) 157 <xref role="citation" linkend="cit:stepanov:94"/>, now part of the C++ Standard Library <xref role="citation" linkend="cit:c++:98"/>, is a generic container and algorithm library. 158Typically STL algorithms operate on container elements via <emphasis>function objects</emphasis>. These function objects are passed as arguments to the algorithms. 159</para> 160 161<para> 162Any C++ construct that can be called with the function call syntax 163is a function object. 164The STL contains predefined function objects for some common cases (such as <literal>plus</literal>, <literal>less</literal> and <literal>not1</literal>). 165As an example, one possible implementation for the standard <literal>plus</literal> template is: 166 167<programlisting> 168<![CDATA[template <class T> 169struct plus : public binary_function<T, T, T> { 170 T operator()(const T& i, const T& j) const { 171 return i + j; 172 } 173};]]> 174</programlisting> 175 176The base class <literal><![CDATA[binary_function<T, T, T>]]></literal> contains typedefs for the argument and return types of the function object, which are needed to make the function object <emphasis>adaptable</emphasis>. 177</para> 178 179<para> 180In addition to the basic function object classes, such as the one above, 181the STL contains <emphasis>binder</emphasis> templates for creating a unary function object from an adaptable binary function object by fixing one of the arguments to a constant value. 182For example, instead of having to explicitly write a function object class like: 183 184<programlisting> 185<![CDATA[class plus_1 { 186 int _i; 187public: 188 plus_1(const int& i) : _i(i) {} 189 int operator()(const int& j) { return _i + j; } 190};]]> 191</programlisting> 192 193the equivalent functionality can be achieved with the <literal moreinfo="none">plus</literal> template and one of the binder templates (<literal moreinfo="none">bind1st</literal>). 194E.g., the following two expressions create function objects with identical functionalities; 195when invoked, both return the result of adding <literal moreinfo="none">1</literal> to the argument of the function object: 196 197<programlisting> 198<![CDATA[plus_1(1) 199bind1st(plus<int>(), 1)]]> 200</programlisting> 201 202The subexpression <literal><![CDATA[plus<int>()]]></literal> in the latter line is a binary function object which computes the sum of two integers, and <literal>bind1st</literal> invokes this function object partially binding the first argument to <literal>1</literal>. 203As an example of using the above function object, the following code adds <literal>1</literal> to each element of some container <literal>a</literal> and outputs the results into the standard output stream <literal>cout</literal>. 204 205<programlisting> 206<![CDATA[transform(a.begin(), a.end(), ostream_iterator<int>(cout), 207 bind1st(plus<int>(), 1));]]> 208</programlisting> 209 210</para> 211 212<para> 213To make the binder templates more generally applicable, the STL contains <emphasis>adaptors</emphasis> for making 214pointers or references to functions, and pointers to member functions, 215adaptable. 216 217Finally, some STL implementations contain function composition operations as 218extensions to the standard <xref linkend="cit:sgi:02"/>. 219 </para> 220 221<para> 222All these tools aim at one goal: to make it possible to specify 223<emphasis>unnamed functions</emphasis> in a call of an STL algorithm, 224in other words, to pass code fragments as an argument to a function. 225 226However, this goal is attained only partially. 227The simple example above shows that the definition of unnamed functions 228with the standard tools is cumbersome. 229 230Complex expressions involving functors, adaptors, binders and 231function composition operations tend to be difficult to comprehend. 232 233In addition to this, there are significant restrictions in applying 234the standard tools. E.g. the standard binders allow only one argument 235of a binary function to be bound; there are no binders for 2363-ary, 4-ary etc. functions. 237</para> 238 239<para> 240The Boost Lambda Library provides solutions for the problems described above: 241 242<itemizedlist> 243<listitem> 244<para> 245Unnamed functions can be created easily with an intuitive syntax. 246 247The above example can be written as: 248 249<programlisting> 250<![CDATA[transform(a.begin(), a.end(), ostream_iterator<int>(cout), 251 1 + _1);]]> 252</programlisting> 253 254or even more intuitively: 255 256<programlisting> 257<![CDATA[for_each(a.begin(), a.end(), cout << (1 + _1));]]> 258</programlisting> 259</para> 260 261</listitem> 262 263<listitem> 264<para> 265Most of the restrictions in argument binding are removed, 266arbitrary arguments of practically any C++ function can be bound. 267</para> 268</listitem> 269 270<listitem> 271<para> 272Separate function composition operations are not needed, 273as function composition is supported implicitly. 274 275</para> 276</listitem> 277 278</itemizedlist> 279 280</para> 281 282</section> 283 284 285 286<section> 287 <title>Introduction to lambda expressions</title> 288 289 <para> 290 Lambda expression are common in functional programming languages. 291 Their syntax varies between languages (and between different forms of lambda calculus), but the basic form of a lambda expressions is: 292 293 294<programlisting> 295lambda x<subscript>1</subscript> ... x<subscript>n</subscript>.e 296</programlisting> 297 <!-- $\lambda x_1 \cdots x_n . e$ --> 298 299 A lambda expression defines an unnamed function and consists of: 300 <itemizedlist> 301 <listitem> 302 <para> 303 the parameters of this function: <literal>x<subscript>1</subscript> ... x<subscript>n</subscript></literal>. 304 <!--$x_1 \cdots x_n$--> 305 </para> 306 </listitem> 307 <listitem> 308 <para>the expression e which computes the value of the function in terms of the parameters <literal>x<subscript>1</subscript> ... x<subscript>n</subscript></literal>. 309 </para> 310 </listitem> 311 </itemizedlist> 312 313 A simple example of a lambda expression is 314<programlisting> 315lambda x y.x+y 316</programlisting> 317Applying the lambda function means substituting the formal parameters with the actual arguments: 318<programlisting> 319(lambda x y.x+y) 2 3 = 2 + 3 = 5 320</programlisting> 321 322 323 </para> 324 325<para> 326In the C++ version of lambda expressions the <literal>lambda x<subscript>1</subscript> ... x<subscript>n</subscript></literal> part is missing and the formal parameters have predefined names. 327In the current version of the library, 328there are three such predefined formal parameters, 329called <emphasis>placeholders</emphasis>: 330<literal>_1</literal>, <literal>_2</literal> and <literal>_3</literal>. 331They refer to the first, second and third argument of the function defined 332by the lambda expression. 333 334For example, the C++ version of the definition 335<programlisting>lambda x y.x+y</programlisting> 336is 337<programlisting>_1 + _2</programlisting> 338</para> 339 340 <para> 341Hence, there is no syntactic keyword for C++ lambda expressions. 342 The use of a placeholder as an operand implies that the operator invocation is a lambda expression. 343 However, this is true only for operator invocations. 344 Lambda expressions containing function calls, control structures, casts etc. require special syntactic constructs. 345 Most importantly, function calls need to be wrapped inside a <literal>bind</literal> function. 346 347 As an example, consider the lambda expression: 348 349 <programlisting>lambda x y.foo(x,y)</programlisting> 350 351 Rather than <literal>foo(_1, _2)</literal>, the C++ counterpart for this expression is: 352 353 <programlisting>bind(foo, _1, _2)</programlisting> 354 355 We refer to this type of C++ lambda expressions as <emphasis>bind expressions</emphasis>. 356 </para> 357 358 <para>A lambda expression defines a C++ function object, hence function application syntax is like calling any other function object, for instance: <literal>(_1 + _2)(i, j)</literal>. 359 360 361 </para> 362 363 364 365<section id="lambda.partial_function_application"> 366<title>Partial function application</title> 367 368<para> 369A bind expression is in effect a <emphasis>partial function application</emphasis>. 370In partial function application, some of the arguments of a function are bound to fixed values. 371 The result is another function, with possibly fewer arguments. 372 When called with the unbound arguments, this new function invokes the original function with the merged argument list of bound and unbound arguments. 373 </para> 374 375<!-- <para>The underlying implementation of the BLL unifies the two types of lambda expressions (bind expressions and lambda expressions consisting of operator calls). 376 If operators are regarded as functions, it is easy to see that lambda expressions using operators are partial function applications as well. 377 E.g. the lambda expression <literal>_1 + 1</literal> can be seen as syntactic sugar for the pseudo code <literal>bind(operator+, _1, 1)</literal>. 378 </para> 379--> 380 381 </section> 382 383 384 385 <section id="lambda.terminology"> 386 <title>Terminology</title> 387 388 <para> 389 A lambda expression defines a function. A C++ lambda expression concretely constructs a function object, <emphasis>a functor</emphasis>, when evaluated. We use the name <emphasis>lambda functor</emphasis> to refer to such a function object. 390 Hence, in the terminology adopted here, the result of evaluating a lambda expression is a lambda functor. 391 </para> 392 393 </section> 394 395 </section> 396 397 398 399 </section> 400 401 <section id = "lambda.using_library"> 402 <title>Using the library</title> 403 404 <para> 405The purpose of this section is to introduce the basic functionality of the library. 406There are quite a lot of exceptions and special cases, but discussion of them is postponed until later sections. 407 408 409 </para> 410 411 <section id = "lambda.introductory_examples"> 412 <title>Introductory Examples</title> 413 414 <para> 415 In this section we give basic examples of using BLL lambda expressions in STL algorithm invocations. 416 We start with some simple expressions and work up. 417 First, we initialize the elements of a container, say, a <literal>list</literal>, to the value <literal>1</literal>: 418 419 420 <programlisting> 421<![CDATA[list<int> v(10); 422for_each(v.begin(), v.end(), _1 = 1);]]></programlisting> 423 424 The expression <literal>_1 = 1</literal> creates a lambda functor which assigns the value <literal>1</literal> to every element in <literal>v</literal>.<footnote> 425<para> 426Strictly taken, the C++ standard defines <literal>for_each</literal> as a <emphasis>non-modifying sequence operation</emphasis>, and the function object passed to <literal moreinfo="none">for_each</literal> should not modify its argument. 427The requirements for the arguments of <literal>for_each</literal> are unnecessary strict, since as long as the iterators are <emphasis>mutable</emphasis>, <literal>for_each</literal> accepts a function object that can have side-effects on their argument. 428Nevertheless, it is straightforward to provide another function template with the functionality of<literal>std::for_each</literal> but more fine-grained requirements for its arguments. 429</para> 430</footnote> 431 </para> 432 433 <para> 434 Next, we create a container of pointers and make them point to the elements in the first container <literal>v</literal>: 435 436 <programlisting> 437<![CDATA[vector<int*> vp(10); 438transform(v.begin(), v.end(), vp.begin(), &_1);]]></programlisting> 439 440The expression <literal><![CDATA[&_1]]></literal> creates a function object for getting the address of each element in <literal>v</literal>. 441The addresses get assigned to the corresponding elements in <literal>vp</literal>. 442 </para> 443 444 <para> 445 The next code fragment changes the values in <literal>v</literal>. 446 For each element, the function <literal>foo</literal> is called. 447The original value of the element is passed as an argument to <literal>foo</literal>. 448The result of <literal>foo</literal> is assigned back to the element: 449 450 451 <programlisting> 452<![CDATA[int foo(int); 453for_each(v.begin(), v.end(), _1 = bind(foo, _1));]]></programlisting> 454 </para> 455 456 457 <para> 458 The next step is to sort the elements of <literal>vp</literal>: 459 460 <programlisting>sort(vp.begin(), vp.end(), *_1 > *_2);</programlisting> 461 462 In this call to <literal>sort</literal>, we are sorting the elements by their contents in descending order. 463 </para> 464 465 <para> 466 Finally, the following <literal>for_each</literal> call outputs the sorted content of <literal>vp</literal> separated by line breaks: 467 468<programlisting> 469<![CDATA[for_each(vp.begin(), vp.end(), cout << *_1 << '\n');]]> 470</programlisting> 471 472Note that a normal (non-lambda) expression as subexpression of a lambda expression is evaluated immediately. 473This may cause surprises. 474For instance, if the previous example is rewritten as 475<programlisting> 476<![CDATA[for_each(vp.begin(), vp.end(), cout << '\n' << *_1);]]> 477</programlisting> 478the subexpression <literal><![CDATA[cout << '\n']]></literal> is evaluated immediately and the effect is to output a single line break, followed by the elements of <literal>vp</literal>. 479The BLL provides functions <literal>constant</literal> and <literal>var</literal> to turn constants and, respectively, variables into lambda expressions, and can be used to prevent the immediate evaluation of subexpressions: 480<programlisting> 481<![CDATA[for_each(vp.begin(), vp.end(), cout << constant('\n') << *_1);]]> 482</programlisting> 483These functions are described more thoroughly in <xref linkend="lambda.delaying_constants_and_variables"/> 484 485</para> 486 487 488 489 490 491 </section> 492 493 494 <section id="lambda.parameter_and_return_types"> 495 <title>Parameter and return types of lambda functors</title> 496 497 <para> 498 During the invocation of a lambda functor, the actual arguments are substituted for the placeholders. 499 The placeholders do not dictate the type of these actual arguments. 500 The basic rule is that a lambda function can be called with arguments of any types, as long as the lambda expression with substitutions performed is a valid C++ expression. 501 As an example, the expression 502 <literal>_1 + _2</literal> creates a binary lambda functor. 503 It can be called with two objects of any types <literal>A</literal> and <literal>B</literal> for which <literal>operator+(A,B)</literal> is defined (and for which BLL knows the return type of the operator, see below). 504 </para> 505 506 <para> 507 C++ lacks a mechanism to query a type of an expression. 508 However, this precise mechanism is crucial for the implementation of C++ lambda expressions. 509 Consequently, BLL includes a somewhat complex type deduction system which uses a set of traits classes for deducing the resulting type of lambda functions. 510 It handles expressions where the operands are of built-in types and many of the expressions with operands of standard library types. 511 Many of the user defined types are covered as well, particularly if the user defined operators obey normal conventions in defining the return types. 512 </para> 513 514 <!-- TODO: move this forward, and just refer to it. --> 515 <para> 516 There are, however, cases when the return type cannot be deduced. For example, suppose you have defined: 517 518 <programlisting>C operator+(A, B);</programlisting> 519 520 The following lambda function invocation fails, since the return type cannot be deduced: 521 522 <programlisting>A a; B b; (_1 + _2)(a, b);</programlisting> 523 </para> 524 525 <para> 526 There are two alternative solutions to this. 527 The first is to extend the BLL type deduction system to cover your own types (see <xref linkend="lambda.extending"/>). 528 The second is to use a special lambda expression (<literal>ret</literal>) which defines the return type in place (see <xref linkend = "lambda.overriding_deduced_return_type"/>): 529 530 <programlisting><![CDATA[A a; B b; ret<C>(_1 + _2)(a, b);]]></programlisting> 531 </para> 532 533 <para> 534 For bind expressions, the return type can be defined as a template argument of the bind function as well: 535 <programlisting><![CDATA[bind<int>(foo, _1, _2);]]></programlisting> 536 537<!-- 538 A rare case, where the <literal><![CDATA[ret<type>(bind(...))]]></literal> syntax does not work, but 539 <literal><![CDATA[bind<type>(...)]]></literal> does, is explained in <xref linkend="lambda.nullary_functors_and_ret"/>. 540--> 541 </para> 542 </section> 543 544 <section id="lambda.actual_arguments_to_lambda_functors"> 545 <title>About actual arguments to lambda functors</title> 546 547<!-- <para><emphasis>This section is no longer (or currently) relevant; 548 acual arguments can be non-const rvalues. 549 The section can, however, become relevant again, if in the future BLL will support 550 lambda functors with higher arities than 3.</emphasis></para> --> 551 552 <para>A general restriction for the actual arguments is that they cannot be non-const rvalues. 553 For example: 554 555<programlisting> 556int i = 1; int j = 2; 557(_1 + _2)(i, j); // ok 558(_1 + _2)(1, 2); // error (!) 559</programlisting> 560 561 This restriction is not as bad as it may look. 562 Since the lambda functors are most often called inside STL-algorithms, 563 the arguments originate from dereferencing iterators and the dereferencing operators seldom return rvalues. 564 And for the cases where they do, there are workarounds discussed in 565<xref linkend="lambda.rvalues_as_actual_arguments"/>. 566 567 568 </para> 569 570 </section> 571 572 573<section id="lambda.storing_bound_arguments"> 574 575<title>Storing bound arguments in lambda functions</title> 576 577<para> 578 579By default, temporary const copies of the bound arguments are stored 580in the lambda functor. 581 582This means that the value of a bound argument is fixed at the time of the 583creation of the lambda function and remains constant during the lifetime 584of the lambda function object. 585For example: 586<programlisting> 587int i = 1; 588(_1 = 2, _1 + i)(i); 589</programlisting> 590The comma operator is overloaded to combine lambda expressions into a sequence; 591the resulting unary lambda functor first assigns 2 to its argument, 592then adds the value of <literal>i</literal> to it. 593The value of the expression in the last line is 3, not 4. 594In other words, the lambda expression that is created is 595<literal>lambda x.(x = 2, x + 1)</literal> rather than 596<literal>lambda x.(x = 2, x + i)</literal>. 597 598</para> 599 600<para> 601 602As said, this is the default behavior for which there are exceptions. 603The exact rules are as follows: 604 605<itemizedlist> 606 607<listitem> 608 609<para> 610 611The programmer can control the storing mechanism with <literal>ref</literal> 612and <literal>cref</literal> wrappers <xref linkend="cit:boost::ref"/>. 613 614Wrapping an argument with <literal>ref</literal>, or <literal>cref</literal>, 615instructs the library to store the argument as a reference, 616or as a reference to const respectively. 617 618For example, if we rewrite the previous example and wrap the variable 619<literal>i</literal> with <literal>ref</literal>, 620we are creating the lambda expression <literal>lambda x.(x = 2, x + i)</literal> 621and the value of the expression in the last line will be 4: 622 623<programlisting> 624i = 1; 625(_1 = 2, _1 + ref(i))(i); 626</programlisting> 627 628Note that <literal>ref</literal> and <literal>cref</literal> are different 629from <literal>var</literal> and <literal>constant</literal>. 630 631While the latter ones create lambda functors, the former do not. 632For example: 633 634<programlisting> 635int i; 636var(i) = 1; // ok 637ref(i) = 1; // not ok, ref(i) is not a lambda functor 638</programlisting> 639 640The functions <literal>ref</literal> and <literal>cref</literal> mostly 641exist for historical reasons, 642and <literal>ref</literal> can always 643be replaced with <literal>var</literal>, and <literal>cref</literal> with 644<literal>constant_ref</literal>. 645See <xref linkend="lambda.delaying_constants_and_variables"/> for details. 646The <literal>ref</literal> and <literal>cref</literal> functions are 647general purpose utility functions in Boost, and hence defined directly 648in the <literal moreinfo="none">boost</literal> namespace. 649 650</para> 651</listitem> 652 653<listitem> 654<para> 655Array types cannot be copied, they are thus stored as const reference by default. 656</para> 657</listitem> 658 659<listitem> 660 661<para> 662For some expressions it makes more sense to store the arguments as references. 663 664For example, the obvious intention of the lambda expression 665<literal>i += _1</literal> is that calls to the lambda functor affect the 666value of the variable <literal>i</literal>, 667rather than some temporary copy of it. 668 669As another example, the streaming operators take their leftmost argument 670as non-const references. 671 672The exact rules are: 673 674<itemizedlist> 675<listitem> 676<para>The left argument of compound assignment operators (<literal>+=</literal>, <literal>*=</literal>, etc.) are stored as references to non-const.</para> 677</listitem> 678 679<listitem> 680<para>If the left argument of <literal><![CDATA[<<]]></literal> or <literal><![CDATA[>>]]></literal> operator is derived from an instantiation of <literal>basic_ostream</literal> or respectively from <literal>basic_istream</literal>, the argument is stored as a reference to non-const. 681For all other types, the argument is stored as a copy. 682</para> 683</listitem> 684 685<listitem> 686<para> 687In pointer arithmetic expressions, non-const array types are stored as non-const references. 688This is to prevent pointer arithmetic making non-const arrays const. 689 690</para> 691</listitem> 692 693</itemizedlist> 694 695</para> 696</listitem> 697 698</itemizedlist> 699</para> 700 701</section> 702 703</section> 704 705<section id="lambda.le_in_details"> 706<title>Lambda expressions in details</title> 707 708<para> 709This section describes different categories of lambda expressions in details. 710We devote a separate section for each of the possible forms of a lambda expression. 711 712 713</para> 714 715<section id="lambda.placeholders"> 716<title>Placeholders</title> 717 718<para> 719The BLL defines three placeholder types: <literal>placeholder1_type</literal>, <literal>placeholder2_type</literal> and <literal>placeholder3_type</literal>. 720BLL has a predefined placeholder variable for each placeholder type: <literal>_1</literal>, <literal>_2</literal> and <literal>_3</literal>. 721However, the user is not forced to use these placeholders. 722It is easy to define placeholders with alternative names. 723This is done by defining new variables of placeholder types. 724For example: 725 726<programlisting>boost::lambda::placeholder1_type X; 727boost::lambda::placeholder2_type Y; 728boost::lambda::placeholder3_type Z; 729</programlisting> 730 731With these variables defined, <literal>X += Y * Z</literal> is equivalent to <literal>_1 += _2 * _3</literal>. 732</para> 733 734<para> 735The use of placeholders in the lambda expression determines whether the resulting function is nullary, unary, binary or 3-ary. 736The highest placeholder index is decisive. For example: 737 738<programlisting> 739_1 + 5 // unary 740_1 * _1 + _1 // unary 741_1 + _2 // binary 742bind(f, _1, _2, _3) // 3-ary 743_3 + 10 // 3-ary 744</programlisting> 745 746Note that the last line creates a 3-ary function, which adds <literal>10</literal> to its <emphasis>third</emphasis> argument. 747The first two arguments are discarded. 748Furthermore, lambda functors only have a minimum arity. 749One can always provide more arguments (up the number of supported placeholders) 750that is really needed. 751The remaining arguments are just discarded. 752For example: 753 754<programlisting> 755int i, j, k; 756_1(i, j, k) // returns i, discards j and k 757(_2 + _2)(i, j, k) // returns j+j, discards i and k 758</programlisting> 759 760See 761<xref linkend="lambda.why_weak_arity"/> for the design rationale behind this 762functionality. 763 764</para> 765 766<para> 767In addition to these three placeholder types, there is also a fourth placeholder type <literal>placeholderE_type</literal>. 768The use of this placeholder is defined in <xref linkend="lambda.exceptions"/> describing exception handling in lambda expressions. 769</para> 770 771<para>When an actual argument is supplied for a placeholder, the parameter passing mode is always by reference. 772This means that any side-effects to the placeholder are reflected to the actual argument. 773For example: 774 775 776<programlisting> 777<![CDATA[int i = 1; 778(_1 += 2)(i); // i is now 3 779(++_1, cout << _1)(i) // i is now 4, outputs 4]]> 780</programlisting> 781</para> 782 783</section> 784 785<section id="lambda.operator_expressions"> 786<title>Operator expressions</title> 787 788<para> 789The basic rule is that any C++ operator invocation with at least one argument being a lambda expression is itself a lambda expression. 790Almost all overloadable operators are supported. 791For example, the following is a valid lambda expression: 792 793<programlisting><![CDATA[cout << _1, _2[_3] = _1 && false]]></programlisting> 794</para> 795 796<para> 797However, there are some restrictions that originate from the C++ operator overloading rules, and some special cases. 798</para> 799 800 801<section> 802<title>Operators that cannot be overloaded</title> 803 804<para> 805Some operators cannot be overloaded at all (<literal>::</literal>, <literal>.</literal>, <literal>.*</literal>). 806For some operators, the requirements on return types prevent them to be overloaded to create lambda functors. 807These operators are <literal>->.</literal>, <literal>-></literal>, <literal>new</literal>, <literal>new[]</literal>, <literal>delete</literal>, <literal>delete[]</literal> and <literal>?:</literal> (the conditional operator). 808</para> 809 810</section> 811 812<section id="lambda.assignment_and_subscript"> 813<title>Assignment and subscript operators</title> 814 815<para> 816These operators must be implemented as class members. 817Consequently, the left operand must be a lambda expression. For example: 818 819<programlisting> 820int i; 821_1 = i; // ok 822i = _1; // not ok. i is not a lambda expression 823</programlisting> 824 825There is a simple solution around this limitation, described in <xref linkend="lambda.delaying_constants_and_variables"/>. 826In short, 827the left hand argument can be explicitly turned into a lambda functor by wrapping it with a special <literal>var</literal> function: 828<programlisting> 829var(i) = _1; // ok 830</programlisting> 831 832</para> 833</section> 834 835<section id="lambda.logical_operators"> 836<title>Logical operators</title> 837 838<para> 839Logical operators obey the short-circuiting evaluation rules. For example, in the following code, <literal>i</literal> is never incremented: 840<programlisting> 841bool flag = true; int i = 0; 842(_1 || ++_2)(flag, i); 843</programlisting> 844</para> 845</section> 846 847<section id="lambda.comma_operator"> 848<title>Comma operator</title> 849 850<para> 851Comma operator is the <quote>statement separator</quote> in lambda expressions. 852Since comma is also the separator between arguments in a function call, extra parenthesis are sometimes needed: 853 854<programlisting> 855for_each(a.begin(), a.end(), (++_1, cout << _1)); 856</programlisting> 857 858Without the extra parenthesis around <literal>++_1, cout << _1</literal>, the code would be interpreted as an attempt to call <literal>for_each</literal> with four arguments. 859</para> 860<para> 861The lambda functor created by the comma operator adheres to the C++ rule of always evaluating the left operand before the right one. 862In the above example, each element of <literal>a</literal> is first incremented, then written to the stream. 863</para> 864</section> 865 866<section id="lambda.function_call_operator"> 867<title>Function call operator</title> 868 869<para> 870The function call operators have the effect of evaluating the lambda 871functor. 872Calls with too few arguments lead to a compile time error. 873</para> 874</section> 875 876<section id="lambda.member_pointer_operator"> 877<title>Member pointer operator</title> 878 879<para> 880The member pointer operator <literal>operator->*</literal> can be overloaded freely. 881Hence, for user defined types, member pointer operator is no special case. 882The built-in meaning, however, is a somewhat more complicated case. 883The built-in member pointer operator is applied if the left argument is a pointer to an object of some class <literal>A</literal>, and the right hand argument is a pointer to a member of <literal>A</literal>, or a pointer to a member of a class from which <literal>A</literal> derives. 884We must separate two cases: 885 886<itemizedlist> 887 888<listitem> 889<para>The right hand argument is a pointer to a data member. 890In this case the lambda functor simply performs the argument substitution and calls the built-in member pointer operator, which returns a reference to the member pointed to. 891For example: 892<programlisting> 893<![CDATA[struct A { int d; }; 894A* a = new A(); 895 ... 896(a ->* &A::d); // returns a reference to a->d 897(_1 ->* &A::d)(a); // likewise]]> 898</programlisting> 899</para> 900</listitem> 901 902<listitem> 903<para> 904The right hand argument is a pointer to a member function. 905For a built-in call like this, the result is kind of a delayed member function call. 906Such an expression must be followed by a function argument list, with which the delayed member function call is performed. 907For example: 908<programlisting> 909<![CDATA[struct B { int foo(int); }; 910B* b = new B(); 911 ... 912(b ->* &B::foo) // returns a delayed call to b->foo 913 // a function argument list must follow 914(b ->* &B::foo)(1) // ok, calls b->foo(1) 915 916(_1 ->* &B::foo)(b); // returns a delayed call to b->foo, 917 // no effect as such 918(_1 ->* &B::foo)(b)(1); // calls b->foo(1)]]> 919</programlisting> 920</para> 921</listitem> 922</itemizedlist> 923</para> 924</section> 925 926</section> 927 928<section id="lambda.bind_expressions"> 929<title>Bind expressions</title> 930 931<para> 932Bind expressions can have two forms: 933 934<!-- TODO: shouldn't really be emphasis, but a variable or something--> 935<programlisting> 936bind(<parameter>target-function</parameter>, <parameter>bind-argument-list</parameter>) 937bind(<parameter>target-member-function</parameter>, <parameter>object-argument</parameter>, <parameter>bind-argument-list</parameter>) 938</programlisting> 939 940A bind expression delays the call of a function. 941If this <emphasis>target function</emphasis> is <emphasis>n</emphasis>-ary, then the <literal><emphasis>bind-argument-list</emphasis></literal> must contain <emphasis>n</emphasis> arguments as well. 942In the current version of the BLL, <inlineequation>0 <= n <= 9</inlineequation> must hold. 943For member functions, the number of arguments must be at most <inlineequation>8</inlineequation>, as the object argument takes one argument position. 944 945Basically, the 946<emphasis><literal>bind-argument-list</literal></emphasis> must be a valid argument list for the target function, except that any argument can be replaced with a placeholder, or more generally, with a lambda expression. 947Note that also the target function can be a lambda expression. 948 949The result of a bind expression is either a nullary, unary, binary or 3-ary function object depending on the use of placeholders in the <emphasis><literal>bind-argument-list</literal></emphasis> (see <xref linkend="lambda.placeholders"/>). 950</para> 951 952<para> 953The return type of the lambda functor created by the bind expression can be given as an explicitly specified template parameter, as in the following example: 954<programlisting> 955bind<<emphasis>RET</emphasis>>(<emphasis>target-function</emphasis>, <emphasis>bind-argument-list</emphasis>) 956</programlisting> 957This is only necessary if the return type of the target function cannot be deduced. 958</para> 959 960<para> 961The following sections describe the different types of bind expressions. 962</para> 963 964<section id="lambda.function_pointers_as_targets"> 965<title>Function pointers or references as targets</title> 966 967<para>The target function can be a pointer or a reference to a function and it can be either bound or unbound. For example: 968<programlisting> 969<![CDATA[X foo(A, B, C); A a; B b; C c; 970bind(foo, _1, _2, c)(a, b); 971bind(&foo, _1, _2, c)(a, b); 972bind(_1, a, b, c)(foo);]]> 973</programlisting> 974 975The return type deduction always succeeds with this type of bind expressions. 976</para> 977 978<para> 979Note, that in C++ it is possible to take the address of an overloaded function only if the address is assigned to, or used as an initializer of, a variable, the type of which solves the amibiguity, or if an explicit cast expression is used. 980This means that overloaded functions cannot be used in bind expressions directly, e.g.: 981<programlisting> 982<![CDATA[void foo(int); 983void foo(float); 984int i; 985 ... 986bind(&foo, _1)(i); // error 987 ... 988void (*pf1)(int) = &foo; 989bind(pf1, _1)(i); // ok 990bind(static_cast<void(*)(int)>(&foo), _1)(i); // ok]]> 991</programlisting> 992</para> 993</section> 994 995<section id="member_functions_as_targets"> 996<title>Member functions as targets</title> 997 998<para> 999The syntax for using pointers to member function in bind expression is: 1000<programlisting> 1001bind(<parameter>target-member-function</parameter>, <parameter>object-argument</parameter>, <parameter>bind-argument-list</parameter>) 1002</programlisting> 1003 1004The object argument can be a reference or pointer to the object, the BLL supports both cases with a uniform interface: 1005 1006<programlisting> 1007<![CDATA[bool A::foo(int) const; 1008A a; 1009vector<int> ints; 1010 ... 1011find_if(ints.begin(), ints.end(), bind(&A::foo, a, _1)); 1012find_if(ints.begin(), ints.end(), bind(&A::foo, &a, _1));]]> 1013</programlisting> 1014 1015Similarly, if the object argument is unbound, the resulting lambda functor can be called both via a pointer or a reference: 1016 1017<programlisting> 1018<![CDATA[bool A::foo(int); 1019list<A> refs; 1020list<A*> pointers; 1021 ... 1022find_if(refs.begin(), refs.end(), bind(&A::foo, _1, 1)); 1023find_if(pointers.begin(), pointers.end(), bind(&A::foo, _1, 1));]]> 1024</programlisting> 1025 1026</para> 1027 1028<!--%The exact rules for the object argument (whether it is bound, or supplied in the lambda function invoction) are as follows: 1029%If the target function is a pointer to a member function of some class \snip{A}, then the object argument must be an expression of type \snip{B}, where either 1030%\begin{itemize} 1031%\item \snip{B} = \snip{A} or there is an implicit conversion from \snip{B} to \snip{A}. 1032%\item \snip{B} = \snip{A*}. 1033%\item \snip{B} = \snip{C*}, where \snip{C} is any class derived form \snip{A}. 1034%\end{itemize} 1035%For example: 1036%\begin{alltt} 1037%struct A \{ 1038% virtual void f(); 1039% void fc() const; 1040%\}; 1041% 1042%struct B : public A \{ 1043% virtual void f(); 1044%\}; 1045% 1046%struct C \{ 1047% operator A const() \{ return A(); \} 1048%\}; 1049% 1050% A a; B b; C c; 1051% ... 1052% bind(&A::f, a)(); 1053% bind(&A::f, b)(); // calls B::f 1054% bind(&A::fc, c)(); 1055% 1056% bind(&A::f, &a)(); 1057% bind(&A::f, &b)(); // calls B::f 1058% bind(&A::f, &c)(); // error: no conversion from C* \(\rightarrow\) A, 1059%\end{alltt} 1060--> 1061 1062<para> 1063Even though the interfaces are the same, there are important semantic differences between using a pointer or a reference as the object argument. 1064The differences stem from the way <literal>bind</literal>-functions take their parameters, and how the bound parameters are stored within the lambda functor. 1065The object argument has the same parameter passing and storing mechanism as any other bind argument slot (see <xref linkend="lambda.storing_bound_arguments"/>); it is passed as a const reference and stored as a const copy in the lambda functor. 1066This creates some asymmetry between the lambda functor and the original member function, and between seemingly similar lambda functors. For example: 1067<programlisting> 1068class A { 1069 int i; mutable int j; 1070public: 1071 1072 A(int ii, int jj) : i(ii), j(jj) {}; 1073 void set_i(int x) { i = x; }; 1074 void set_j(int x) const { j = x; }; 1075}; 1076</programlisting> 1077 1078When a pointer is used, the behavior is what the programmer might expect: 1079 1080<programlisting> 1081<![CDATA[A a(0,0); int k = 1; 1082bind(&A::set_i, &a, _1)(k); // a.i == 1 1083bind(&A::set_j, &a, _1)(k); // a.j == 1]]> 1084</programlisting> 1085 1086Even though a const copy of the object argument is stored, the original object <literal>a</literal> is still modified. 1087This is since the object argument is a pointer, and the pointer is copied, not the object it points to. 1088When we use a reference, the behaviour is different: 1089 1090<programlisting> 1091<![CDATA[A a(0,0); int k = 1; 1092bind(&A::set_i, a, _1)(k); // error; a const copy of a is stored. 1093 // Cannot call a non-const function set_i 1094bind(&A::set_j, a, _1)(k); // a.j == 0, as a copy of a is modified]]> 1095</programlisting> 1096</para> 1097 1098<para> 1099To prevent the copying from taking place, one can use the <literal>ref</literal> or <literal>cref</literal> wrappers (<literal>var</literal> and <literal>constant_ref</literal> would do as well): 1100<programlisting> 1101<![CDATA[bind(&A::set_i, ref(a), _1)(k); // a.j == 1 1102bind(&A::set_j, cref(a), _1)(k); // a.j == 1]]> 1103</programlisting> 1104</para> 1105 1106<para>Note that the preceding discussion is relevant only for bound arguments. 1107If the object argument is unbound, the parameter passing mode is always by reference. 1108Hence, the argument <literal>a</literal> is not copied in the calls to the two lambda functors below: 1109<programlisting> 1110<![CDATA[A a(0,0); 1111bind(&A::set_i, _1, 1)(a); // a.i == 1 1112bind(&A::set_j, _1, 1)(a); // a.j == 1]]> 1113</programlisting> 1114</para> 1115</section> 1116 1117<section id="lambda.members_variables_as_targets"> 1118<title>Member variables as targets</title> 1119 1120<para> 1121A pointer to a member variable is not really a function, but 1122the first argument to the <literal>bind</literal> function can nevertheless 1123be a pointer to a member variable. 1124Invoking such a bind expression returns a reference to the data member. 1125For example: 1126 1127<programlisting> 1128<![CDATA[struct A { int data; }; 1129A a; 1130bind(&A::data, _1)(a) = 1; // a.data == 1]]> 1131</programlisting> 1132 1133The cv-qualifiers of the object whose member is accessed are respected. 1134For example, the following tries to write into a const location: 1135<programlisting> 1136<![CDATA[const A ca = a; 1137bind(&A::data, _1)(ca) = 1; // error]]> 1138</programlisting> 1139 1140</para> 1141</section> 1142 1143<section id="lambda.function_objects_as_targets"> 1144<title>Function objects as targets</title> 1145 1146<para> 1147 1148Function objects, that is, class objects which have the function call 1149operator defined, can be used as target functions. 1150 1151In general, BLL cannot deduce the return type of an arbitrary function object. 1152 1153However, there are two methods for giving BLL this capability for a certain 1154function object class. 1155 1156</para> 1157 1158<simplesect> 1159 1160<title>The result_type typedef</title> 1161 1162<para> 1163 1164The BLL supports the standard library convention of declaring the return type 1165of a function object with a member typedef named <literal>result_type</literal> in the 1166function object class. 1167 1168Here is a simple example: 1169<programlisting> 1170<![CDATA[struct A { 1171 typedef B result_type; 1172 B operator()(X, Y, Z); 1173};]]> 1174</programlisting> 1175 1176If a function object does not define a <literal>result_type</literal> typedef, 1177the method described below (<literal>sig</literal> template) 1178is attempted to resolve the return type of the 1179function object. If a function object defines both <literal>result_type</literal> 1180and <literal>sig</literal>, <literal>result_type</literal> takes precedence. 1181 1182</para> 1183 1184</simplesect> 1185 1186<simplesect> 1187 1188<title>The sig template</title> 1189 1190<para> 1191Another mechanism that make BLL aware of the return type(s) of a function object is defining 1192member template struct 1193<literal><![CDATA[sig<Args>]]></literal> with a typedef 1194<literal>type</literal> that specifies the return type. 1195 1196Here is a simple example: 1197<programlisting> 1198<![CDATA[struct A { 1199 template <class Args> struct sig { typedef B type; } 1200 B operator()(X, Y, Z); 1201};]]> 1202</programlisting> 1203 1204The template argument <literal>Args</literal> is a 1205<literal>tuple</literal> (or more precisely a <literal>cons</literal> list) 1206type <xref linkend="cit:boost::tuple"/>, where the first element 1207is the function 1208object type itself, and the remaining elements are the types of 1209the arguments, with which the function object is being called. 1210 1211This may seem overly complex compared to defining the <literal>result_type</literal> typedef. 1212Howver, there are two significant restrictions with using just a simple 1213typedef to express the return type: 1214<orderedlist> 1215<listitem> 1216<para> 1217If the function object defines several function call operators, there is no way to specify different result types for them. 1218</para> 1219</listitem> 1220<listitem> 1221<para> 1222If the function call operator is a template, the result type may 1223depend on the template parameters. 1224Hence, the typedef ought to be a template too, which the C++ language 1225does not support. 1226</para> 1227</listitem> 1228</orderedlist> 1229 1230The following code shows an example, where the return type depends on the type 1231of one of the arguments, and how that dependency can be expressed with the 1232<literal>sig</literal> template: 1233 1234<programlisting> 1235<![CDATA[struct A { 1236 1237 // the return type equals the third argument type: 1238 template<class T1, class T2, class T3> 1239 T3 operator()(const T1& t1, const T2& t2, const T3& t3) const; 1240 1241 template <class Args> 1242 class sig { 1243 // get the third argument type (4th element) 1244 typedef typename 1245 boost::tuples::element<3, Args>::type T3; 1246 public: 1247 typedef typename 1248 boost::remove_cv<T3>::type type; 1249 }; 1250};]]> 1251</programlisting> 1252 1253 1254The elements of the <literal>Args</literal> tuple are always 1255non-reference types. 1256 1257Moreover, the element types can have a const or volatile qualifier 1258(jointly referred to as <emphasis>cv-qualifiers</emphasis>), or both. 1259This is since the cv-qualifiers in the arguments can affect the return type. 1260The reason for including the potentially cv-qualified function object 1261type itself into the <literal>Args</literal> tuple, is that the function 1262object class can contain both const and non-const (or volatile, even 1263const volatile) function call operators, and they can each have a different 1264return type. 1265</para> 1266 1267<para> 1268The <literal>sig</literal> template can be seen as a 1269<emphasis>meta-function</emphasis> that maps the argument type tuple to 1270the result type of the call made with arguments of the types in the tuple. 1271 1272As the example above demonstrates, the template can end up being somewhat 1273complex. 1274Typical tasks to be performed are the extraction of the relevant types 1275from the tuple, removing cv-qualifiers etc. 1276See the Boost type_traits <xref linkend="cit:boost::type_traits"/> and 1277Tuple <xref linkend="cit:boost::type_traits"/> libraries 1278for tools that can aid in these tasks. 1279The <literal>sig</literal> templates are a refined version of a similar 1280mechanism first introduced in the FC++ library 1281<xref linkend="cit:fc++"/>. 1282</para> 1283 1284</simplesect> 1285 1286</section> 1287 1288 1289 1290</section> 1291 1292<section id="lambda.overriding_deduced_return_type"> 1293<title>Overriding the deduced return type</title> 1294 1295<para> 1296The return type deduction system may not be able to deduce the return types of some user defined operators or bind expressions with class objects. 1297<!-- (see the example in <xref linkend="lambda.parameter_and_return_types"/>).--> 1298A special lambda expression type is provided for stating the return type explicitly and overriding the deduction system. 1299To state that the return type of the lambda functor defined by the lambda expression <literal>e</literal> is <literal>T</literal>, you can write: 1300 1301<programlisting><![CDATA[ret<T>(e);]]></programlisting> 1302 1303The effect is that the return type deduction is not performed for the lambda expression <literal>e</literal> at all, but instead, <literal>T</literal> is used as the return type. 1304Obviously <literal>T</literal> cannot be an arbitrary type, the true result of the lambda functor must be implicitly convertible to <literal>T</literal>. 1305For example: 1306 1307<programlisting> 1308<![CDATA[A a; B b; 1309C operator+(A, B); 1310int operator*(A, B); 1311 ... 1312ret<D>(_1 + _2)(a, b); // error (C cannot be converted to D) 1313ret<C>(_1 + _2)(a, b); // ok 1314ret<float>(_1 * _2)(a, b); // ok (int can be converted to float) 1315 ... 1316struct X { 1317 Y operator(int)(); 1318}; 1319 ... 1320X x; int i; 1321bind(x, _1)(i); // error, return type cannot be deduced 1322ret<Y>(bind(x, _1))(i); // ok]]> 1323</programlisting> 1324For bind expressions, there is a short-hand notation that can be used instead of <literal>ret</literal>. 1325The last line could alternatively be written as: 1326 1327<programlisting><![CDATA[bind<Z>(x, _1)(i);]]></programlisting> 1328This feature is modeled after the Boost Bind library <xref linkend="cit:boost::bind"/>. 1329 1330</para> 1331 1332<para>Note that within nested lambda expressions, 1333the <literal>ret</literal> must be used at each subexpression where 1334the deduction would otherwise fail. 1335For example: 1336<programlisting> 1337<![CDATA[A a; B b; 1338C operator+(A, B); D operator-(C); 1339 ... 1340ret<D>( - (_1 + _2))(a, b); // error 1341ret<D>( - ret<C>(_1 + _2))(a, b); // ok]]> 1342</programlisting> 1343</para> 1344 1345<para>If you find yourself using <literal>ret</literal> repeatedly with the same types, it is worth while extending the return type deduction (see <xref linkend="lambda.extending"/>). 1346</para> 1347 1348<section id="lambda.nullary_functors_and_ret"> 1349<title>Nullary lambda functors and ret</title> 1350 1351<para> 1352As stated above, the effect of <literal>ret</literal> is to prevent the return type deduction to be performed. 1353However, there is an exception. 1354Due to the way the C++ template instantiation works, the compiler is always forced to instantiate the return type deduction templates for zero-argument lambda functors. 1355This introduces a slight problem with <literal>ret</literal>, best described with an example: 1356 1357<programlisting> 1358<![CDATA[struct F { int operator()(int i) const; }; 1359F f; 1360 ... 1361bind(f, _1); // fails, cannot deduce the return type 1362ret<int>(bind(f, _1)); // ok 1363 ... 1364bind(f, 1); // fails, cannot deduce the return type 1365ret<int>(bind(f, 1)); // fails as well!]]> 1366</programlisting> 1367The BLL cannot deduce the return types of the above bind calls, as <literal>F</literal> does not define the typedef <literal>result_type</literal>. 1368One would expect <literal>ret</literal> to fix this, but for the nullary lambda functor that results from a bind expression (last line above) this does not work. 1369The return type deduction templates are instantiated, even though it would not be necessary and the result is a compilation error. 1370</para> 1371 1372<para>The solution to this is not to use the <literal>ret</literal> function, but rather define the return type as an explicitly specified template parameter in the <literal>bind</literal> call: 1373<programlisting> 1374<![CDATA[bind<int>(f, 1); // ok]]> 1375</programlisting> 1376 1377The lambda functors created with 1378<literal>ret<<parameter>T</parameter>>(bind(<parameter>arg-list</parameter>))</literal> and 1379<literal>bind<<parameter>T</parameter>>(<parameter>arg-list</parameter>)</literal> have the exact same functionality — 1380apart from the fact that for some nullary lambda functors the former does not work while the latter does. 1381</para> 1382</section> 1383</section> 1384 1385 1386<section id="lambda.delaying_constants_and_variables"> 1387<title>Delaying constants and variables</title> 1388 1389<para> 1390The unary functions <literal>constant</literal>, 1391<literal>constant_ref</literal> and <literal>var</literal> turn their argument into a lambda functor, that implements an identity mapping. 1392The former two are for constants, the latter for variables. 1393The use of these <emphasis>delayed</emphasis> constants and variables is sometimes necessary due to the lack of explicit syntax for lambda expressions. 1394For example: 1395<programlisting> 1396<![CDATA[for_each(a.begin(), a.end(), cout << _1 << ' '); 1397for_each(a.begin(), a.end(), cout << ' ' << _1);]]> 1398</programlisting> 1399The first line outputs the elements of <literal>a</literal> separated by spaces, while the second line outputs a space followed by the elements of <literal>a</literal> without any separators. 1400The reason for this is that neither of the operands of 1401<literal><![CDATA[cout << ' ']]></literal> is a lambda expression, hence <literal><![CDATA[cout << ' ']]></literal> is evaluated immediately. 1402 1403To delay the evaluation of <literal><![CDATA[cout << ' ']]></literal>, one of the operands must be explicitly marked as a lambda expression. 1404This is accomplished with the <literal>constant</literal> function: 1405<programlisting> 1406<![CDATA[for_each(a.begin(), a.end(), cout << constant(' ') << _1);]]> 1407</programlisting> 1408 1409The call <literal>constant(' ')</literal> creates a nullary lambda functor which stores the character constant <literal>' '</literal> 1410and returns a reference to it when invoked. 1411The function <literal>constant_ref</literal> is similar, except that it 1412stores a constant reference to its argument. 1413 1414The <literal>constant</literal> and <literal>consant_ref</literal> are only 1415needed when the operator call has side effects, like in the above example. 1416</para> 1417 1418<para> 1419Sometimes we need to delay the evaluation of a variable. 1420Suppose we wanted to output the elements of a container in a numbered list: 1421 1422<programlisting> 1423<![CDATA[int index = 0; 1424for_each(a.begin(), a.end(), cout << ++index << ':' << _1 << '\n'); 1425for_each(a.begin(), a.end(), cout << ++var(index) << ':' << _1 << '\n');]]> 1426</programlisting> 1427 1428The first <literal>for_each</literal> invocation does not do what we want; <literal>index</literal> is incremented only once, and its value is written into the output stream only once. 1429By using <literal>var</literal> to make <literal>index</literal> a lambda expression, we get the desired effect. 1430<!-- Note that <literal>var</literal> accepts const objects as well, in which case 1431calling <literal>var</literal> equals calling <literal>constant_ref</literal>.--> 1432</para> 1433 1434<para> 1435In sum, <literal>var(x)</literal> creates a nullary lambda functor, 1436which stores a reference to the variable <literal>x</literal>. 1437When the lambda functor is invoked, a reference to <literal>x</literal> is returned. 1438</para> 1439 1440<simplesect> 1441<title>Naming delayed constants and variables</title> 1442 1443<para> 1444It is possible to predefine and name a delayed variable or constant outside a lambda expression. 1445The templates <literal>var_type</literal>, <literal>constant_type</literal> 1446and <literal>constant_ref_type</literal> serve for this purpose. 1447They are used as: 1448<programlisting> 1449<![CDATA[var_type<T>::type delayed_i(var(i)); 1450constant_type<T>::type delayed_c(constant(c));]]> 1451</programlisting> 1452The first line defines the variable <literal>delayed_i</literal> which is a delayed version of the variable <literal>i</literal> of type <literal>T</literal>. 1453Analogously, the second line defines the constant <literal>delayed_c</literal> as a delayed version of the constant <literal>c</literal>. 1454For example: 1455 1456<programlisting> 1457int i = 0; int j; 1458for_each(a.begin(), a.end(), (var(j) = _1, _1 = var(i), var(i) = var(j))); 1459</programlisting> 1460is equivalent to: 1461<programlisting> 1462<![CDATA[int i = 0; int j; 1463var_type<int>::type vi(var(i)), vj(var(j)); 1464for_each(a.begin(), a.end(), (vj = _1, _1 = vi, vi = vj));]]> 1465</programlisting> 1466</para> 1467<para> 1468Here is an example of naming a delayed constant: 1469<programlisting> 1470<![CDATA[constant_type<char>::type space(constant(' ')); 1471for_each(a.begin(),a.end(), cout << space << _1);]]> 1472</programlisting> 1473</para> 1474 1475</simplesect> 1476 1477<simplesect> 1478<title>About assignment and subscript operators</title> 1479 1480<para> 1481As described in <xref linkend="lambda.assignment_and_subscript"/>, assignment and subscripting operators are always defined as member functions. 1482This means, that for expressions of the form 1483<literal>x = y</literal> or <literal>x[y]</literal> to be interpreted as lambda expressions, the left-hand operand <literal>x</literal> must be a lambda expression. 1484Consequently, it is sometimes necessary to use <literal>var</literal> for this purpose. 1485We repeat the example from <xref linkend="lambda.assignment_and_subscript"/>: 1486 1487<programlisting> 1488int i; 1489i = _1; // error 1490var(i) = _1; // ok 1491</programlisting> 1492</para> 1493 1494<para> 1495 1496Note that the compound assignment operators <literal>+=</literal>, <literal>-=</literal> etc. can be defined as non-member functions, and thus they are interpreted as lambda expressions even if only the right-hand operand is a lambda expression. 1497Nevertheless, it is perfectly ok to delay the left operand explicitly. 1498For example, <literal>i += _1</literal> is equivalent to <literal>var(i) += _1</literal>. 1499</para> 1500</simplesect> 1501 1502</section> 1503 1504<section id="lambda.lambda_expressions_for_control_structures"> 1505<title>Lambda expressions for control structures</title> 1506 1507<para> 1508BLL defines several functions to create lambda functors that represent control structures. 1509They all take lambda functors as parameters and return <literal>void</literal>. 1510To start with an example, the following code outputs all even elements of some container <literal>a</literal>: 1511 1512<programlisting> 1513<![CDATA[for_each(a.begin(), a.end(), 1514 if_then(_1 % 2 == 0, cout << _1));]]> 1515</programlisting> 1516</para> 1517 1518<para> 1519The BLL supports the following function templates for control structures: 1520 1521<programlisting> 1522if_then(condition, then_part) 1523if_then_else(condition, then_part, else_part) 1524if_then_else_return(condition, then_part, else_part) 1525while_loop(condition, body) 1526while_loop(condition) // no body case 1527do_while_loop(condition, body) 1528do_while_loop(condition) // no body case 1529for_loop(init, condition, increment, body) 1530for_loop(init, condition, increment) // no body case 1531switch_statement(...) 1532</programlisting> 1533 1534The return types of all control construct lambda functor is 1535<literal>void</literal>, except for <literal>if_then_else_return</literal>, 1536which wraps a call to the conditional operator 1537<programlisting> 1538condition ? then_part : else_part 1539</programlisting> 1540The return type rules for this operator are somewhat complex. 1541Basically, if the branches have the same type, this type is the return type. 1542If the type of the branches differ, one branch, say of type 1543<literal>A</literal>, must be convertible to the other branch, 1544say of type <literal>B</literal>. 1545In this situation, the result type is <literal>B</literal>. 1546Further, if the common type is an lvalue, the return type will be an lvalue 1547too. 1548</para> 1549 1550 1551<para> 1552Delayed variables tend to be commonplace in control structure lambda expressions. 1553For instance, here we use the <literal>var</literal> function to turn the arguments of <literal>for_loop</literal> into lambda expressions. 1554The effect of the code is to add 1 to each element of a two-dimensional array: 1555 1556<programlisting> 1557<![CDATA[int a[5][10]; int i; 1558for_each(a, a+5, 1559 for_loop(var(i)=0, var(i)<10, ++var(i), 1560 _1[var(i)] += 1));]]> 1561</programlisting> 1562 1563<!-- 1564As explained in <xref linkend="lambda.delaying_constants_and_variables"/>, we can avoid the repeated use of wrapping of <literal>var</literal> if we define it beforehand: 1565 1566<programlisting> 1567<![CDATA[int i; 1568var_type<int>::type vi(var(i)); 1569for_each(a, a+5, 1570 for_loop(vi=0, vi<10, ++vi, _1[vi] += 6));]]> 1571</programlisting> 1572 1573--> 1574</para> 1575 1576<para> 1577The BLL supports an alternative syntax for control expressions, suggested 1578by Joel de Guzmann. 1579By overloading the <literal>operator[]</literal> we can 1580get a closer resemblance with the built-in control structures: 1581 1582<programlisting> 1583<![CDATA[if_(condition)[then_part] 1584if_(condition)[then_part].else_[else_part] 1585while_(condition)[body] 1586do_[body].while_(condition) 1587for_(init, condition, increment)[body]]]> 1588</programlisting> 1589 1590For example, using this syntax the <literal>if_then</literal> example above 1591can be written as: 1592<programlisting> 1593<![CDATA[for_each(a.begin(), a.end(), 1594 if_(_1 % 2 == 0)[ cout << _1 ])]]> 1595</programlisting> 1596 1597As more experience is gained, we may end up deprecating one or the other 1598of these syntaces. 1599 1600</para> 1601 1602 1603 1604<section id="lambda.switch_statement"> 1605<title>Switch statement</title> 1606</section> 1607 1608<para> 1609The lambda expressions for <literal>switch</literal> control structures are more complex since the number of cases may vary. 1610The general form of a switch lambda expression is: 1611 1612<programlisting> 1613switch_statement(<parameter>condition</parameter>, 1614 case_statement<<parameter>label</parameter>>(<parameter>lambda expression</parameter>), 1615 case_statement<<parameter>label</parameter>>(<parameter>lambda expression</parameter>), 1616 ... 1617 default_statement(<parameter>lambda expression</parameter>) 1618) 1619</programlisting> 1620 1621The <literal><parameter>condition</parameter></literal> argument must be a lambda expression that creates a lambda functor with an integral return type. 1622The different cases are created with the <literal>case_statement</literal> functions, and the optional default case with the <literal>default_statement</literal> function. 1623The case labels are given as explicitly specified template arguments to <literal>case_statement</literal> functions and 1624<literal>break</literal> statements are implicitly part of each case. 1625For example, <literal><![CDATA[case_statement<1>(a)]]></literal>, where <literal>a</literal> is some lambda functor, generates the code: 1626 1627<programlisting> 1628case 1: 1629 <parameter>evaluate lambda functor</parameter> a; 1630 break; 1631</programlisting> 1632The <literal>switch_statement</literal> function is specialized for up to 9 case statements. 1633 1634</para> 1635 1636<para> 1637As a concrete example, the following code iterates over some container <literal>v</literal> and ouptuts <quote>zero</quote> for each <literal>0</literal>, <quote>one</quote> for each <literal>1</literal>, and <quote>other: <parameter>n</parameter></quote> for any other value <parameter>n</parameter>. 1638Note that another lambda expression is sequenced after the <literal>switch_statement</literal> to output a line break after each element: 1639 1640<programlisting> 1641<![CDATA[std::for_each(v.begin(), v.end(), 1642 ( 1643 switch_statement( 1644 _1, 1645 case_statement<0>(std::cout << constant("zero")), 1646 case_statement<1>(std::cout << constant("one")), 1647 default_statement(cout << constant("other: ") << _1) 1648 ), 1649 cout << constant("\n") 1650 ) 1651);]]> 1652</programlisting> 1653</para> 1654 1655</section> 1656 1657<section id="lambda.exceptions"> 1658<title>Exceptions</title> 1659 1660<para> 1661The BLL provides lambda functors that throw and catch exceptions. 1662Lambda functors for throwing exceptions are created with the unary function <literal>throw_exception</literal>. 1663The argument to this function is the exception to be thrown, or a lambda functor which creates the exception to be thrown. 1664A lambda functor for rethrowing exceptions is created with the nullary <literal>rethrow</literal> function. 1665</para> 1666 1667<para> 1668Lambda expressions for handling exceptions are somewhat more complex. 1669The general form of a lambda expression for try catch blocks is as follows: 1670 1671<programlisting> 1672try_catch( 1673 <parameter>lambda expression</parameter>, 1674 catch_exception<<parameter>type</parameter>>(<parameter>lambda expression</parameter>), 1675 catch_exception<<parameter>type</parameter>>(<parameter>lambda expression</parameter>), 1676 ... 1677 catch_all(<parameter>lambda expression</parameter>) 1678) 1679</programlisting> 1680 1681The first lambda expression is the try block. 1682Each <literal>catch_exception</literal> defines a catch block where the 1683explicitly specified template argument defines the type of the exception 1684to catch. 1685 1686The lambda expression within the <literal>catch_exception</literal> defines 1687the actions to take if the exception is caught. 1688 1689Note that the resulting exception handlers catch the exceptions as 1690references, i.e., <literal>catch_exception<T>(...)</literal> 1691results in the catch block: 1692 1693<programlisting> 1694catch(T& e) { ... } 1695</programlisting> 1696 1697The last catch block can alternatively be a call to 1698<literal>catch_exception<<parameter>type</parameter>></literal> 1699or to 1700<literal>catch_all</literal>, which is the lambda expression equivalent to 1701<literal>catch(...)</literal>. 1702 1703</para> 1704 1705<para> 1706 1707The <xref linkend="ex:exceptions"/> demonstrates the use of the BLL 1708exception handling tools. 1709The first handler catches exceptions of type <literal>foo_exception</literal>. 1710Note the use of <literal>_1</literal> placeholder in the body of the handler. 1711</para> 1712 1713<para> 1714The second handler shows how to throw exceptions, and demonstrates the 1715use of the <emphasis>exception placeholder</emphasis> <literal>_e</literal>. 1716 1717It is a special placeholder, which refers to the caught exception object 1718within the handler body. 1719 1720Here we are handling an exception of type <literal>std::exception</literal>, 1721which carries a string explaining the cause of the exception. 1722 1723This explanation can be queried with the zero-argument member 1724function <literal>what</literal>. 1725 1726The expression 1727<literal>bind(&std::exception::what, _e)</literal> creates the lambda 1728function for making that call. 1729 1730Note that <literal>_e</literal> cannot be used outside of an exception handler lambda expression. 1731<!--Violating this rule is caught by the compiler.--> 1732 1733The last line of the second handler constructs a new exception object and 1734throws that with <literal>throw exception</literal>. 1735 1736Constructing and destructing objects within lambda expressions is 1737explained in <xref linkend="lambda.construction_and_destruction"/> 1738</para> 1739 1740<para> 1741Finally, the third handler (<literal>catch_all</literal>) demonstrates 1742rethrowing exceptions. 1743</para> 1744 1745<example id="ex:exceptions"> 1746<title>Throwing and handling exceptions in lambda expressions.</title> 1747<programlisting> 1748<![CDATA[for_each( 1749 a.begin(), a.end(), 1750 try_catch( 1751 bind(foo, _1), // foo may throw 1752 catch_exception<foo_exception>( 1753 cout << constant("Caught foo_exception: ") 1754 << "foo was called with argument = " << _1 1755 ), 1756 catch_exception<std::exception>( 1757 cout << constant("Caught std::exception: ") 1758 << bind(&std::exception::what, _e), 1759 throw_exception(bind(constructor<bar_exception>(), _1))) 1760 ), 1761 catch_all( 1762 (cout << constant("Unknown"), rethrow()) 1763 ) 1764 ) 1765);]]> 1766</programlisting> 1767</example> 1768 1769</section> 1770 1771<section id="lambda.construction_and_destruction"> 1772<title>Construction and destruction</title> 1773 1774 1775<para> 1776Operators <literal>new</literal> and <literal>delete</literal> can be 1777overloaded, but their return types are fixed. 1778 1779Particularly, the return types cannot be lambda functors, 1780which prevents them to be overloaded for lambda expressions. 1781 1782It is not possible to take the address of a constructor, 1783hence constructors cannot be used as target functions in bind expressions. 1784 1785The same is true for destructors. 1786 1787As a way around these constraints, BLL defines wrapper classes for 1788<literal>new</literal> and <literal>delete</literal> calls, 1789as well as for constructors and destructors. 1790 1791Instances of these classes are function objects, that can be used as 1792target functions of bind expressions. 1793 1794For example: 1795 1796<programlisting> 1797<![CDATA[int* a[10]; 1798for_each(a, a+10, _1 = bind(new_ptr<int>())); 1799for_each(a, a+10, bind(delete_ptr(), _1));]]> 1800</programlisting> 1801 1802The <literal>new_ptr<int>()</literal> expression creates 1803a function object that calls <literal>new int()</literal> when invoked, 1804and wrapping that inside <literal>bind</literal> makes it a lambda functor. 1805 1806In the same way, the expression <literal>delete_ptr()</literal> creates 1807a function object that invokes <literal>delete</literal> on its argument. 1808 1809Note that <literal>new_ptr<<parameter>T</parameter>>()</literal> 1810can take arguments as well. 1811 1812They are passed directly to the constructor invocation and thus allow 1813calls to constructors which take arguments. 1814 1815</para> 1816 1817<para> 1818 1819As an example of constructor calls in lambda expressions, 1820the following code reads integers from two containers <literal>x</literal> 1821and <literal>y</literal>, 1822constructs pairs out of them and inserts them into a third container: 1823 1824<programlisting> 1825<![CDATA[vector<pair<int, int> > v; 1826transform(x.begin(), x.end(), y.begin(), back_inserter(v), 1827 bind(constructor<pair<int, int> >(), _1, _2));]]> 1828</programlisting> 1829 1830<xref linkend="table:constructor_destructor_fos"/> lists all the function 1831objects related to creating and destroying objects, 1832 showing the expression to create and call the function object, 1833and the effect of evaluating that expression. 1834 1835</para> 1836 1837 1838 1839<table id="table:constructor_destructor_fos"> 1840<title>Construction and destruction related function objects.</title> 1841<tgroup cols="2"> 1842<thead> 1843<row> 1844<entry>Function object call</entry> 1845<entry>Wrapped expression</entry> 1846</row> 1847</thead> 1848<tbody> 1849<row> 1850<entry><literal>constructor<T>()(<parameter>arg_list</parameter>)</literal></entry> 1851<entry>T(<parameter>arg_list</parameter>)</entry> 1852</row> 1853<row> 1854<entry><literal>destructor()(a)</literal></entry> 1855<entry><literal>a.~A()</literal>, where <literal>a</literal> is of type <literal>A</literal></entry> 1856</row> 1857<row> 1858<entry><literal>destructor()(pa)</literal></entry> 1859<entry><literal>pa->~A()</literal>, where <literal>pa</literal> is of type <literal>A*</literal></entry> 1860</row> 1861<row> 1862<entry><literal>new_ptr<T>()(<parameter>arg_list</parameter>)</literal></entry> 1863<entry><literal>new T(<parameter>arg_list</parameter>)</literal></entry> 1864</row> 1865<row> 1866<entry><literal>new_array<T>()(sz)</literal></entry> 1867<entry><literal>new T[sz]</literal></entry> 1868</row> 1869<row> 1870<entry><literal>delete_ptr()(p)</literal></entry> 1871<entry><literal>delete p</literal></entry> 1872</row> 1873<row> 1874<entry><literal>delete_array()(p)</literal></entry> 1875<entry><literal>delete p[]</literal></entry> 1876</row> 1877 1878 1879</tbody> 1880</tgroup> 1881</table> 1882 1883</section> 1884 1885 1886<section> 1887<title>Special lambda expressions</title> 1888 1889<section> 1890<title>Preventing argument substitution</title> 1891 1892<para> 1893When a lambda functor is called, the default behavior is to substitute 1894the actual arguments for the placeholders within all subexpressions. 1895 1896This section describes the tools to prevent the substitution and 1897evaluation of a subexpression, and explains when these tools should be used. 1898</para> 1899 1900 1901<para> 1902The arguments to a bind expression can be arbitrary lambda expressions, 1903e.g., other bind expressions. 1904 1905For example: 1906 1907<programlisting> 1908int foo(int); int bar(int); 1909... 1910int i; 1911bind(foo, bind(bar, _1))(i); 1912</programlisting> 1913 1914The last line makes the call <literal>foo(bar(i));</literal> 1915 1916Note that the first argument in a bind expression, the target function, 1917is no exception, and can thus be a bind expression too. 1918 1919The innermost lambda functor just has to return something that can be used 1920as a target function: another lambda functor, function pointer, 1921pointer to member function etc. 1922 1923For example, in the following code the innermost lambda functor makes 1924a selection between two functions, and returns a pointer to one of them: 1925 1926<programlisting> 1927int add(int a, int b) { return a+b; } 1928int mul(int a, int b) { return a*b; } 1929 1930int(*)(int, int) add_or_mul(bool x) { 1931 return x ? add : mul; 1932} 1933 1934bool condition; int i; int j; 1935... 1936bind(bind(&add_or_mul, _1), _2, _3)(condition, i, j); 1937</programlisting> 1938 1939</para> 1940 1941 1942 1943<section id="lambda.unlambda"> 1944<title>Unlambda</title> 1945 1946<para>A nested bind expression may occur inadvertently, 1947if the target function is a variable with a type that depends on a 1948template parameter. 1949 1950Typically the target function could be a formal parameter of a 1951function template. 1952 1953In such a case, the programmer may not know whether the target function is a lambda functor or not. 1954</para> 1955 1956<para>Consider the following function template: 1957 1958<programlisting> 1959<![CDATA[template<class F> 1960int nested(const F& f) { 1961 int x; 1962 ... 1963 bind(f, _1)(x); 1964 ... 1965}]]> 1966</programlisting> 1967 1968Somewhere inside the function the formal parameter 1969<literal>f</literal> is used as a target function in a bind expression. 1970 1971In order for this <literal>bind</literal> call to be valid, 1972<literal>f</literal> must be a unary function. 1973 1974Suppose the following two calls to <literal>nested</literal> are made: 1975 1976<programlisting> 1977<![CDATA[int foo(int); 1978int bar(int, int); 1979nested(&foo); 1980nested(bind(bar, 1, _1));]]> 1981</programlisting> 1982 1983Both are unary functions, or function objects, with appropriate argument 1984and return types, but the latter will not compile. 1985 1986In the latter call, the bind expression inside <literal>nested</literal> 1987will become: 1988 1989<programlisting> 1990bind(bind(bar, 1, _1), _1) 1991</programlisting> 1992 1993When this is invoked with <literal>x</literal>, 1994after substituitions we end up trying to call 1995 1996<programlisting> 1997bar(1, x)(x) 1998</programlisting> 1999 2000which is an error. 2001 2002The call to <literal>bar</literal> returns int, 2003not a unary function or function object. 2004</para> 2005 2006<para> 2007In the example above, the intent of the bind expression in the 2008<literal>nested</literal> function is to treat <literal>f</literal> 2009as an ordinary function object, instead of a lambda functor. 2010 2011The BLL provides the function template <literal>unlambda</literal> to 2012express this: a lambda functor wrapped inside <literal>unlambda</literal> 2013is not a lambda functor anymore, and does not take part into the 2014argument substitution process. 2015 2016Note that for all other argument types <literal>unlambda</literal> is 2017an identity operation, except for making non-const objects const. 2018</para> 2019 2020<para> 2021Using <literal>unlambda</literal>, the <literal>nested</literal> 2022function is written as: 2023 2024<programlisting> 2025<![CDATA[template<class F> 2026int nested(const F& f) { 2027 int x; 2028 ... 2029 bind(unlambda(f), _1)(x); 2030 ... 2031}]]> 2032</programlisting> 2033 2034</para> 2035 2036</section> 2037 2038<section> 2039<title>Protect</title> 2040 2041<para> 2042The <literal>protect</literal> function is related to unlambda. 2043 2044It is also used to prevent the argument substitution taking place, 2045but whereas <literal>unlambda</literal> turns a lambda functor into 2046an ordinary function object for good, <literal>protect</literal> does 2047this temporarily, for just one evaluation round. 2048 2049For example: 2050 2051<programlisting> 2052int x = 1, y = 10; 2053(_1 + protect(_1 + 2))(x)(y); 2054</programlisting> 2055 2056The first call substitutes <literal>x</literal> for the leftmost 2057<literal>_1</literal>, and results in another lambda functor 2058<literal>x + (_1 + 2)</literal>, which after the call with 2059<literal>y</literal> becomes <literal>x + (y + 2)</literal>, 2060and thus finally 13. 2061</para> 2062 2063<para> 2064Primary motivation for including <literal>protect</literal> into the library, 2065was to allow nested STL algorithm invocations 2066(<xref linkend="lambda.nested_stl_algorithms"/>). 2067</para> 2068 2069</section> 2070 2071</section> 2072 2073<section id="lambda.rvalues_as_actual_arguments"> 2074<title>Rvalues as actual arguments to lambda functors</title> 2075 2076<!-- <para><emphasis>This section and all of its subsections 2077 are no longer (or currently) relevant; 2078 acual arguments can be non-const rvalues and these workarounds are thus 2079 not needed. 2080 The section can, however, become relevant again, if in the future BLL will support 2081 lambda functors with higher arities than 3.</emphasis></para> --> 2082 2083<para> 2084Actual arguments to the lambda functors cannot be non-const rvalues. 2085This is due to a deliberate design decision: either we have this restriction, 2086or there can be no side-effects to the actual arguments. 2087 2088There are ways around this limitation. 2089 2090We repeat the example from section 2091<xref linkend="lambda.actual_arguments_to_lambda_functors"/> and list the 2092different solutions: 2093 2094<programlisting> 2095int i = 1; int j = 2; 2096(_1 + _2)(i, j); // ok 2097(_1 + _2)(1, 2); // error (!) 2098</programlisting> 2099 2100<orderedlist> 2101<listitem> 2102<para> 2103If the rvalue is of a class type, the return type of the function that 2104creates the rvalue should be defined as const. 2105Due to an unfortunate language restriction this does not work for 2106built-in types, as built-in rvalues cannot be const qualified. 2107</para> 2108</listitem> 2109 2110<listitem> 2111<para> 2112If the lambda function call is accessible, the <literal>make_const</literal> 2113function can be used to <emphasis>constify</emphasis> the rvalue. E.g.: 2114 2115<programlisting> 2116(_1 + _2)(make_const(1), make_const(2)); // ok 2117</programlisting> 2118 2119Commonly the lambda function call site is inside a standard algorithm 2120function template, preventing this solution to be used. 2121 2122</para> 2123</listitem> 2124 2125<listitem> 2126<para> 2127If neither of the above is possible, the lambda expression can be wrapped 2128in a <literal>const_parameters</literal> function. 2129It creates another type of lambda functor, which takes its arguments as 2130const references. For example: 2131 2132<programlisting> 2133const_parameters(_1 + _2)(1, 2); // ok 2134</programlisting> 2135 2136Note that <literal>const_parameters</literal> makes all arguments const. 2137Hence, in the case were one of the arguments is a non-const rvalue, 2138and another argument needs to be passed as a non-const reference, 2139this approach cannot be used. 2140</para> 2141 2142</listitem> 2143 2144<listitem> 2145<para>If none of the above is possible, there is still one solution, 2146which unfortunately can break const correctness. 2147 2148The solution is yet another lambda functor wrapper, which we have named 2149<literal>break_const</literal> to alert the user of the potential dangers 2150of this function. 2151 2152The <literal>break_const</literal> function creates a lambda functor that 2153takes its arguments as const, and casts away constness prior to the call 2154to the original wrapped lambda functor. 2155 2156For example: 2157<programlisting> 2158int i; 2159... 2160(_1 += _2)(i, 2); // error, 2 is a non-const rvalue 2161const_parameters(_1 += _2)(i, 2); // error, i becomes const 2162break_const(_1 += _2)(i, 2); // ok, but dangerous 2163</programlisting> 2164 2165Note, that the results of <literal> break_const</literal> or 2166<literal>const_parameters</literal> are not lambda functors, 2167so they cannot be used as subexpressions of lambda expressions. For instance: 2168 2169<programlisting> 2170break_const(_1 + _2) + _3; // fails. 2171const_parameters(_1 + _2) + _3; // fails. 2172</programlisting> 2173 2174However, this kind of code should never be necessary, 2175since calls to sub lambda functors are made inside the BLL, 2176and are not affected by the non-const rvalue problem. 2177</para> 2178</listitem> 2179 2180</orderedlist> 2181 2182</para> 2183</section> 2184 2185</section> 2186 2187 2188<section> 2189<title>Casts, sizeof and typeid</title> 2190 2191<section id="lambda.cast_expressions"> 2192<title> 2193Cast expressions 2194</title> 2195<para> 2196The BLL defines its counterparts for the four cast expressions 2197<literal>static_cast</literal>, <literal>dynamic_cast</literal>, 2198<literal>const_cast</literal> and <literal>reinterpret_cast</literal>. 2199 2200The BLL versions of the cast expressions have the prefix 2201<literal>ll_</literal>. 2202 2203The type to cast to is given as an explicitly specified template argument, 2204and the sole argument is the expression from which to perform the cast. 2205 2206If the argument is a lambda functor, the lambda functor is evaluated first. 2207 2208For example, the following code uses <literal>ll_dynamic_cast</literal> 2209to count the number of <literal>derived</literal> instances in the container 2210<literal>a</literal>: 2211 2212<programlisting> 2213<![CDATA[class base {}; 2214class derived : public base {}; 2215 2216vector<base*> a; 2217... 2218int count = 0; 2219for_each(a.begin(), a.end(), 2220 if_then(ll_dynamic_cast<derived*>(_1), ++var(count)));]]> 2221</programlisting> 2222</para> 2223</section> 2224 2225<section> 2226<title>Sizeof and typeid</title> 2227<para> 2228The BLL counterparts for these expressions are named 2229<literal>ll_sizeof</literal> and <literal>ll_typeid</literal>. 2230 2231Both take one argument, which can be a lambda expression. 2232The lambda functor created wraps the <literal>sizeof</literal> or 2233<literal>typeid</literal> call, and when the lambda functor is called 2234the wrapped operation is performed. 2235 2236For example: 2237 2238<programlisting> 2239<![CDATA[vector<base*> a; 2240... 2241for_each(a.begin(), a.end(), 2242 cout << bind(&type_info::name, ll_typeid(*_1)));]]> 2243</programlisting> 2244 2245Here <literal>ll_typeid</literal> creates a lambda functor for 2246calling <literal>typeid</literal> for each element. 2247 2248The result of a <literal>typeid</literal> call is an instance of 2249the <literal>type_info</literal> class, and the bind expression creates 2250a lambda functor for calling the <literal>name</literal> member 2251function of that class. 2252 2253</para> 2254</section> 2255 2256 2257 2258</section> 2259 2260<section id="lambda.nested_stl_algorithms"> 2261<title>Nesting STL algorithm invocations</title> 2262 2263<para> 2264The BLL defines common STL algorithms as function object classes, 2265instances of which can be used as target functions in bind expressions. 2266For example, the following code iterates over the elements of a 2267two-dimensional array, and computes their sum. 2268 2269<programlisting> 2270int a[100][200]; 2271int sum = 0; 2272 2273std::for_each(a, a + 100, 2274 bind(ll::for_each(), _1, _1 + 200, protect(sum += _1))); 2275</programlisting> 2276 2277The BLL versions of the STL algorithms are classes, which define the function call operator (or several overloaded ones) to call the corresponding function templates in the <literal>std</literal> namespace. 2278All these structs are placed in the subnamespace <literal>boost::lambda:ll</literal>. 2279<!--The supported algorithms are listed in <xref linkend="table:nested_algorithms"/>.--> 2280</para> 2281 2282<para> 2283Note that there is no easy way to express an overloaded member function 2284call in a lambda expression. 2285 2286This limits the usefulness of nested STL algorithms, as for instance 2287the <literal>begin</literal> function has more than one overloaded 2288definitions in container templates. 2289 2290In general, something analogous to the pseudo-code below cannot be written: 2291 2292<programlisting> 2293std::for_each(a.begin(), a.end(), 2294 bind(ll::for_each(), _1.begin(), _1.end(), protect(sum += _1))); 2295</programlisting> 2296 2297Some aid for common special cases can be provided though. 2298 2299The BLL defines two helper function object classes, 2300<literal>call_begin</literal> and <literal>call_end</literal>, 2301which wrap a call to the <literal>begin</literal> and, respectively, 2302<literal>end</literal> functions of a container, and return the 2303<literal>const_iterator</literal> type of the container. 2304 2305With these helper templates, the above code becomes: 2306<programlisting> 2307std::for_each(a.begin(), a.end(), 2308 bind(ll::for_each(), 2309 bind(call_begin(), _1), bind(call_end(), _1), 2310 protect(sum += _1))); 2311</programlisting> 2312 2313</para> 2314 2315<!-- 2316<table id="table:nested_algorithms"> 2317<title>The nested STL algorithms.</title> 2318<tgroup cols="1"> 2319<thead> 2320<trow><entry>Otsikko</entry></trow> 2321</thead> 2322<tbody> 2323<row><entry><literal>for_each</literal></entry></row> 2324<row><entry><literal>find</literal></entry></row> 2325<row><entry><literal>find_if</literal></entry></row> 2326<row><entry><literal>find_end</literal></entry></row> 2327<row><entry><literal>find_first_of</literal></entry></row> 2328<row><entry><literal>transform</literal></entry></row> 2329</tbody> 2330</tgroup> 2331 2332</table> 2333 2334--> 2335 2336</section> 2337 2338 2339</section> 2340 2341 2342<!-- 2343<section> 2344<title>Common gothcas</title> 2345 2346calling member functions a.begin() 2347 2348calling templated functions ... 2349 2350</section> 2351 2352--> 2353 2354<section id="lambda.extending"> 2355<title>Extending return type deduction system</title> 2356 2357<para> 2358<!--The <xref linkend = "lambda.overriding_deduced_return_type"/> showed how to make BLL aware of the return type of a function object in bind expressions.--> 2359 2360In this section, we explain how to extend the return type deduction system 2361to cover user defined operators. 2362 2363In many cases this is not necessary, 2364as the BLL defines default return types for operators. 2365 2366For example, the default return type for all comparison operators is 2367<literal>bool</literal>, and as long as the user defined comparison operators 2368have a bool return type, there is no need to write new specializations 2369for the return type deduction classes. 2370 2371Sometimes this cannot be avoided, though. 2372 2373</para> 2374 2375<para> 2376The overloadable user defined operators are either unary or binary. 2377 2378For each arity, there are two traits templates that define the 2379return types of the different operators. 2380 2381Hence, the return type system can be extended by providing more 2382specializations for these templates. 2383 2384The templates for unary functors are 2385 2386<literal> 2387<![CDATA[plain_return_type_1<Action, A>]]> 2388</literal> 2389 2390and 2391 2392<literal> 2393<![CDATA[return_type_1<Action, A>]]> 2394</literal>, and 2395 2396<literal> 2397<![CDATA[plain_return_type_2<Action, A, B>]]> 2398</literal> 2399 2400and 2401 2402<literal> 2403<![CDATA[return_type_2<Action, A, B>]]> 2404</literal> 2405 2406respectively for binary functors. 2407 2408</para> 2409 2410<para> 2411The first parameter (<literal>Action</literal>) to all these templates 2412is the <emphasis>action</emphasis> class, which specifies the operator. 2413 2414Operators with similar return type rules are grouped together into 2415<emphasis>action groups</emphasis>, 2416and only the action class and action group together define the operator 2417unambiguously. 2418 2419As an example, the action type 2420<literal><![CDATA[arithmetic_action<plus_action>]]></literal> stands for 2421<literal>operator+</literal>. 2422 2423The complete listing of different action types is shown in 2424<xref linkend="table:actions"/>. 2425</para> 2426 2427<para> 2428The latter parameters, <literal>A</literal> in the unary case, 2429or <literal>A</literal> and <literal>B</literal> in the binary case, 2430stand for the argument types of the operator call. 2431 2432The two sets of templates, 2433<literal>plain_return_type_<parameter>n</parameter></literal> and 2434<literal>return_type_<parameter>n</parameter></literal> 2435(<parameter>n</parameter> is 1 or 2) differ in the way how parameter types 2436are presented to them. 2437 2438For the former templates, the parameter types are always provided as 2439non-reference types, and do not have const or volatile qualifiers. 2440 2441This makes specializing easy, as commonly one specialization for each 2442user defined operator, or operator group, is enough. 2443 2444On the other hand, if a particular operator is overloaded for different 2445cv-qualifications of the same argument types, 2446and the return types of these overloaded versions differ, a more fine-grained control is needed. 2447 2448Hence, for the latter templates, the parameter types preserve the 2449cv-qualifiers, and are non-reference types as well. 2450 2451The downside is, that for an overloaded set of operators of the 2452kind described above, one may end up needing up to 245316 <literal>return_type_2</literal> specializations. 2454</para> 2455 2456<para> 2457Suppose the user has overloaded the following operators for some user defined 2458types <literal>X</literal>, <literal>Y</literal> and <literal>Z</literal>: 2459 2460<programlisting> 2461<![CDATA[Z operator+(const X&, const Y&); 2462Z operator-(const X&, const Y&);]]> 2463</programlisting> 2464 2465Now, one can add a specialization stating, that if the left hand argument 2466is of type <literal>X</literal>, and the right hand one of type 2467<literal>Y</literal>, the return type of all such binary arithmetic 2468operators is <literal>Z</literal>: 2469 2470<programlisting> 2471<![CDATA[namespace boost { 2472namespace lambda { 2473 2474template<class Act> 2475struct plain_return_type_2<arithmetic_action<Act>, X, Y> { 2476 typedef Z type; 2477}; 2478 2479} 2480}]]> 2481</programlisting> 2482 2483Having this specialization defined, BLL is capable of correctly 2484deducing the return type of the above two operators. 2485 2486Note, that the specializations must be in the same namespace, 2487<literal>::boost::lambda</literal>, with the primary template. 2488 2489For brevity, we do not show the namespace definitions in the examples below. 2490</para> 2491 2492<para> 2493It is possible to specialize on the level of an individual operator as well, 2494in addition to providing a specialization for a group of operators. 2495Say, we add a new arithmetic operator for argument types <literal>X</literal> 2496and <literal>Y</literal>: 2497 2498<programlisting> 2499<![CDATA[X operator*(const X&, const Y&);]]> 2500</programlisting> 2501 2502Our first rule for all arithmetic operators specifies that the return 2503type of this operator is <literal>Z</literal>, 2504which obviously is not the case. 2505Hence, we provide a new rule for the multiplication operator: 2506 2507<programlisting> 2508<![CDATA[template<> 2509struct plain_return_type_2<arithmetic_action<multiply_action>, X, Y> { 2510 typedef X type; 2511};]]> 2512</programlisting> 2513</para> 2514 2515<para> 2516The specializations can define arbitrary mappings from the argument types 2517to the return type. 2518 2519Suppose we have some mathematical vector type, templated on the element type: 2520 2521<programlisting> 2522<![CDATA[template <class T> class my_vector;]]> 2523</programlisting> 2524 2525Suppose the addition operator is defined between any two 2526<literal>my_vector</literal> instantiations, 2527as long as the addition operator is defined between their element types. 2528 2529Furthermore, the element type of the resulting <literal>my_vector</literal> 2530is the same as the result type of the addition between the element types. 2531 2532E.g., adding <literal><![CDATA[my_vector<int>]]></literal> and 2533<literal><![CDATA[my_vector<double>]]></literal> results in 2534<literal><![CDATA[my_vector<double>]]></literal>. 2535 2536The BLL has traits classes to perform the implicit built-in and standard 2537type conversions between integral, floating point, and complex classes. 2538 2539Using BLL tools, the addition operator described above can be defined as: 2540 2541<programlisting> 2542<![CDATA[template<class A, class B> 2543my_vector<typename return_type_2<arithmetic_action<plus_action>, A, B>::type> 2544operator+(const my_vector<A>& a, const my_vector<B>& b) 2545{ 2546 typedef typename 2547 return_type_2<arithmetic_action<plus_action>, A, B>::type res_type; 2548 return my_vector<res_type>(); 2549}]]> 2550</programlisting> 2551</para> 2552 2553<para> 2554To allow BLL to deduce the type of <literal>my_vector</literal> 2555additions correctly, we can define: 2556 2557<programlisting> 2558<![CDATA[template<class A, class B> 2559class plain_return_type_2<arithmetic_action<plus_action>, 2560 my_vector<A>, my_vector<B> > { 2561 typedef typename 2562 return_type_2<arithmetic_action<plus_action>, A, B>::type res_type; 2563public: 2564 typedef my_vector<res_type> type; 2565};]]> 2566</programlisting> 2567Note, that we are reusing the existing specializations for the 2568BLL <literal>return_type_2</literal> template, 2569which require that the argument types are references. 2570</para> 2571 2572<!-- TODO: is an example of specifying the other level needed at all --> 2573<!-- TODO: comma operator is a special case for that --> 2574 2575<table id = "table:actions"> 2576<title>Action types</title> 2577<tgroup cols="2"> 2578<tbody> 2579 2580<row><entry><literal><![CDATA[+]]></literal></entry><entry><literal><![CDATA[arithmetic_action<plus_action>]]></literal></entry></row> 2581<row><entry><literal><![CDATA[-]]></literal></entry><entry><literal><![CDATA[arithmetic_action<minus_action>]]></literal></entry></row> 2582<row><entry><literal><![CDATA[*]]></literal></entry><entry><literal><![CDATA[arithmetic_action<multiply_action>]]></literal></entry></row> 2583<row><entry><literal><![CDATA[/]]></literal></entry><entry><literal><![CDATA[arithmetic_action<divide_action>]]></literal></entry></row> 2584<row><entry><literal><![CDATA[%]]></literal></entry><entry><literal><![CDATA[arithmetic_action<remainder_action>]]></literal></entry></row> 2585 2586 2587 2588<row><entry><literal><![CDATA[+]]></literal></entry><entry><literal><![CDATA[unary_arithmetic_action<plus_action>]]></literal></entry></row> 2589<row><entry><literal><![CDATA[-]]></literal></entry><entry><literal><![CDATA[unary_arithmetic_action<minus_action>]]></literal></entry></row> 2590 2591 2592 2593<row><entry><literal><![CDATA[&]]></literal></entry><entry><literal><![CDATA[bitwise_action<and_action>]]></literal></entry></row> 2594<row><entry><literal><![CDATA[|]]></literal></entry><entry><literal><![CDATA[bitwise_action<or_action>]]></literal></entry></row> 2595<row><entry><literal><![CDATA[~]]></literal></entry><entry><literal><![CDATA[bitwise_action<not_action>]]></literal></entry></row> 2596<row><entry><literal><![CDATA[^]]></literal></entry><entry><literal><![CDATA[bitwise_action<xor_action>]]></literal></entry></row> 2597<row><entry><literal><![CDATA[<<]]></literal></entry><entry><literal><![CDATA[bitwise_action<leftshift_action_no_stream>]]></literal></entry></row> 2598<row><entry><literal><![CDATA[>>]]></literal></entry><entry><literal><![CDATA[bitwise_action<rightshift_action_no_stream>]]></literal></entry></row> 2599 2600 2601 2602<row><entry><literal><![CDATA[&&]]></literal></entry><entry><literal><![CDATA[logical_action<and_action>]]></literal></entry></row> 2603<row><entry><literal><![CDATA[||]]></literal></entry><entry><literal><![CDATA[logical_action<or_action>]]></literal></entry></row> 2604<row><entry><literal><![CDATA[!]]></literal></entry><entry><literal><![CDATA[logical_action<not_action>]]></literal></entry></row> 2605 2606 2607 2608<row><entry><literal><![CDATA[<]]></literal></entry><entry><literal><![CDATA[relational_action<less_action>]]></literal></entry></row> 2609<row><entry><literal><![CDATA[>]]></literal></entry><entry><literal><![CDATA[relational_action<greater_action>]]></literal></entry></row> 2610<row><entry><literal><![CDATA[<=]]></literal></entry><entry><literal><![CDATA[relational_action<lessorequal_action>]]></literal></entry></row> 2611<row><entry><literal><![CDATA[>=]]></literal></entry><entry><literal><![CDATA[relational_action<greaterorequal_action>]]></literal></entry></row> 2612<row><entry><literal><![CDATA[==]]></literal></entry><entry><literal><![CDATA[relational_action<equal_action>]]></literal></entry></row> 2613<row><entry><literal><![CDATA[!=]]></literal></entry><entry><literal><![CDATA[relational_action<notequal_action>]]></literal></entry></row> 2614 2615 2616 2617<row><entry><literal><![CDATA[+=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<plus_action>]]></literal></entry></row> 2618<row><entry><literal><![CDATA[-=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<minus_action>]]></literal></entry></row> 2619<row><entry><literal><![CDATA[*=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<multiply_action>]]></literal></entry></row> 2620<row><entry><literal><![CDATA[/=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<divide_action>]]></literal></entry></row> 2621<row><entry><literal><![CDATA[%=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<remainder_action>]]></literal></entry></row> 2622 2623 2624 2625<row><entry><literal><![CDATA[&=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<and_action>]]></literal></entry></row> 2626<row><entry><literal><![CDATA[=|]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<or_action>]]></literal></entry></row> 2627<row><entry><literal><![CDATA[^=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<xor_action>]]></literal></entry></row> 2628<row><entry><literal><![CDATA[<<=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<leftshift_action>]]></literal></entry></row> 2629<row><entry><literal><![CDATA[>>=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<rightshift_action>]]></literal></entry></row> 2630 2631 2632 2633<row><entry><literal><![CDATA[++]]></literal></entry><entry><literal><![CDATA[pre_increment_decrement_action<increment_action>]]></literal></entry></row> 2634<row><entry><literal><![CDATA[--]]></literal></entry><entry><literal><![CDATA[pre_increment_decrement_action<decrement_action>]]></literal></entry></row> 2635<row><entry><literal><![CDATA[++]]></literal></entry><entry><literal><![CDATA[post_increment_decrement_action<increment_action>]]></literal></entry></row> 2636<row><entry><literal><![CDATA[--]]></literal></entry><entry><literal><![CDATA[post_increment_decrement_action<decrement_action>]]></literal></entry></row> 2637 2638 2639 2640<row><entry><literal><![CDATA[&]]></literal></entry><entry><literal><![CDATA[other_action<address_of_action>]]></literal></entry></row> 2641<row><entry><literal><![CDATA[*]]></literal></entry><entry><literal><![CDATA[other_action<contents_of_action>]]></literal></entry></row> 2642<row><entry><literal><![CDATA[,]]></literal></entry><entry><literal><![CDATA[other_action<comma_action>]]></literal></entry></row> 2643<row><entry><literal><![CDATA[->*]]></literal></entry><entry><literal><![CDATA[other_action<member_pointer_action>]]></literal></entry></row> 2644 2645</tbody> 2646</tgroup> 2647</table> 2648 2649</section> 2650 2651 2652<section> 2653<title>Practical considerations</title> 2654 2655 2656<section> 2657<title>Performance</title> 2658 2659<para>In theory, all overhead of using STL algorithms and lambda functors 2660compared to hand written loops can be optimized away, just as the overhead 2661from standard STL function objects and binders can. 2662 2663Depending on the compiler, this can also be true in practice. 2664We ran two tests with the GCC 3.0.4 compiler on 1.5 GHz Intel Pentium 4. 2665The optimization flag -03 was used. 2666</para> 2667 2668<para> 2669In the first test we compared lambda functors against explicitly written 2670function objects. 2671We used both of these styles to define unary functions which multiply the 2672argument repeatedly by itself. 2673We started with the identity function, going up to 2674x<superscript>5</superscript>. 2675The expressions were called inside a <literal>std::transform</literal> loop, 2676reading the argument from one <literal><![CDATA[std::vector<int>]]></literal> 2677and placing the result into another. 2678The length of the vectors was 100 elements. 2679The running times are listed in 2680<xref linkend="table:increasing_arithmetic_test"/>. 2681 2682We can observe that there is no significant difference between the 2683two approaches. 2684</para> 2685 2686<para> 2687In the second test we again used <literal>std::transform</literal> to 2688perform an operation to each element in a 100-element long vector. 2689This time the element type of the vectors was <literal>double</literal> 2690and we started with very simple arithmetic expressions and moved to 2691more complex ones. 2692The running times are listed in <xref linkend="table:ll_vs_stl_test"/>. 2693 2694Here, we also included classic STL style unnamed functions into tests. 2695We do not show these expressions, as they get rather complex. 2696For example, the 2697last expression in <xref linkend="table:ll_vs_stl_test"/> written with 2698classic STL tools contains 7 calls to <literal>compose2</literal>, 26998 calls to <literal>bind1st</literal> 2700and altogether 14 constructor invocations for creating 2701<literal>multiplies</literal>, <literal>minus</literal> 2702and <literal>plus</literal> objects. 2703 2704In this test the BLL expressions are a little slower (roughly 10% on average, 2705less than 14% in all cases) 2706than the corresponding hand-written function objects. 2707The performance hit is a bit greater with classic STL expressions, 2708up to 27% for the simplest expressios. 2709</para> 2710 2711<para> 2712The tests suggest that the BLL does not introduce a loss of performance 2713compared to STL function objects. 2714With a reasonable optimizing compiler, one should expect the performance characteristics be comparable to using classic STL. 2715Moreover, with simple expressions the performance can be expected to be close 2716to that of explicitly written function objects. 2717 2718<!-- We repeated both tests with the KAI C++ 4.0f compiler (using +K2 -O3 flags), 2719generally considered a good optimizing compiler. 2720We do not list the results here, since the running times for the two alternatives in the first test were essentially the same, just as the running times 2721for the three different alternatives in the second test. 2722These tests suggest there to be no performance penalty at all 2723with a good optimizing compiler. 2724--> 2725 2726Note however, that evaluating a lambda functor consist of a sequence of calls to small functions that are declared inline. 2727If the compiler fails to actually expand these functions inline, 2728the performance can suffer. 2729The running time can more than double if this happens. 2730Although the above tests do not include such an expression, we have experienced 2731this for some seemingly simple expressions. 2732 2733 2734<table id = "table:increasing_arithmetic_test"> 2735<title>Test 1</title> 2736<caption>CPU time of expressions with integer multiplication written as a lambda expression and as a traditional hand-coded function object class. 2737The running times are expressed in arbitrary units.</caption> 2738<tgroup cols="3"> 2739<thead> 2740<row> 2741<entry>expression</entry><entry>lambda expression</entry><entry>hand-coded function object</entry></row> 2742</thead> 2743 2744<tbody> 2745 2746<row> 2747<entry>x</entry><entry>240</entry><entry>230</entry> 2748</row> 2749 2750<row> 2751<entry>x*x</entry><entry>340</entry><entry>350</entry> 2752</row> 2753 2754<row> 2755<entry>x*x*x</entry><entry>770</entry><entry>760</entry> 2756</row> 2757 2758<row> 2759<entry>x*x*x*x</entry><entry>1180</entry><entry>1210</entry> 2760</row> 2761 2762<row> 2763<entry>x*x*x*x*x</entry><entry>1950</entry><entry>1910</entry> 2764</row> 2765 2766</tbody> 2767</tgroup> 2768</table> 2769</para> 2770 2771<!-- 277216:19:49 bench [601] ./arith.out 100 1000000 2773 2774Number of elements = 100 2775L1 : 240 2776L2 : 340 2777L3 : 770 2778L4 : 1180 2779L5 : 1950 2780 2781P2 : 1700 2782P3 : 2130 2783P4 : 2530 2784P5 : 3000 2785 2786F1 : 230 2787F2 : 350 2788F3 : 760 2789F4 : 1210 2790F5 : 1910 2791 2792 2793Number of elements = 100 2794Number of outer_iters = 1000000 2795L1 : 330 2796L2 : 350 2797L3 : 470 2798L4 : 620 2799L5 : 1660 2800LP : 1230 2801C1 : 370 2802C2 : 370 2803C3 : 500 2804C4 : 670 2805C5 : 1660 2806CP : 1770 2807F1 : 290 2808F2 : 310 2809F3 : 420 2810F4 : 600 2811F5 : 1460 2812FP : 1040 2813 2814--> 2815 2816 2817<para> 2818<table id = "table:ll_vs_stl_test"> 2819<title>Test 2</title> 2820<caption>CPU time of arithmetic expressions written as lambda 2821expressions, as classic STL unnamed functions (using <literal>compose2</literal>, <literal>bind1st</literal> etc.) and as traditional hand-coded function object classes. 2822Using BLL terminology, 2823<literal>a</literal> and <literal>b</literal> are bound arguments in the expressions, and <literal>x</literal> is open. 2824All variables were of types <literal>double</literal>. 2825The running times are expressed in arbitrary units.</caption> 2826<tgroup cols="4"> 2827<thead> 2828<row> 2829<entry>expression</entry><entry>lambda expression</entry><entry>classic STL expression</entry><entry>hand-coded function object</entry></row> 2830</thead> 2831 2832<tbody> 2833 2834<row> 2835<entry>ax</entry><entry>330</entry><entry>370</entry><entry>290</entry> 2836</row> 2837 2838<row> 2839<entry>-ax</entry><entry>350</entry><entry>370</entry><entry>310</entry> 2840</row> 2841 2842<row> 2843<entry>ax-(a+x)</entry><entry>470</entry><entry>500</entry><entry>420</entry> 2844</row> 2845 2846<row> 2847<entry>(ax-(a+x))(a+x)</entry><entry>620</entry><entry>670</entry><entry>600</entry> 2848</row> 2849 2850<row> 2851<entry>((ax) - (a+x))(bx - (b+x))(ax - (b+x))(bx - (a+x))</entry><entry>1660</entry><entry>1660</entry><entry>1460</entry> 2852</row> 2853 2854</tbody> 2855</tgroup> 2856 2857</table> 2858</para> 2859 2860 2861<para>Some additional performance testing with an earlier version of the 2862library is described 2863<xref linkend="cit:jarvi:00"/>. 2864</para> 2865 2866</section> 2867 <section> 2868 <title>About compiling</title> 2869 2870 <para>The BLL uses templates rather heavily, performing numerous recursive instantiations of the same templates. 2871This has (at least) three implications: 2872<itemizedlist> 2873 2874<listitem> 2875<para> 2876While it is possible to write incredibly complex lambda expressions, it probably isn't a good idea. 2877Compiling such expressions may end up requiring a lot of memory 2878at compile time, and being slow to compile. 2879</para> 2880</listitem> 2881 2882 2883<listitem> 2884<para> 2885The types of lambda functors that result from even the simplest lambda expressions are cryptic. 2886Usually the programmer doesn't need to deal with the lambda functor types at all, but in the case of an error in a lambda expression, the compiler usually outputs the types of the lambda functors involved. 2887This can make the error messages very long and difficult to interpret, particularly if the compiler outputs the whole chain of template instantiations. 2888</para> 2889</listitem> 2890 2891<listitem> 2892<para> 2893The C++ Standard suggests a template nesting level of 17 to help detect infinite recursion. 2894Complex lambda templates can easily exceed this limit. 2895Most compilers allow a greater number of nested templates, but commonly require the limit explicitly increased with a command line argument. 2896</para> 2897</listitem> 2898</itemizedlist></para> 2899 2900 </section> 2901 2902 <section> 2903 <title>Portability</title> 2904 <para> 2905The BLL works with the following compilers, that is, the compilers are capable of compiling the test cases that are included with the BLL: 2906 2907 <itemizedlist> 2908 <listitem>GCC 3.0.4 2909 </listitem> 2910 <listitem>KCC 4.0f with EDG 2.43.1 2911 </listitem> 2912 <listitem>GCC 2.96 (fails with one test case, the <filename>exception_test.cpp</filename> results in an internal compiler error. 2913) 2914 2915 </listitem> 2916 </itemizedlist> 2917</para> 2918 2919 <section> 2920 <title>Test coverage</title> 2921 2922<para>The following list describes the test files included and the features that each file covers: 2923 2924<itemizedlist> 2925<listitem> 2926<para> 2927<filename>bind_tests_simple.cpp</filename> : Bind expressions of different arities and types of target functions: function pointers, function objects and member functions. 2928Function composition with bind expressions.</para> 2929</listitem> 2930 2931<listitem> 2932<para><filename>bind_tests_simple_function_references.cpp</filename> : 2933Repeats all tests from <filename moreinfo="none">bind_tests_simple.cpp</filename> where the target function is a function pointer, but uses function references instead. 2934</para></listitem> 2935 2936 2937<listitem> 2938<para><filename>bind_tests_advanced.cpp</filename> : Contains tests for nested bind expressions, <literal>unlambda</literal>, <literal>protect</literal>, <literal>const_parameters</literal> and <literal>break_const</literal>. 2939Tests passing lambda functors as actual arguments to other lambda functors, currying, and using the <literal>sig</literal> template to specify the return type of a function object. 2940</para> 2941</listitem> 2942 2943<listitem> 2944<para> 2945<filename>operator_tests_simple.cpp</filename> : 2946Tests using all operators that are overloaded for lambda expressions, that is, unary and binary arithmetic, 2947bitwise, 2948comparison, 2949logical, 2950increment and decrement, 2951compound, 2952assignment, 2953subscrict, 2954address of, 2955dereference, and comma operators. 2956The streaming nature of shift operators is tested, as well as pointer arithmetic with plus and minus operators. 2957</para> 2958</listitem> 2959 2960<listitem> 2961<para><filename>member_pointer_test.cpp</filename> : The pointer to member operator is complex enough to warrant a separate test file. 2962</para> 2963</listitem> 2964 2965<listitem> 2966<para> 2967<filename>control_structures.cpp</filename> : 2968Tests for the looping and if constructs. 2969</para></listitem> 2970 2971<listitem> 2972<para> 2973<filename>switch_construct.cpp</filename> : 2974Includes tests for all supported arities of the switch statement, both with and without the default case. 2975</para> 2976</listitem> 2977 2978<listitem> 2979<para> 2980<filename>exception_test.cpp</filename> : 2981Includes tests for throwing exceptions and for try/catch constructs with varying number of catch blocks. 2982</para> 2983</listitem> 2984 2985<listitem> 2986<para> 2987<filename>constructor_tests.cpp</filename> : 2988Contains tests for <literal>constructor</literal>, <literal>destructor</literal>, <literal>new_ptr</literal>, <literal>delete_ptr</literal>, <literal>new_array</literal> and <literal>delete_array</literal>. 2989</para> 2990</listitem> 2991 2992<listitem> 2993<para> 2994<filename>cast_test.cpp</filename> : Tests for the four cast expressions, as well as <filename>typeid</filename> and <literal>sizeof</literal>. 2995</para> 2996</listitem> 2997 2998<listitem> 2999<para> 3000<filename>extending_return_type_traits.cpp</filename> : Tests extending the return type deduction system for user defined types. 3001Contains several user defined operators and the corresponding specializations for the return type deduction templates. 3002</para> 3003</listitem> 3004 3005<listitem> 3006<para> 3007<filename>is_instance_of_test.cpp</filename> : Includes tests for an internally used traits template, which can detect whether a given type is an instance of a certain template or not. 3008</para></listitem> 3009 3010<listitem> 3011<para> 3012<filename>bll_and_function.cpp</filename> : 3013Contains tests for using <literal>boost::function</literal> together with lambda functors. 3014</para></listitem> 3015 3016 </itemizedlist> 3017 3018</para> 3019 3020 </section> 3021 3022 </section> 3023 3024 3025</section> 3026 3027 3028<section> 3029<title>Relation to other Boost libraries</title> 3030 3031<section> 3032<title>Boost Function</title> 3033 3034<para>Sometimes it is convenient to store lambda functors in variables. 3035However, the types of even the simplest lambda functors are long and unwieldy, and it is in general unfeasible to declare variables with lambda functor types. 3036<emphasis>The Boost Function library</emphasis> <xref linkend="cit:boost::function"/> defines wrappers for arbitrary function objects, for example 3037lambda functors; and these wrappers have types that are easy to type out. 3038 3039For example: 3040 3041<programlisting> 3042<![CDATA[boost::function<int(int, int)> f = _1 + _2; 3043boost::function<int&(int&)> g = (_1 += 10); 3044int i = 1, j = 2; 3045f(i, j); // returns 3 3046g(i); // sets i to = 11;]]> 3047</programlisting> 3048 3049The return and parameter types of the wrapped function object must be written explicilty as the template argument to the wrapper template <literal>boost::function</literal>; even when lambda functors, which otherwise have generic parameters, are wrapped. 3050Wrapping a function object with <literal>boost::function</literal> introduces a performance cost comparable to virtual function dispatch, though virtual functions are not actually used. 3051 3052Note that storing lambda functors inside <literal>boost::function</literal> 3053introduces a danger. 3054Certain types of lambda functors may store references to the bound 3055arguments, instead as taking copies of the arguments of the lambda expression. 3056When temporary lambda functor objects are used 3057in STL algorithm invocations this is always safe, as the lambda functor gets 3058destructed immediately after the STL algortihm invocation is completed. 3059 3060However, a lambda functor wrapped inside <literal>boost::function</literal> 3061may continue to exist longer, creating the possibility of dangling references. 3062For example: 3063 3064<programlisting> 3065<![CDATA[int* sum = new int(); 3066*sum = 0; 3067boost::function<int&(int)> counter = *sum += _1; 3068counter(5); // ok, *sum = 5; 3069delete sum; 3070counter(3); // error, *sum does not exist anymore]]> 3071</programlisting> 3072 3073</para> 3074 3075</section> 3076 3077<section> 3078<title>Boost Bind</title> 3079<para> 3080<emphasis>The Boost Bind</emphasis> <xref linkend="cit:boost::bind"/> library has partially overlapping functionality with the BLL. 3081Basically, the Boost Bind library (BB in the sequel) implements the bind expression part of BLL. 3082There are, however, some semantical differerences. 3083</para> 3084<para> 3085The BLL and BB evolved separately, and have different implementations. 3086This means that the bind expressions from the BB cannot be used within 3087bind expressions, or within other type of lambda expressions, of the BLL. 3088The same holds for using BLL bind expressions in the BB. 3089The libraries can coexist, however, as 3090the names of the BB library are in <literal>boost</literal> namespace, 3091whereas the BLL names are in <literal>boost::lambda</literal> namespace. 3092</para> 3093 3094<para> 3095The BLL requires a compiler that is reasonably conformant to the 3096C++ standard, whereas the BB library is more portable, and works with 3097a larger set of compilers. 3098</para> 3099 3100<para> 3101The following two sections describe what are the semantic differences 3102between the bind expressions in BB and BLL. 3103</para> 3104 3105 3106 3107 3108<section> 3109<title>First argument of bind expression</title> 3110 3111In BB the first argument of the bind expression, the target function, 3112is treated differently from the other arguments, 3113as no argument substitution takes place within that argument. 3114In BLL the first argument is not a special case in this respect. 3115 3116For example: 3117 3118<programlisting> 3119<![CDATA[template<class F> 3120int foo(const F& f) { 3121 int x; 3122 .. 3123 bind(f, _1)(x); 3124 ... 3125}]]> 3126</programlisting> 3127 3128<programlisting> 3129<![CDATA[int bar(int, int); 3130nested(bind(bar, 1, _1));]]> 3131</programlisting> 3132 3133The bind expression inside <literal>foo</literal> becomes: 3134<programlisting> 3135bind(bind(bar, 1, _1), _1)(x) 3136</programlisting> 3137 3138The BLL interpretes this as: 3139<programlisting> 3140bar(1, x)(x) 3141</programlisting> 3142whereas the BB library as 3143<programlisting> 3144bar(1, x) 3145</programlisting> 3146 3147To get this functionality in BLL, the bind expression inside the <literal moreinfo="none">foo</literal> function can be written as: 3148<programlisting> 3149bind(unlambda(f), _1)(x); 3150</programlisting> 3151as explained in <xref linkend = "lambda.unlambda"/>. 3152 3153</section> 3154 3155 3156 3157 3158<para> 3159The BB library supports up to nine placeholders, while the BLL 3160defines only three placeholders. 3161The rationale for not providing more, is that the highest arity of the 3162function objects accepted by any STL algorithm is two. 3163The placeholder count is easy to increase in the BB library. 3164In BLL it is possible, but more laborous. 3165The BLL currently passes the actual arguments to the lambda functors 3166internally just as they are and does not wrap them inside a tuple object. 3167The reason for this is that some widely used compilers are not capable 3168of optimizing the intermediate tuple objects away. 3169The creation of the intermediate tuples would cause a significant 3170performance hit, particularly for the simplest (and thus the most common) 3171lambda functors. 3172We are working on a hybrid approach, which will allow more placeholders 3173but not compromise the performance of simple lambda functors. 3174</para> 3175 3176</section> 3177 3178 </section> 3179 3180 3181<section> 3182<title>Contributors</title> 3183 3184The main body of the library was written by Jaakko J�rvi and Gary Powell. 3185We've got outside help, suggestions and ideas from Jeremy Siek, Peter Higley, Peter Dimov, Valentin Bonnard, William Kempf. 3186We would particularly like to mention Joel de Guzmann and his work with 3187Phoenix which has influenced BLL significantly, making it considerably simpler 3188to extend the library with new features. 3189 3190</section> 3191 3192 3193 3194<section> 3195<title>Rationale for some of the design decisions</title> 3196 3197<section id="lambda.why_weak_arity"> 3198<title> 3199Lambda functor arity 3200</title> 3201 3202<para> 3203The highest placeholder index in a lambda expression determines the arity of the resulting function object. 3204However, this is just the minimal arity, as the function object can take arbitrarily many arguments; those not needed are discarded. 3205Consider the two bind expressions and their invocations below: 3206 3207<programlisting> 3208bind(g, _3, _3, _3)(x, y, z); 3209bind(g, _1, _1, _1)(x, y, z); 3210</programlisting> 3211 3212This first line discards arguments <literal>x</literal> and 3213<literal>y</literal>, and makes the call: 3214<programlisting> 3215g(z, z, z) 3216</programlisting> 3217whereas the second line discards arguments <literal>y</literal> and 3218<literal>z</literal>, and calls: 3219<programlisting> 3220g(x, x, x) 3221</programlisting> 3222In earlier versions of the library, the latter line resulted in a compile 3223time error. 3224 3225This is basically a tradeoff between safety and flexibility, and the issue 3226was extensively discussed during the Boost review period of the library. 3227The main points for the <emphasis>strict arity</emphasis> checking 3228was that it might 3229catch a programming error at an earlier time and that a lambda expression that 3230explicitly discards its arguments is easy to write: 3231<programlisting> 3232(_3, bind(g, _1, _1, _1))(x, y, z); 3233</programlisting> 3234This lambda expression takes three arguments. 3235The left-hand argument of the comma operator does nothing, and as comma 3236returns the result of evaluating the right-hand argument we end up with 3237the call 3238<literal>g(x, x, x)</literal> 3239even with the strict arity. 3240</para> 3241 3242<para> 3243The main points against the strict arity checking were that the need to 3244discard arguments is commonplace, and should therefore be straightforward, 3245and that strict arity checking does not really buy that much more safety, 3246particularly as it is not symmetric. 3247For example, if the programmer wanted to write the expression 3248<literal>_1 + _2</literal> but mistakenly wrote <literal>_1 + 2</literal>, 3249with strict arity checking, the complier would spot the error. 3250However, if the erroneous expression was <literal>1 + _2</literal> instead, 3251the error would go unnoticed. 3252Furthermore, weak arity checking simplifies the implementation a bit. 3253Following the recommendation of the Boost review, strict arity checking 3254was dropped. 3255</para> 3256 3257</section> 3258 3259</section> 3260 3261 3262 3263<bibliography> 3264 3265<biblioentry id="cit:stepanov:94"> 3266<abbrev>STL94</abbrev> 3267<authorgroup> 3268<author> 3269<surname>Stepanov</surname> 3270<firstname>A. A.</firstname> 3271</author> 3272<author> 3273<surname>Lee</surname> 3274<firstname>M.</firstname> 3275</author> 3276</authorgroup> 3277<title>The Standard Template Library</title> 3278<orgname>Hewlett-Packard Laboratories</orgname> 3279<pubdate>1994</pubdate> 3280<bibliomisc> 3281<ulink url="http://www.hpl.hp.com/techreports">www.hpl.hp.com/techreports</ulink> 3282</bibliomisc> 3283</biblioentry> 3284 3285<biblioentry id="cit:sgi:02"> 3286<abbrev>SGI02</abbrev> 3287<title>The SGI Standard Template Library</title> 3288<pubdate>2002</pubdate> 3289<bibliomisc><ulink url="http://www.sgi.com/tech/stl/">www.sgi.com/tech/stl/</ulink></bibliomisc> 3290 3291</biblioentry> 3292 3293<biblioentry id="cit:c++:98"> 3294<abbrev>C++98</abbrev> 3295<title>International Standard, Programming Languages – C++</title> 3296<subtitle>ISO/IEC:14882</subtitle> 3297<pubdate>1998</pubdate> 3298</biblioentry> 3299 3300 3301<biblioentry id="cit:jarvi:99"> 3302<abbrev>J�r99</abbrev> 3303 3304<articleinfo> 3305<author> 3306<surname>J�rvi</surname> 3307<firstname>Jaakko</firstname> 3308</author> 3309<title>C++ Function Object Binders Made Easy</title> 3310</articleinfo> 3311 3312<title>Lecture Notes in Computer Science</title> 3313<volumenum>1977</volumenum> 3314<publishername>Springer</publishername> 3315 3316<pubdate>2000</pubdate> 3317</biblioentry> 3318 3319 3320 3321<biblioentry id="cit:jarvi:00"> 3322<abbrev>J�r00</abbrev> 3323<author> 3324<surname>J�rvi</surname> 3325<firstname>Jaakko</firstname> 3326</author> 3327<author> 3328<firstname>Gary</firstname> 3329<surname>Powell</surname> 3330</author> 3331<title>The Lambda Library : Lambda Abstraction in C++</title> 3332 <orgname>Turku Centre for Computer Science</orgname> 3333<bibliomisc>Technical Report </bibliomisc> 3334 <issuenum>378</issuenum> 3335<pubdate>2000</pubdate> 3336<bibliomisc><ulink url="http://www.tucs.fi/Publications/techreports/TR378.php">www.tucs.fi/publications</ulink></bibliomisc> 3337 3338 3339</biblioentry> 3340 3341 3342<biblioentry id="cit:jarvi:01"> 3343<abbrev>J�r01</abbrev> 3344<author> 3345<surname>J�rvi</surname> 3346<firstname>Jaakko</firstname> 3347</author> 3348<author> 3349<firstname>Gary</firstname> 3350<surname>Powell</surname> 3351</author> 3352<title>The Lambda Library : Lambda Abstraction in C++</title> 3353 <confgroup> 3354 <conftitle>Second Workshop on C++ Template Programming</conftitle> 3355 <address>Tampa Bay, OOPSLA'01</address> 3356 </confgroup> 3357<pubdate>2001</pubdate> 3358<bibliomisc><ulink url="http://www.oonumerics.org/tmpw01/">www.oonumerics.org/tmpw01/</ulink></bibliomisc> 3359</biblioentry> 3360 3361<biblioentry id="cit:jarvi:03"> 3362<abbrev>J�r03</abbrev> 3363 3364<articleinfo> 3365 3366<author> 3367<surname>J�rvi</surname> 3368<firstname>Jaakko</firstname> 3369</author> 3370 3371<author> 3372<firstname>Gary</firstname> 3373<surname>Powell</surname> 3374</author> 3375 3376<author> 3377<firstname>Andrew</firstname> 3378<surname>Lumsdaine</surname> 3379</author> 3380<title>The Lambda Library : unnamed functions in C++</title> 3381 3382</articleinfo> 3383 3384<title>Software - Practice and Expreience</title> 3385<volumenum>33:259-291</volumenum> 3386 3387 3388<pubdate>2003</pubdate> 3389</biblioentry> 3390 3391 3392<biblioentry id="cit:boost::tuple"> 3393<abbrev>tuple</abbrev> 3394<title>The Boost Tuple Library</title> 3395<bibliomisc><ulink url="http://www.boost.org/libs/tuple/doc/tuple_users_guide.html">www.boost.org/libs/tuple/doc/tuple_users_guide.html</ulink> 3396</bibliomisc> 3397<pubdate>2002</pubdate> 3398</biblioentry> 3399 3400<biblioentry id="cit:boost::type_traits"> 3401<abbrev>type_traits</abbrev> 3402<title>The Boost type_traits</title> 3403<bibliomisc><ulink url="http://www.boost.org/libs/type_traits/index.htm">www.boost.org/libs/type_traits/</ulink> 3404</bibliomisc> 3405<pubdate>2002</pubdate> 3406</biblioentry> 3407 3408<biblioentry id="cit:boost::ref"> 3409<abbrev>ref</abbrev> 3410<title>Boost ref</title> 3411<bibliomisc><ulink url="http://www.boost.org/libs/bind/ref.html">www.boost.org/libs/bind/ref.html</ulink> 3412</bibliomisc> 3413<pubdate>2002</pubdate> 3414</biblioentry> 3415 3416<biblioentry id="cit:boost::bind"> 3417<abbrev>bind</abbrev> 3418<title>Boost Bind Library</title> 3419<bibliomisc><ulink url="http://www.boost.org/libs/bind/bind.html">www.boost.org/libs/bind/bind.html</ulink> 3420</bibliomisc> 3421<pubdate>2002</pubdate> 3422</biblioentry> 3423 3424<biblioentry id="cit:boost::function"> 3425<abbrev>function</abbrev> 3426<title>Boost Function Library</title> 3427<bibliomisc><ulink url="http://www.boost.org/libs/function/">www.boost.org/libs/function/</ulink> 3428</bibliomisc> 3429<pubdate>2002</pubdate> 3430</biblioentry> 3431 3432<biblioentry id="cit:fc++"> 3433<abbrev>fc++</abbrev> 3434<title>The FC++ library: Functional Programming in C++</title> 3435<author> 3436<surname>Smaragdakis</surname> 3437<firstname>Yannis</firstname> 3438</author> 3439<author> 3440<firstname>Brian</firstname> 3441<surname>McNamara</surname> 3442</author> 3443<bibliomisc><ulink url="http://yanniss.github.io/fc++/">yanniss.github.io/fc++/ </ulink> 3444</bibliomisc> 3445<pubdate>2002</pubdate> 3446</biblioentry> 3447 3448 3449</bibliography> 3450 3451 3452</library> 3453