• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<?xml version="1.0" encoding="ISO-Latin-1"?>
2<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
3  "http://www.boost.org/tools/boostbook/dtd/boostbook.dtd">
4<library name="Lambda" dirname="lambda" id="lambda"
5         last-revision="$Date$"
6         xmlns:xi="http://www.w3.org/2001/XInclude">
7<libraryinfo>
8  <author>
9    <firstname>Jaakko</firstname>
10    <surname>J�rvi</surname>
11     <email>jarvi at cs tamu edu</email>
12  </author>
13
14  <copyright>
15    <year>1999</year>
16    <year>2000</year>
17    <year>2001</year>
18    <year>2002</year>
19    <year>2003</year>
20    <year>2004</year>
21    <holder>Jaakko J�rvi</holder>
22    <holder>Gary Powell</holder>
23  </copyright>
24
25  <legalnotice>
26    <para>Use, modification and distribution is subject to the Boost
27    Software License, Version 1.0. (See accompanying file
28    <filename>LICENSE_1_0.txt</filename> or copy at <ulink
29    url="http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</ulink>)</para>
30  </legalnotice>
31
32  <librarypurpose>Define small unnamed function objects at the actual call site, and more</librarypurpose>
33  <librarycategory name="category:higher-order"/>
34</libraryinfo>
35
36<title>Boost.Lambda</title>
37
38  <!--  -->
39
40  <section id="introduction">
41
42    <title>In a nutshell</title>
43
44    <para>
45
46      The Boost Lambda Library (BLL in the sequel) is a C++ template
47      library, which implements a form of <emphasis>lambda abstractions</emphasis> for C++.
48The term originates from functional programming and lambda calculus, where a lambda abstraction defines an unnamed function.
49      The primary motivation for the BLL is to provide flexible and
50      convenient means to define unnamed function objects for STL algorithms.
51In explaining what the library is about, a line of code says more than a thousand words; the
52      following line outputs the elements of some STL container
53      <literal>a</literal> separated by spaces:
54
55      <programlisting><![CDATA[for_each(a.begin(), a.end(), std::cout << _1 << ' ');]]></programlisting>
56
57      The expression <literal><![CDATA[std::cout << _1 << ' ']]></literal> defines a unary function object.
58      The variable <literal>_1</literal> is the parameter of this function, a <emphasis>placeholder</emphasis> for the actual argument.
59      Within each iteration of <literal>for_each</literal>, the function is
60      called with an element of <literal>a</literal> as the actual argument.
61      This actual argument is substituted for the placeholder, and the <quote>body</quote> of the function is evaluated.
62    </para>
63
64    <para>The essence of BLL is letting you define small unnamed function objects, such as the one above, directly on the call site of an STL algorithm.
65    </para>
66  </section>
67
68  <section id="lambda.getting_started">
69    <title>Getting Started</title>
70
71    <section>
72      <title>Installing the library</title>
73
74
75      <para>
76	The library consists of include files only, hence there is no
77	installation procedure. The <literal>boost</literal> include directory
78	must be on the include path.
79	There are a number of include files that give different functionality:
80
81	<!-- TODO: tarkista viel� riippuvuudet-->
82	<itemizedlist>
83
84	  <listitem><para>
85	      <filename>lambda/lambda.hpp</filename> defines lambda expressions for different C++
86	      operators, see <xref linkend="lambda.operator_expressions"/>.
87	    </para></listitem>
88
89	  <listitem><para>
90	      <filename>lambda/bind.hpp</filename> defines <literal>bind</literal> functions for up to 9 arguments, see <xref linkend="lambda.bind_expressions"/>.</para></listitem>
91
92
93	  <listitem><para>
94	      <filename>lambda/if.hpp</filename> defines lambda function equivalents for if statements and the conditional operator, see <xref linkend="lambda.lambda_expressions_for_control_structures"/> (includes <filename>lambda.hpp</filename>).
95	    </para></listitem>
96
97	  <listitem><para>
98	      <filename>lambda/loops.hpp</filename> defines lambda function equivalent for looping constructs, see <xref linkend="lambda.lambda_expressions_for_control_structures"/>.
99	    </para></listitem>
100
101	  <listitem><para>
102	      <filename>lambda/switch.hpp</filename> defines lambda function equivalent for the switch statement, see <xref linkend="lambda.lambda_expressions_for_control_structures"/>.
103	    </para></listitem>
104
105	  <listitem><para>
106	      <filename>lambda/construct.hpp</filename> provides tools for writing lambda expressions with constructor, destructor, new and delete invocations, see <xref linkend="lambda.construction_and_destruction"/> (includes <filename>lambda.hpp</filename>).
107	    </para></listitem>
108
109	  <listitem><para>
110	      <filename>lambda/casts.hpp</filename> provides lambda versions of different casts, as well as <literal>sizeof</literal> and <literal>typeid</literal>, see <xref linkend="lambda.cast_expressions"/>.
111	    </para></listitem>
112
113	  <listitem><para>
114	      <filename>lambda/exceptions.hpp</filename> gives tools for throwing and catching
115	      exceptions within lambda functions, <xref linkend="lambda.exceptions"/> (includes
116	      <filename>lambda.hpp</filename>).
117	    </para></listitem>
118
119	  <listitem><para>
120	      <filename>lambda/algorithm.hpp</filename> and <filename>lambda/numeric.hpp</filename> (cf. standard <filename>algortihm</filename> and <filename>numeric</filename> headers) allow nested STL algorithm invocations, see <xref linkend="lambda.nested_stl_algorithms"/>.
121	    </para></listitem>
122
123	</itemizedlist>
124
125	Any other header files in the package are for internal use.
126	Additionally, the library depends on two other Boost Libraries, the
127	<emphasis>Tuple</emphasis> <xref linkend="cit:boost::tuple"/> and the <emphasis>type_traits</emphasis> <xref linkend="cit:boost::type_traits"/> libraries, and on the <filename>boost/ref.hpp</filename> header.
128      </para>
129
130      <para>
131	All definitions are placed in the namespace <literal>boost::lambda</literal> and its subnamespaces.
132      </para>
133
134    </section>
135
136    <section>
137      <title>Conventions used in this document</title>
138
139      <para>In most code examples, we omit the namespace prefixes for names in the <literal moreinfo="none">std</literal> and <literal moreinfo="none">boost::lambda</literal> namespaces.
140Implicit using declarations
141<programlisting>
142using namespace std;
143using namespace boost::lambda;
144</programlisting>
145are assumed to be in effect.
146</para>
147
148    </section>
149  </section>
150
151  <section>
152    <title>Introduction</title>
153
154    <section>
155      <title>Motivation</title>
156      <para>The Standard Template Library (STL)
157	<xref role="citation" linkend="cit:stepanov:94"/>, now part of the C++ Standard Library <xref role="citation" linkend="cit:c++:98"/>, is a generic container and algorithm library.
158Typically STL algorithms operate on container elements via <emphasis>function objects</emphasis>. These function objects are passed as arguments to the algorithms.
159</para>
160
161<para>
162Any C++ construct that can be called with the function call syntax
163is a function object.
164The STL contains predefined function objects for some common cases (such as <literal>plus</literal>, <literal>less</literal> and <literal>not1</literal>).
165As an example, one possible implementation for the standard <literal>plus</literal> template is:
166
167<programlisting>
168<![CDATA[template <class T>
169struct plus : public binary_function<T, T, T> {
170  T operator()(const T& i, const T& j) const {
171    return i + j;
172  }
173};]]>
174</programlisting>
175
176The base class <literal><![CDATA[binary_function<T, T, T>]]></literal> contains typedefs for the argument and return types of the function object, which are needed to make the function object <emphasis>adaptable</emphasis>.
177</para>
178
179<para>
180In addition to the basic function object classes, such as the one above,
181the STL contains <emphasis>binder</emphasis> templates for creating a unary function object from an adaptable binary function object by fixing one of the arguments to a constant value.
182For example, instead of having to explicitly write a function object class like:
183
184<programlisting>
185<![CDATA[class plus_1 {
186  int _i;
187public:
188  plus_1(const int& i) : _i(i) {}
189  int operator()(const int& j) { return _i + j; }
190};]]>
191</programlisting>
192
193the equivalent functionality can be achieved with the <literal moreinfo="none">plus</literal> template and one of the binder templates (<literal moreinfo="none">bind1st</literal>).
194E.g., the following two expressions create function objects with identical functionalities;
195when invoked, both return the result of adding <literal moreinfo="none">1</literal> to the argument of the function object:
196
197<programlisting>
198<![CDATA[plus_1(1)
199bind1st(plus<int>(), 1)]]>
200</programlisting>
201
202The subexpression <literal><![CDATA[plus<int>()]]></literal> in the latter line is a binary function object which computes the sum of two integers, and <literal>bind1st</literal> invokes this function object partially binding the first argument to <literal>1</literal>.
203As an example of using the above function object, the following code adds <literal>1</literal> to each element of some container <literal>a</literal> and outputs the results into the standard output stream <literal>cout</literal>.
204
205<programlisting>
206<![CDATA[transform(a.begin(), a.end(), ostream_iterator<int>(cout),
207          bind1st(plus<int>(), 1));]]>
208</programlisting>
209
210</para>
211
212<para>
213To make the binder templates more generally applicable, the STL contains <emphasis>adaptors</emphasis> for making
214pointers or references to functions, and pointers to member functions,
215adaptable.
216
217Finally, some STL implementations contain function composition operations as
218extensions to the standard <xref linkend="cit:sgi:02"/>.
219      </para>
220
221<para>
222All these tools aim at one goal: to make it possible to specify
223<emphasis>unnamed functions</emphasis> in a call of an STL algorithm,
224in other words, to pass code fragments as an argument to a function.
225
226However, this goal is attained only partially.
227The simple example above shows that the definition of unnamed functions
228with the standard tools is cumbersome.
229
230Complex expressions involving functors, adaptors, binders and
231function composition operations tend to be difficult to comprehend.
232
233In addition to this, there are significant restrictions in applying
234the standard tools. E.g. the standard binders allow only one argument
235of a binary function to be bound; there are no binders for
2363-ary, 4-ary etc. functions.
237</para>
238
239<para>
240The Boost Lambda Library provides solutions for the problems described above:
241
242<itemizedlist>
243<listitem>
244<para>
245Unnamed functions can be created easily with an intuitive syntax.
246
247The above example can be written as:
248
249<programlisting>
250<![CDATA[transform(a.begin(), a.end(), ostream_iterator<int>(cout),
251          1 + _1);]]>
252</programlisting>
253
254or even more intuitively:
255
256<programlisting>
257<![CDATA[for_each(a.begin(), a.end(), cout << (1 + _1));]]>
258</programlisting>
259</para>
260
261</listitem>
262
263<listitem>
264<para>
265Most of the restrictions in argument binding are removed,
266arbitrary arguments of practically any C++ function can be bound.
267</para>
268</listitem>
269
270<listitem>
271<para>
272Separate function composition operations are not needed,
273as function composition is supported implicitly.
274
275</para>
276</listitem>
277
278</itemizedlist>
279
280</para>
281
282</section>
283
284
285
286<section>
287      <title>Introduction to lambda expressions</title>
288
289      <para>
290	Lambda expression are common in functional programming languages.
291	Their syntax varies between languages (and between different forms of lambda calculus), but the basic form of a lambda expressions is:
292
293
294<programlisting>
295lambda x<subscript>1</subscript> ... x<subscript>n</subscript>.e
296</programlisting>
297	<!-- $\lambda x_1 \cdots x_n . e$ -->
298
299	A lambda expression defines an unnamed function and consists of:
300	<itemizedlist>
301	  <listitem>
302	    <para>
303	      the parameters of this function: <literal>x<subscript>1</subscript> ... x<subscript>n</subscript></literal>.
304	      <!--$x_1 \cdots x_n$-->
305	    </para>
306	  </listitem>
307	  <listitem>
308	    <para>the expression e which computes the value of the function in terms of the parameters <literal>x<subscript>1</subscript> ... x<subscript>n</subscript></literal>.
309	    </para>
310	  </listitem>
311	</itemizedlist>
312
313	A simple example of a lambda expression is
314<programlisting>
315lambda x y.x+y
316</programlisting>
317Applying the lambda function means substituting the formal parameters with the actual arguments:
318<programlisting>
319(lambda x y.x+y) 2 3 = 2 + 3 = 5
320</programlisting>
321
322
323      </para>
324
325<para>
326In the C++ version of lambda expressions the <literal>lambda x<subscript>1</subscript> ... x<subscript>n</subscript></literal> part is missing and the formal parameters have predefined names.
327In the current version of the library,
328there are three such predefined formal parameters,
329called <emphasis>placeholders</emphasis>:
330<literal>_1</literal>, <literal>_2</literal> and <literal>_3</literal>.
331They refer to the first, second and third argument of the function defined
332by the lambda expression.
333
334For example, the C++ version of the definition
335<programlisting>lambda x y.x+y</programlisting>
336is
337<programlisting>_1 + _2</programlisting>
338</para>
339
340      <para>
341Hence, there is no syntactic keyword for C++ lambda expressions.
342	The use of a placeholder as an operand implies that the operator invocation is a lambda expression.
343	However, this is true only for operator invocations.
344	Lambda expressions containing function calls, control structures, casts etc. require special syntactic constructs.
345	Most importantly, function calls need to be wrapped inside a <literal>bind</literal> function.
346
347	As an example, consider the lambda expression:
348
349	<programlisting>lambda x y.foo(x,y)</programlisting>
350
351	Rather than <literal>foo(_1, _2)</literal>, the C++ counterpart for this expression is:
352
353	<programlisting>bind(foo, _1, _2)</programlisting>
354
355	We refer to this type of C++ lambda expressions as <emphasis>bind expressions</emphasis>.
356      </para>
357
358      <para>A lambda expression defines a C++ function object, hence function application syntax is like calling any other function object, for instance: <literal>(_1 + _2)(i, j)</literal>.
359
360
361      </para>
362
363
364
365<section id="lambda.partial_function_application">
366<title>Partial function application</title>
367
368<para>
369A bind expression is in effect a <emphasis>partial function application</emphasis>.
370In partial function application, some of the arguments of a function are bound to fixed values.
371	  The result is another function, with possibly fewer arguments.
372	  When called with the unbound arguments, this new function invokes the original function with the merged argument list of bound and unbound arguments.
373	</para>
374
375<!--	<para>The underlying implementation of the BLL unifies the two types of lambda expressions (bind expressions and lambda expressions consisting of operator calls).
376	  If operators are regarded as functions, it is easy to see that lambda expressions using operators are partial function applications as well.
377	  E.g. the lambda expression <literal>_1 + 1</literal> can be seen as syntactic sugar for the pseudo code <literal>bind(operator+, _1, 1)</literal>.
378	</para>
379-->
380
381      </section>
382
383
384
385      <section id="lambda.terminology">
386	<title>Terminology</title>
387
388	<para>
389	  A lambda expression defines a function. A C++ lambda expression concretely constructs a function object, <emphasis>a functor</emphasis>, when evaluated. We use the name <emphasis>lambda functor</emphasis> to refer to such a function object.
390	  Hence, in the terminology adopted here, the result of evaluating a lambda expression is a lambda functor.
391	</para>
392
393      </section>
394
395    </section>
396
397
398
399  </section>
400
401  <section id = "lambda.using_library">
402    <title>Using the library</title>
403
404    <para>
405The purpose of this section is to introduce the basic functionality of the library.
406There are quite a lot of exceptions and special cases, but discussion of them is postponed until later sections.
407
408
409    </para>
410
411    <section id = "lambda.introductory_examples">
412      <title>Introductory Examples</title>
413
414      <para>
415	In this section we give basic examples of using BLL lambda expressions in STL algorithm invocations.
416	We start with some simple expressions and work up.
417	First, we initialize the elements of a container, say, a <literal>list</literal>, to the value <literal>1</literal>:
418
419
420	<programlisting>
421<![CDATA[list<int> v(10);
422for_each(v.begin(), v.end(), _1 = 1);]]></programlisting>
423
424	The expression <literal>_1 = 1</literal> creates a lambda functor which assigns the value <literal>1</literal> to every element in <literal>v</literal>.<footnote>
425<para>
426Strictly taken, the C++ standard defines <literal>for_each</literal> as a <emphasis>non-modifying sequence operation</emphasis>, and the function object passed to <literal moreinfo="none">for_each</literal> should not modify its argument.
427The requirements for the arguments of <literal>for_each</literal> are unnecessary strict, since as long as the iterators are <emphasis>mutable</emphasis>, <literal>for_each</literal> accepts a function object that can have side-effects on their argument.
428Nevertheless, it is straightforward to provide another function template with the functionality of<literal>std::for_each</literal> but more fine-grained requirements for its arguments.
429</para>
430</footnote>
431      </para>
432
433      <para>
434	Next, we create a container of pointers and make them point to the elements in the first container <literal>v</literal>:
435
436	<programlisting>
437<![CDATA[vector<int*> vp(10);
438transform(v.begin(), v.end(), vp.begin(), &_1);]]></programlisting>
439
440The expression <literal><![CDATA[&_1]]></literal> creates a function object for getting the address of each element in <literal>v</literal>.
441The addresses get assigned to the corresponding elements in <literal>vp</literal>.
442      </para>
443
444      <para>
445	The next code fragment changes the values in <literal>v</literal>.
446	For each element, the function <literal>foo</literal> is called.
447The original value of the element is passed as an argument to <literal>foo</literal>.
448The result of <literal>foo</literal> is assigned back to the element:
449
450
451	<programlisting>
452<![CDATA[int foo(int);
453for_each(v.begin(), v.end(), _1 = bind(foo, _1));]]></programlisting>
454      </para>
455
456
457      <para>
458	The next step is to sort the elements of <literal>vp</literal>:
459
460	<programlisting>sort(vp.begin(), vp.end(), *_1 > *_2);</programlisting>
461
462	In this call to <literal>sort</literal>, we are sorting the elements by their contents in descending order.
463      </para>
464
465      <para>
466	Finally, the following <literal>for_each</literal> call outputs the sorted content of <literal>vp</literal> separated by line breaks:
467
468<programlisting>
469<![CDATA[for_each(vp.begin(), vp.end(), cout << *_1 << '\n');]]>
470</programlisting>
471
472Note that a normal (non-lambda) expression as subexpression of a lambda expression is evaluated immediately.
473This may cause surprises.
474For instance, if the previous example is rewritten as
475<programlisting>
476<![CDATA[for_each(vp.begin(), vp.end(), cout << '\n' << *_1);]]>
477</programlisting>
478the subexpression <literal><![CDATA[cout << '\n']]></literal> is evaluated immediately and the effect is to output a single line break, followed by the elements of <literal>vp</literal>.
479The BLL provides functions <literal>constant</literal> and <literal>var</literal> to turn constants and, respectively, variables into lambda expressions, and can be used to prevent the immediate evaluation of subexpressions:
480<programlisting>
481<![CDATA[for_each(vp.begin(), vp.end(), cout << constant('\n') << *_1);]]>
482</programlisting>
483These functions are described more thoroughly in <xref linkend="lambda.delaying_constants_and_variables"/>
484
485</para>
486
487
488
489
490
491    </section>
492
493
494    <section id="lambda.parameter_and_return_types">
495      <title>Parameter and return types of lambda functors</title>
496
497      <para>
498	During the invocation of a lambda functor, the actual arguments are substituted for the placeholders.
499	The placeholders do not dictate the type of these actual arguments.
500	The basic rule is that a lambda function can be called with arguments of any types, as long as the lambda expression with substitutions performed is a valid C++ expression.
501	As an example, the expression
502	<literal>_1 + _2</literal> creates a binary lambda functor.
503	It can be called with two objects of any types <literal>A</literal> and <literal>B</literal> for which <literal>operator+(A,B)</literal> is defined (and for which BLL knows the return type of the operator, see below).
504      </para>
505
506      <para>
507	C++ lacks a mechanism to query a type of an expression.
508	However, this precise mechanism is crucial for the implementation of C++ lambda expressions.
509	Consequently, BLL includes a somewhat complex type deduction system which uses a set of traits classes for deducing the resulting type of lambda functions.
510	It handles expressions where the operands are of built-in types and many of the expressions with operands of standard library types.
511	Many of the user defined types are covered as well, particularly if the user defined operators obey normal conventions in defining the return types.
512      </para>
513
514      <!-- TODO: move  this forward, and just refer to it. -->
515      <para>
516	There are, however, cases when the return type cannot be deduced. For example, suppose you have defined:
517
518	<programlisting>C operator+(A, B);</programlisting>
519
520	The following lambda function invocation fails, since the return type cannot be deduced:
521
522	<programlisting>A a; B b; (_1 + _2)(a, b);</programlisting>
523      </para>
524
525      <para>
526	There are two alternative solutions to this.
527	The first is to extend the BLL type deduction system to cover your own types (see <xref linkend="lambda.extending"/>).
528	The second is to use a special lambda expression (<literal>ret</literal>) which defines the return type in place (see <xref linkend = "lambda.overriding_deduced_return_type"/>):
529
530	<programlisting><![CDATA[A a; B b; ret<C>(_1 + _2)(a, b);]]></programlisting>
531      </para>
532
533      <para>
534	For bind expressions, the return type can be defined as a template argument of the bind function as well:
535	<programlisting><![CDATA[bind<int>(foo, _1, _2);]]></programlisting>
536
537<!--
538	A rare case, where the <literal><![CDATA[ret<type>(bind(...))]]></literal> syntax does not work, but
539	<literal><![CDATA[bind<type>(...)]]></literal> does, is explained in <xref linkend="lambda.nullary_functors_and_ret"/>.
540-->
541      </para>
542    </section>
543
544    <section id="lambda.actual_arguments_to_lambda_functors">
545      <title>About actual arguments to lambda functors</title>
546
547<!--      <para><emphasis>This section is no longer (or currently) relevant;
548       acual arguments can be non-const rvalues.
549       The section can, however, become relevant again, if in the future BLL will support
550       lambda functors with higher arities than 3.</emphasis></para> -->
551
552      <para>A general restriction for the actual arguments is that they cannot be non-const rvalues.
553	For example:
554
555<programlisting>
556int i = 1; int j = 2;
557(_1 + _2)(i, j); // ok
558(_1 + _2)(1, 2); // error (!)
559</programlisting>
560
561	This restriction is not as bad as it may look.
562	Since the lambda functors are most often called inside STL-algorithms,
563	the arguments originate from dereferencing iterators and the dereferencing operators seldom return rvalues.
564	And for the cases where they do, there are workarounds discussed in
565<xref linkend="lambda.rvalues_as_actual_arguments"/>.
566
567
568      </para>
569
570    </section>
571
572
573<section id="lambda.storing_bound_arguments">
574
575<title>Storing bound arguments in lambda functions</title>
576
577<para>
578
579By default, temporary const copies of the bound arguments are stored
580in the lambda functor.
581
582This means that the value of a bound argument is fixed at the time of the
583creation of the lambda function and remains constant during the lifetime
584of the lambda function object.
585For example:
586<programlisting>
587int i = 1;
588(_1 = 2, _1 + i)(i);
589</programlisting>
590The comma operator is overloaded to combine lambda expressions into a sequence;
591the resulting unary lambda functor first assigns 2 to its argument,
592then adds the value of <literal>i</literal> to it.
593The value of the expression in the last line is 3, not 4.
594In other words, the lambda expression that is created is
595<literal>lambda x.(x = 2, x + 1)</literal> rather than
596<literal>lambda x.(x = 2, x + i)</literal>.
597
598</para>
599
600<para>
601
602As said, this is the default behavior for which there are exceptions.
603The exact rules are as follows:
604
605<itemizedlist>
606
607<listitem>
608
609<para>
610
611The programmer can control the storing mechanism with <literal>ref</literal>
612and <literal>cref</literal> wrappers <xref linkend="cit:boost::ref"/>.
613
614Wrapping an argument with <literal>ref</literal>, or <literal>cref</literal>,
615instructs the library to store the argument as a reference,
616or as a reference to const respectively.
617
618For example, if we rewrite the previous example and wrap the variable
619<literal>i</literal> with <literal>ref</literal>,
620we are creating the lambda expression <literal>lambda x.(x = 2, x + i)</literal>
621and the value of the expression in the last line will be 4:
622
623<programlisting>
624i = 1;
625(_1 = 2, _1 + ref(i))(i);
626</programlisting>
627
628Note that <literal>ref</literal> and <literal>cref</literal> are different
629from <literal>var</literal> and <literal>constant</literal>.
630
631While the latter ones create lambda functors, the former do not.
632For example:
633
634<programlisting>
635int i;
636var(i) = 1; // ok
637ref(i) = 1; // not ok, ref(i) is not a lambda functor
638</programlisting>
639
640The functions <literal>ref</literal> and <literal>cref</literal> mostly
641exist for historical reasons,
642and <literal>ref</literal> can always
643be replaced with <literal>var</literal>, and <literal>cref</literal> with
644<literal>constant_ref</literal>.
645See <xref linkend="lambda.delaying_constants_and_variables"/> for details.
646The <literal>ref</literal> and <literal>cref</literal> functions are
647general purpose utility functions in Boost, and hence defined directly
648in the <literal moreinfo="none">boost</literal> namespace.
649
650</para>
651</listitem>
652
653<listitem>
654<para>
655Array types cannot be copied, they are thus stored as const reference by default.
656</para>
657</listitem>
658
659<listitem>
660
661<para>
662For some expressions it makes more sense to store the arguments as references.
663
664For example, the obvious intention of the lambda expression
665<literal>i += _1</literal> is that calls to the lambda functor affect the
666value of the variable <literal>i</literal>,
667rather than some temporary copy of it.
668
669As another example, the streaming operators take their leftmost argument
670as non-const references.
671
672The exact rules are:
673
674<itemizedlist>
675<listitem>
676<para>The left argument of compound assignment operators (<literal>+=</literal>, <literal>*=</literal>, etc.) are stored as references to non-const.</para>
677</listitem>
678
679<listitem>
680<para>If the left argument of <literal><![CDATA[<<]]></literal> or <literal><![CDATA[>>]]></literal>  operator is derived from an instantiation of <literal>basic_ostream</literal> or respectively from <literal>basic_istream</literal>, the argument is stored as a reference to non-const.
681For all other types, the argument is stored as a copy.
682</para>
683</listitem>
684
685<listitem>
686<para>
687In pointer arithmetic expressions, non-const array types are stored as non-const references.
688This is to prevent pointer arithmetic making non-const arrays const.
689
690</para>
691</listitem>
692
693</itemizedlist>
694
695</para>
696</listitem>
697
698</itemizedlist>
699</para>
700
701</section>
702
703</section>
704
705<section id="lambda.le_in_details">
706<title>Lambda expressions in details</title>
707
708<para>
709This section describes different categories of lambda expressions in details.
710We devote a separate section for each of the possible forms of a lambda expression.
711
712
713</para>
714
715<section id="lambda.placeholders">
716<title>Placeholders</title>
717
718<para>
719The BLL defines three placeholder types: <literal>placeholder1_type</literal>, <literal>placeholder2_type</literal> and <literal>placeholder3_type</literal>.
720BLL has a predefined placeholder variable for each placeholder type: <literal>_1</literal>, <literal>_2</literal> and <literal>_3</literal>.
721However, the user is not forced to use these placeholders.
722It is easy to define placeholders with alternative names.
723This is done by defining new variables of placeholder types.
724For example:
725
726<programlisting>boost::lambda::placeholder1_type X;
727boost::lambda::placeholder2_type Y;
728boost::lambda::placeholder3_type Z;
729</programlisting>
730
731With these variables defined, <literal>X += Y * Z</literal> is equivalent to <literal>_1 += _2 * _3</literal>.
732</para>
733
734<para>
735The use of placeholders in the lambda expression determines whether the resulting function is nullary, unary, binary or 3-ary.
736The highest placeholder index is decisive. For example:
737
738<programlisting>
739_1 + 5              // unary
740_1 * _1 + _1        // unary
741_1 + _2             // binary
742bind(f, _1, _2, _3) // 3-ary
743_3 + 10             // 3-ary
744</programlisting>
745
746Note that the last line creates a 3-ary function, which adds <literal>10</literal> to its <emphasis>third</emphasis> argument.
747The first two arguments are discarded.
748Furthermore, lambda functors only have a minimum arity.
749One can always provide more arguments (up the number of supported placeholders)
750that is really needed.
751The remaining arguments are just discarded.
752For example:
753
754<programlisting>
755int i, j, k;
756_1(i, j, k)        // returns i, discards j and k
757(_2 + _2)(i, j, k) // returns j+j, discards i and k
758</programlisting>
759
760See
761<xref linkend="lambda.why_weak_arity"/> for the design rationale behind this
762functionality.
763
764</para>
765
766<para>
767In addition to these three placeholder types, there is also a fourth placeholder type <literal>placeholderE_type</literal>.
768The use of this placeholder is defined in <xref linkend="lambda.exceptions"/> describing exception handling in lambda expressions.
769</para>
770
771<para>When an actual argument is supplied for a placeholder, the parameter passing mode is always by reference.
772This means that any side-effects to the placeholder are reflected to the actual argument.
773For example:
774
775
776<programlisting>
777<![CDATA[int i = 1;
778(_1 += 2)(i);         // i is now 3
779(++_1, cout << _1)(i) // i is now 4, outputs 4]]>
780</programlisting>
781</para>
782
783</section>
784
785<section id="lambda.operator_expressions">
786<title>Operator expressions</title>
787
788<para>
789The basic rule is that any C++ operator invocation with at least one argument being a lambda expression is itself a lambda expression.
790Almost all overloadable operators are supported.
791For example, the following is a valid lambda expression:
792
793<programlisting><![CDATA[cout << _1, _2[_3] = _1 && false]]></programlisting>
794</para>
795
796<para>
797However, there are some restrictions that originate from the C++ operator overloading rules, and some special cases.
798</para>
799
800
801<section>
802<title>Operators that cannot be overloaded</title>
803
804<para>
805Some operators cannot be overloaded at all (<literal>::</literal>, <literal>.</literal>, <literal>.*</literal>).
806For some operators, the requirements on return types prevent them to be overloaded to create lambda functors.
807These operators are <literal>->.</literal>, <literal>-></literal>, <literal>new</literal>, <literal>new[]</literal>, <literal>delete</literal>, <literal>delete[]</literal> and <literal>?:</literal> (the conditional operator).
808</para>
809
810</section>
811
812<section id="lambda.assignment_and_subscript">
813<title>Assignment and subscript operators</title>
814
815<para>
816These operators must be implemented as class members.
817Consequently, the left operand must be a lambda expression. For example:
818
819<programlisting>
820int i;
821_1 = i;      // ok
822i = _1;      // not ok. i is not a lambda expression
823</programlisting>
824
825There is a simple solution around this limitation, described in <xref linkend="lambda.delaying_constants_and_variables"/>.
826In short,
827the left hand argument can be explicitly turned into a lambda functor by wrapping it with a special <literal>var</literal> function:
828<programlisting>
829var(i) = _1; // ok
830</programlisting>
831
832</para>
833</section>
834
835<section id="lambda.logical_operators">
836<title>Logical operators</title>
837
838<para>
839Logical operators obey the short-circuiting evaluation rules. For example, in the following code, <literal>i</literal> is never incremented:
840<programlisting>
841bool flag = true; int i = 0;
842(_1 || ++_2)(flag, i);
843</programlisting>
844</para>
845</section>
846
847<section id="lambda.comma_operator">
848<title>Comma operator</title>
849
850<para>
851Comma operator is the <quote>statement separator</quote> in lambda expressions.
852Since comma is also the separator between arguments in a function call, extra parenthesis are sometimes needed:
853
854<programlisting>
855for_each(a.begin(), a.end(), (++_1, cout &lt;&lt; _1));
856</programlisting>
857
858Without the extra parenthesis around <literal>++_1, cout &lt;&lt; _1</literal>, the code would be interpreted as an attempt to call <literal>for_each</literal> with four arguments.
859</para>
860<para>
861The lambda functor created by the comma operator adheres to the C++ rule of always evaluating the left operand before the right one.
862In the above example, each element of <literal>a</literal> is first incremented, then written to the stream.
863</para>
864</section>
865
866<section id="lambda.function_call_operator">
867<title>Function call operator</title>
868
869<para>
870The function call operators have the effect of evaluating the lambda
871functor.
872Calls with too few arguments lead to a compile time error.
873</para>
874</section>
875
876<section id="lambda.member_pointer_operator">
877<title>Member pointer operator</title>
878
879<para>
880The member pointer operator <literal>operator->*</literal> can be overloaded freely.
881Hence, for user defined types, member pointer operator is no special case.
882The built-in meaning, however, is a somewhat more complicated case.
883The built-in member pointer operator is applied if the left argument is a pointer to an object of some class <literal>A</literal>, and the right hand argument is a pointer to a member of <literal>A</literal>, or a pointer to a member of a class from which <literal>A</literal> derives.
884We must separate two cases:
885
886<itemizedlist>
887
888<listitem>
889<para>The right hand argument is a pointer to a data member.
890In this case the lambda functor simply performs the argument substitution and calls the built-in member pointer operator, which returns a reference to the member pointed to.
891For example:
892<programlisting>
893<![CDATA[struct A { int d; };
894A* a = new A();
895  ...
896(a ->* &A::d);     // returns a reference to a->d
897(_1 ->* &A::d)(a); // likewise]]>
898</programlisting>
899</para>
900</listitem>
901
902<listitem>
903<para>
904The right hand argument is a pointer to a member function.
905For a built-in call like this, the result is kind of a delayed member function call.
906Such an expression must be followed by a function argument list, with which the delayed member function call is performed.
907For example:
908<programlisting>
909<![CDATA[struct B { int foo(int); };
910B* b = new B();
911  ...
912(b ->* &B::foo)         // returns a delayed call to b->foo
913                        // a function argument list must follow
914(b ->* &B::foo)(1)      // ok, calls b->foo(1)
915
916(_1 ->* &B::foo)(b);    // returns a delayed call to b->foo,
917                        // no effect as such
918(_1 ->* &B::foo)(b)(1); // calls b->foo(1)]]>
919</programlisting>
920</para>
921</listitem>
922</itemizedlist>
923</para>
924</section>
925
926</section>
927
928<section id="lambda.bind_expressions">
929<title>Bind expressions</title>
930
931<para>
932Bind expressions can have two forms:
933
934<!-- TODO: shouldn't really be emphasis, but a variable or something-->
935<programlisting>
936bind(<parameter>target-function</parameter>, <parameter>bind-argument-list</parameter>)
937bind(<parameter>target-member-function</parameter>, <parameter>object-argument</parameter>, <parameter>bind-argument-list</parameter>)
938</programlisting>
939
940A bind expression delays the call of a function.
941If this <emphasis>target function</emphasis> is <emphasis>n</emphasis>-ary, then the <literal><emphasis>bind-argument-list</emphasis></literal> must contain <emphasis>n</emphasis> arguments as well.
942In the current version of the BLL, <inlineequation>0 &lt;= n &lt;= 9</inlineequation> must hold.
943For member functions, the number of arguments must be at most <inlineequation>8</inlineequation>, as the object argument takes one argument position.
944
945Basically, the
946<emphasis><literal>bind-argument-list</literal></emphasis> must be a valid argument list for the target function, except that any argument can be replaced with a placeholder, or more generally, with a lambda expression.
947Note that also the target function can be a lambda expression.
948
949The result of a bind expression is either a nullary, unary, binary or 3-ary function object depending on the use of placeholders in the <emphasis><literal>bind-argument-list</literal></emphasis> (see <xref linkend="lambda.placeholders"/>).
950</para>
951
952<para>
953The return type of the lambda functor created by the bind expression can be given as an explicitly specified template parameter, as in the following example:
954<programlisting>
955bind&lt;<emphasis>RET</emphasis>&gt;(<emphasis>target-function</emphasis>, <emphasis>bind-argument-list</emphasis>)
956</programlisting>
957This is only necessary if the return type of the target function cannot be deduced.
958</para>
959
960<para>
961The following sections describe the different types of bind expressions.
962</para>
963
964<section id="lambda.function_pointers_as_targets">
965<title>Function pointers or references as targets</title>
966
967<para>The target function can be a pointer or a reference to a function and it can be either bound or unbound. For example:
968<programlisting>
969<![CDATA[X foo(A, B, C); A a; B b; C c;
970bind(foo, _1, _2, c)(a, b);
971bind(&foo, _1, _2, c)(a, b);
972bind(_1, a, b, c)(foo);]]>
973</programlisting>
974
975The return type deduction always succeeds with this type of bind expressions.
976</para>
977
978<para>
979Note, that in C++ it is possible to take the address of an overloaded function only if the address is assigned to, or used as an initializer of, a variable, the type of which solves the amibiguity, or if an explicit cast expression is used.
980This means that overloaded functions cannot be used in bind expressions directly, e.g.:
981<programlisting>
982<![CDATA[void foo(int);
983void foo(float);
984int i;
985  ...
986bind(&foo, _1)(i);                            // error
987  ...
988void (*pf1)(int) = &foo;
989bind(pf1, _1)(i);                             // ok
990bind(static_cast<void(*)(int)>(&foo), _1)(i); // ok]]>
991</programlisting>
992</para>
993</section>
994
995<section id="member_functions_as_targets">
996<title>Member functions as targets</title>
997
998<para>
999The syntax for using pointers to member function in bind expression is:
1000<programlisting>
1001bind(<parameter>target-member-function</parameter>, <parameter>object-argument</parameter>, <parameter>bind-argument-list</parameter>)
1002</programlisting>
1003
1004The object argument can be a reference or pointer to the object, the BLL supports both cases with a uniform interface:
1005
1006<programlisting>
1007<![CDATA[bool A::foo(int) const;
1008A a;
1009vector<int> ints;
1010  ...
1011find_if(ints.begin(), ints.end(), bind(&A::foo, a, _1));
1012find_if(ints.begin(), ints.end(), bind(&A::foo, &a, _1));]]>
1013</programlisting>
1014
1015Similarly, if the object argument is unbound, the resulting lambda functor can be called both via a pointer or a reference:
1016
1017<programlisting>
1018<![CDATA[bool A::foo(int);
1019list<A> refs;
1020list<A*> pointers;
1021  ...
1022find_if(refs.begin(), refs.end(), bind(&A::foo, _1, 1));
1023find_if(pointers.begin(), pointers.end(), bind(&A::foo, _1, 1));]]>
1024</programlisting>
1025
1026</para>
1027
1028<!--%The exact rules for the object argument (whether it is bound, or supplied in the lambda function invoction) are as follows:
1029%If the target function is a pointer to a member function of some class \snip{A}, then the object argument must be an expression of type \snip{B}, where either
1030%\begin{itemize}
1031%\item \snip{B} = \snip{A} or there is an implicit conversion from \snip{B} to \snip{A}.
1032%\item \snip{B} = \snip{A*}.
1033%\item \snip{B} = \snip{C*}, where \snip{C} is any class derived form \snip{A}.
1034%\end{itemize}
1035%For example:
1036%\begin{alltt}
1037%struct A \{
1038%  virtual void f();
1039%  void fc() const;
1040%\};
1041%
1042%struct B : public A \{
1043%  virtual void f();
1044%\};
1045%
1046%struct C \{
1047%  operator A const() \{ return A(); \}
1048%\};
1049%
1050% A a; B b; C c;
1051%  ...
1052% bind(&A::f, a)();
1053% bind(&A::f, b)(); // calls B::f
1054% bind(&A::fc, c)();
1055%
1056% bind(&A::f, &a)();
1057% bind(&A::f, &b)(); // calls B::f
1058% bind(&A::f, &c)(); // error: no conversion from C* \(\rightarrow\) A,
1059%\end{alltt}
1060-->
1061
1062<para>
1063Even though the interfaces are the same, there are important semantic differences between using a pointer or a reference as the object argument.
1064The differences stem from the way <literal>bind</literal>-functions take their parameters, and how the bound parameters are stored within the lambda functor.
1065The object argument has the same parameter passing and storing mechanism as any other bind argument slot (see <xref linkend="lambda.storing_bound_arguments"/>); it is passed as a const reference and stored as a const copy in the lambda functor.
1066This creates some asymmetry between the lambda functor and the original member function, and between seemingly similar lambda functors. For example:
1067<programlisting>
1068class A {
1069  int i; mutable int j;
1070public:
1071
1072  A(int ii, int jj) : i(ii), j(jj) {};
1073  void set_i(int x) { i = x; };
1074  void set_j(int x) const { j = x; };
1075};
1076</programlisting>
1077
1078When a pointer is used, the behavior is what the programmer might expect:
1079
1080<programlisting>
1081<![CDATA[A a(0,0); int k = 1;
1082bind(&A::set_i, &a, _1)(k); // a.i == 1
1083bind(&A::set_j, &a, _1)(k); // a.j == 1]]>
1084</programlisting>
1085
1086Even though a const copy of the object argument is stored, the original object <literal>a</literal> is still modified.
1087This is since the object argument is a pointer, and the pointer is copied, not the object it points to.
1088When we use a reference, the behaviour is different:
1089
1090<programlisting>
1091<![CDATA[A a(0,0); int k = 1;
1092bind(&A::set_i, a, _1)(k); // error; a const copy of a is stored.
1093                           // Cannot call a non-const function set_i
1094bind(&A::set_j, a, _1)(k); // a.j == 0, as a copy of a is modified]]>
1095</programlisting>
1096</para>
1097
1098<para>
1099To prevent the copying from taking place, one can use the <literal>ref</literal> or <literal>cref</literal> wrappers (<literal>var</literal> and <literal>constant_ref</literal> would do as well):
1100<programlisting>
1101<![CDATA[bind(&A::set_i, ref(a), _1)(k); // a.j == 1
1102bind(&A::set_j, cref(a), _1)(k); // a.j == 1]]>
1103</programlisting>
1104</para>
1105
1106<para>Note that the preceding discussion is relevant only for bound arguments.
1107If the object argument is unbound, the parameter passing mode is always by reference.
1108Hence, the argument <literal>a</literal> is not copied in the calls to the two lambda functors below:
1109<programlisting>
1110<![CDATA[A a(0,0);
1111bind(&A::set_i, _1, 1)(a); // a.i == 1
1112bind(&A::set_j, _1, 1)(a); // a.j == 1]]>
1113</programlisting>
1114</para>
1115</section>
1116
1117<section id="lambda.members_variables_as_targets">
1118<title>Member variables as targets</title>
1119
1120<para>
1121A pointer to a member variable is not really a function, but
1122the first argument to the <literal>bind</literal> function can nevertheless
1123be a pointer to a member variable.
1124Invoking such a bind expression returns a reference to the data member.
1125For example:
1126
1127<programlisting>
1128<![CDATA[struct A { int data; };
1129A a;
1130bind(&A::data, _1)(a) = 1;     // a.data == 1]]>
1131</programlisting>
1132
1133The cv-qualifiers of the object whose member is accessed are respected.
1134For example, the following tries to write into a const location:
1135<programlisting>
1136<![CDATA[const A ca = a;
1137bind(&A::data, _1)(ca) = 1;     // error]]>
1138</programlisting>
1139
1140</para>
1141</section>
1142
1143<section id="lambda.function_objects_as_targets">
1144<title>Function objects as targets</title>
1145
1146<para>
1147
1148Function objects, that is, class objects which have the function call
1149operator defined, can be used as target functions.
1150
1151In general, BLL cannot deduce the return type of an arbitrary function object.
1152
1153However, there are two methods for giving BLL this capability for a certain
1154function object class.
1155
1156</para>
1157
1158<simplesect>
1159
1160<title>The result_type typedef</title>
1161
1162<para>
1163
1164The BLL supports the standard library convention of declaring the return type
1165of a function object with a member typedef named <literal>result_type</literal> in the
1166function object class.
1167
1168Here is a simple example:
1169<programlisting>
1170<![CDATA[struct A {
1171  typedef B result_type;
1172  B operator()(X, Y, Z);
1173};]]>
1174</programlisting>
1175
1176If a function object does not define a <literal>result_type</literal> typedef,
1177the method described below (<literal>sig</literal> template)
1178is attempted to resolve the return type of the
1179function object. If a function object defines both <literal>result_type</literal>
1180and <literal>sig</literal>, <literal>result_type</literal> takes precedence.
1181
1182</para>
1183
1184</simplesect>
1185
1186<simplesect>
1187
1188<title>The sig template</title>
1189
1190<para>
1191Another mechanism that make BLL aware of the return type(s) of a function object is defining
1192member template struct
1193<literal><![CDATA[sig<Args>]]></literal> with a typedef
1194<literal>type</literal> that specifies the return type.
1195
1196Here is a simple example:
1197<programlisting>
1198<![CDATA[struct A {
1199  template <class Args> struct sig { typedef B type; }
1200  B operator()(X, Y, Z);
1201};]]>
1202</programlisting>
1203
1204The template argument <literal>Args</literal> is a
1205<literal>tuple</literal> (or more precisely a <literal>cons</literal> list)
1206type <xref linkend="cit:boost::tuple"/>, where the first element
1207is the function
1208object type itself, and the remaining elements are the types of
1209the arguments, with which the function object is being called.
1210
1211This may seem overly complex compared to defining the <literal>result_type</literal> typedef.
1212Howver, there are two significant restrictions with using just a simple
1213typedef to express the return type:
1214<orderedlist>
1215<listitem>
1216<para>
1217If the function object defines several function call operators, there is no way to specify different result types for them.
1218</para>
1219</listitem>
1220<listitem>
1221<para>
1222If the function call operator is a template, the result type may
1223depend on the template parameters.
1224Hence, the typedef ought to be a template too, which the C++ language
1225does not support.
1226</para>
1227</listitem>
1228</orderedlist>
1229
1230The following code shows an example, where the return type depends on the type
1231of one of the arguments, and how that dependency can be expressed with the
1232<literal>sig</literal> template:
1233
1234<programlisting>
1235<![CDATA[struct A {
1236
1237  // the return type equals the third argument type:
1238  template<class T1, class T2, class T3>
1239  T3 operator()(const T1& t1, const T2& t2, const T3& t3) const;
1240
1241  template <class Args>
1242  class sig {
1243    // get the third argument type (4th element)
1244    typedef typename
1245      boost::tuples::element<3, Args>::type T3;
1246  public:
1247    typedef typename
1248      boost::remove_cv<T3>::type type;
1249  };
1250};]]>
1251</programlisting>
1252
1253
1254The elements of the <literal>Args</literal> tuple are always
1255non-reference types.
1256
1257Moreover, the element types can have a const or volatile qualifier
1258(jointly referred to as <emphasis>cv-qualifiers</emphasis>), or both.
1259This is since the cv-qualifiers in the arguments can affect the return type.
1260The reason for including the potentially cv-qualified function object
1261type itself into the <literal>Args</literal> tuple, is that the function
1262object class can contain both const and non-const (or volatile, even
1263const volatile) function call operators, and they can each have a different
1264return type.
1265</para>
1266
1267<para>
1268The <literal>sig</literal> template can be seen as a
1269<emphasis>meta-function</emphasis> that maps the argument type tuple to
1270the result type of the call made with arguments of the types in the tuple.
1271
1272As the example above demonstrates, the template can end up being somewhat
1273complex.
1274Typical tasks to be performed are the extraction of the relevant types
1275from the tuple, removing cv-qualifiers etc.
1276See the Boost type_traits <xref linkend="cit:boost::type_traits"/> and
1277Tuple <xref linkend="cit:boost::type_traits"/> libraries
1278for tools that can aid in these tasks.
1279The <literal>sig</literal> templates are a refined version of a similar
1280mechanism first introduced in the FC++ library
1281<xref linkend="cit:fc++"/>.
1282</para>
1283
1284</simplesect>
1285
1286</section>
1287
1288
1289
1290</section>
1291
1292<section id="lambda.overriding_deduced_return_type">
1293<title>Overriding the deduced return type</title>
1294
1295<para>
1296The return type deduction system may not be able to deduce the return types of some user defined operators or bind expressions with class objects.
1297<!-- (see the example in <xref linkend="lambda.parameter_and_return_types"/>).-->
1298A special lambda expression type is provided for stating the return type explicitly and overriding the deduction system.
1299To state that the return type of the lambda functor defined by the lambda expression <literal>e</literal> is <literal>T</literal>, you can write:
1300
1301<programlisting><![CDATA[ret<T>(e);]]></programlisting>
1302
1303The effect is that the return type deduction is not performed for the lambda expression <literal>e</literal> at all, but instead, <literal>T</literal> is used as the return type.
1304Obviously <literal>T</literal> cannot be an arbitrary type, the true result of the lambda functor must be implicitly convertible to <literal>T</literal>.
1305For example:
1306
1307<programlisting>
1308<![CDATA[A a; B b;
1309C operator+(A, B);
1310int operator*(A, B);
1311  ...
1312ret<D>(_1 + _2)(a, b);     // error (C cannot be converted to D)
1313ret<C>(_1 + _2)(a, b);     // ok
1314ret<float>(_1 * _2)(a, b); // ok (int can be converted to float)
1315  ...
1316struct X {
1317  Y operator(int)();
1318};
1319  ...
1320X x; int i;
1321bind(x, _1)(i);            // error, return type cannot be deduced
1322ret<Y>(bind(x, _1))(i);    // ok]]>
1323</programlisting>
1324For bind expressions, there is a short-hand notation that can be used instead of <literal>ret</literal>.
1325The last line could alternatively be written as:
1326
1327<programlisting><![CDATA[bind<Z>(x, _1)(i);]]></programlisting>
1328This feature is modeled after the Boost Bind library <xref linkend="cit:boost::bind"/>.
1329
1330</para>
1331
1332<para>Note that within nested lambda expressions,
1333the <literal>ret</literal> must be used at each subexpression where
1334the deduction would otherwise fail.
1335For example:
1336<programlisting>
1337<![CDATA[A a; B b;
1338C operator+(A, B); D operator-(C);
1339  ...
1340ret<D>( - (_1 + _2))(a, b); // error
1341ret<D>( - ret<C>(_1 + _2))(a, b); // ok]]>
1342</programlisting>
1343</para>
1344
1345<para>If you find yourself using  <literal>ret</literal> repeatedly with the same types, it is worth while extending the return type deduction (see <xref linkend="lambda.extending"/>).
1346</para>
1347
1348<section id="lambda.nullary_functors_and_ret">
1349<title>Nullary lambda functors and ret</title>
1350
1351<para>
1352As stated above, the effect of <literal>ret</literal> is to prevent the return type deduction to be performed.
1353However, there is an exception.
1354Due to the way the C++ template instantiation works, the compiler is always forced to instantiate the return type deduction templates for zero-argument lambda functors.
1355This introduces a slight problem with <literal>ret</literal>, best described with an example:
1356
1357<programlisting>
1358<![CDATA[struct F { int operator()(int i) const; };
1359F f;
1360  ...
1361bind(f, _1);           // fails, cannot deduce the return type
1362ret<int>(bind(f, _1)); // ok
1363  ...
1364bind(f, 1);            // fails, cannot deduce the return type
1365ret<int>(bind(f, 1));  // fails as well!]]>
1366</programlisting>
1367The BLL cannot deduce the return types of the above bind calls, as <literal>F</literal> does not define the typedef <literal>result_type</literal>.
1368One would expect <literal>ret</literal> to fix this, but for the nullary lambda functor that results from a bind expression (last line above) this does not work.
1369The return type deduction templates are instantiated, even though it would not be necessary and the result is a compilation error.
1370</para>
1371
1372<para>The solution to this is not to use the <literal>ret</literal> function, but rather define the return type as an explicitly specified template parameter in the <literal>bind</literal> call:
1373<programlisting>
1374<![CDATA[bind<int>(f, 1);       // ok]]>
1375</programlisting>
1376
1377The lambda functors created with
1378<literal>ret&lt;<parameter>T</parameter>&gt;(bind(<parameter>arg-list</parameter>))</literal> and
1379<literal>bind&lt;<parameter>T</parameter>&gt;(<parameter>arg-list</parameter>)</literal> have the exact same functionality &mdash;
1380apart from the fact that for some nullary lambda functors the former does not work while the latter does.
1381</para>
1382</section>
1383</section>
1384
1385
1386<section id="lambda.delaying_constants_and_variables">
1387<title>Delaying constants and variables</title>
1388
1389<para>
1390The unary functions <literal>constant</literal>,
1391<literal>constant_ref</literal> and <literal>var</literal> turn their argument into a lambda functor, that implements an identity mapping.
1392The former two are for constants, the latter for variables.
1393The use of these <emphasis>delayed</emphasis> constants and variables is sometimes necessary due to the lack of explicit syntax for lambda expressions.
1394For example:
1395<programlisting>
1396<![CDATA[for_each(a.begin(), a.end(), cout << _1 << ' ');
1397for_each(a.begin(), a.end(), cout << ' ' << _1);]]>
1398</programlisting>
1399The first line outputs the elements of <literal>a</literal> separated by spaces, while the second line outputs a space followed by the elements of <literal>a</literal> without any separators.
1400The reason for this is that neither of the operands of
1401<literal><![CDATA[cout << ' ']]></literal> is a lambda expression, hence <literal><![CDATA[cout << ' ']]></literal> is evaluated immediately.
1402
1403To delay the evaluation of <literal><![CDATA[cout << ' ']]></literal>, one of the operands must be explicitly marked as a lambda expression.
1404This is accomplished with the <literal>constant</literal> function:
1405<programlisting>
1406<![CDATA[for_each(a.begin(), a.end(), cout << constant(' ') << _1);]]>
1407</programlisting>
1408
1409The call <literal>constant(' ')</literal> creates a nullary lambda functor which stores the character constant <literal>' '</literal>
1410and returns a reference to it when invoked.
1411The function <literal>constant_ref</literal> is similar, except that it
1412stores a constant reference to its argument.
1413
1414The <literal>constant</literal> and <literal>consant_ref</literal> are only
1415needed when the operator call has side effects, like in the above example.
1416</para>
1417
1418<para>
1419Sometimes we need to delay the evaluation of a variable.
1420Suppose we wanted to output the elements of a container in a numbered list:
1421
1422<programlisting>
1423<![CDATA[int index = 0;
1424for_each(a.begin(), a.end(), cout << ++index << ':' << _1 << '\n');
1425for_each(a.begin(), a.end(), cout << ++var(index) << ':' << _1 << '\n');]]>
1426</programlisting>
1427
1428The first <literal>for_each</literal> invocation does not do what we want; <literal>index</literal> is incremented only once, and its value is written into the output stream only once.
1429By using <literal>var</literal> to make <literal>index</literal> a lambda expression, we get the desired effect.
1430<!-- Note that <literal>var</literal> accepts const objects as well, in which case
1431calling <literal>var</literal> equals calling <literal>constant_ref</literal>.-->
1432</para>
1433
1434<para>
1435In sum, <literal>var(x)</literal> creates a nullary lambda functor,
1436which stores a reference to the variable <literal>x</literal>.
1437When the lambda functor is invoked, a reference to <literal>x</literal> is returned.
1438</para>
1439
1440<simplesect>
1441<title>Naming delayed constants and variables</title>
1442
1443<para>
1444It is possible to predefine and name a delayed variable or constant outside a lambda expression.
1445The templates <literal>var_type</literal>, <literal>constant_type</literal>
1446and <literal>constant_ref_type</literal> serve for this purpose.
1447They are used as:
1448<programlisting>
1449<![CDATA[var_type<T>::type delayed_i(var(i));
1450constant_type<T>::type delayed_c(constant(c));]]>
1451</programlisting>
1452The first line defines the variable <literal>delayed_i</literal> which is a delayed version of the variable <literal>i</literal> of type <literal>T</literal>.
1453Analogously, the second line defines the constant <literal>delayed_c</literal> as a delayed version of the constant <literal>c</literal>.
1454For example:
1455
1456<programlisting>
1457int i = 0; int j;
1458for_each(a.begin(), a.end(), (var(j) = _1, _1 = var(i), var(i) = var(j)));
1459</programlisting>
1460is equivalent to:
1461<programlisting>
1462<![CDATA[int i = 0; int j;
1463var_type<int>::type vi(var(i)), vj(var(j));
1464for_each(a.begin(), a.end(), (vj = _1, _1 = vi, vi = vj));]]>
1465</programlisting>
1466</para>
1467<para>
1468Here is an example of naming a delayed constant:
1469<programlisting>
1470<![CDATA[constant_type<char>::type space(constant(' '));
1471for_each(a.begin(),a.end(), cout << space << _1);]]>
1472</programlisting>
1473</para>
1474
1475</simplesect>
1476
1477<simplesect>
1478<title>About assignment and subscript operators</title>
1479
1480<para>
1481As described in <xref linkend="lambda.assignment_and_subscript"/>, assignment and subscripting operators are always defined as member functions.
1482This means, that for expressions of the form
1483<literal>x = y</literal> or <literal>x[y]</literal> to be interpreted as lambda expressions, the left-hand operand <literal>x</literal> must be a lambda expression.
1484Consequently, it is sometimes necessary to use <literal>var</literal> for this purpose.
1485We repeat the example from <xref linkend="lambda.assignment_and_subscript"/>:
1486
1487<programlisting>
1488int i;
1489i = _1;       // error
1490var(i) = _1;  // ok
1491</programlisting>
1492</para>
1493
1494<para>
1495
1496Note that the compound assignment operators <literal>+=</literal>, <literal>-=</literal> etc. can be defined as non-member functions, and thus they are interpreted as lambda expressions even if only the right-hand operand is a lambda expression.
1497Nevertheless, it is perfectly ok to delay the left operand explicitly.
1498For example, <literal>i += _1</literal> is equivalent to <literal>var(i) += _1</literal>.
1499</para>
1500</simplesect>
1501
1502</section>
1503
1504<section id="lambda.lambda_expressions_for_control_structures">
1505<title>Lambda expressions for control structures</title>
1506
1507<para>
1508BLL defines several functions to create lambda functors that represent control structures.
1509They all take lambda functors as parameters and return <literal>void</literal>.
1510To start with an example, the following code outputs all even elements of some container <literal>a</literal>:
1511
1512<programlisting>
1513<![CDATA[for_each(a.begin(), a.end(),
1514         if_then(_1 % 2 == 0, cout << _1));]]>
1515</programlisting>
1516</para>
1517
1518<para>
1519The BLL supports the following function templates for control structures:
1520
1521<programlisting>
1522if_then(condition, then_part)
1523if_then_else(condition, then_part, else_part)
1524if_then_else_return(condition, then_part, else_part)
1525while_loop(condition, body)
1526while_loop(condition) // no body case
1527do_while_loop(condition, body)
1528do_while_loop(condition) // no body case
1529for_loop(init, condition, increment, body)
1530for_loop(init, condition, increment) // no body case
1531switch_statement(...)
1532</programlisting>
1533
1534The return types of all control construct lambda functor is
1535<literal>void</literal>, except for <literal>if_then_else_return</literal>,
1536which wraps a call to the conditional operator
1537<programlisting>
1538condition ? then_part : else_part
1539</programlisting>
1540The return type rules for this operator are somewhat complex.
1541Basically, if the branches have the same type, this type is the return type.
1542If the type of the branches differ, one branch, say of type
1543<literal>A</literal>, must be convertible to the other branch,
1544say of type <literal>B</literal>.
1545In this situation, the result type is <literal>B</literal>.
1546Further, if the common type is an lvalue, the return type will be an lvalue
1547too.
1548</para>
1549
1550
1551<para>
1552Delayed variables tend to be commonplace in control structure lambda expressions.
1553For instance, here we use the <literal>var</literal> function to turn the arguments of <literal>for_loop</literal> into lambda expressions.
1554The effect of the code is to add 1 to each element of a two-dimensional array:
1555
1556<programlisting>
1557<![CDATA[int a[5][10]; int i;
1558for_each(a, a+5,
1559  for_loop(var(i)=0, var(i)<10, ++var(i),
1560           _1[var(i)] += 1));]]>
1561</programlisting>
1562
1563<!--
1564As explained in <xref linkend="lambda.delaying_constants_and_variables"/>, we can avoid the repeated use of wrapping of <literal>var</literal> if we define it beforehand:
1565
1566<programlisting>
1567<![CDATA[int i;
1568var_type<int>::type vi(var(i));
1569for_each(a, a+5,
1570  for_loop(vi=0, vi<10, ++vi, _1[vi] += 6));]]>
1571</programlisting>
1572
1573-->
1574</para>
1575
1576<para>
1577The BLL supports an alternative syntax for control expressions, suggested
1578by Joel de Guzmann.
1579By overloading the <literal>operator[]</literal> we can
1580get a closer resemblance with the built-in control structures:
1581
1582<programlisting>
1583<![CDATA[if_(condition)[then_part]
1584if_(condition)[then_part].else_[else_part]
1585while_(condition)[body]
1586do_[body].while_(condition)
1587for_(init, condition, increment)[body]]]>
1588</programlisting>
1589
1590For example, using this syntax the <literal>if_then</literal> example above
1591can be written as:
1592<programlisting>
1593<![CDATA[for_each(a.begin(), a.end(),
1594         if_(_1 % 2 == 0)[ cout << _1 ])]]>
1595</programlisting>
1596
1597As more experience is gained, we may end up deprecating one or the other
1598of these syntaces.
1599
1600</para>
1601
1602
1603
1604<section id="lambda.switch_statement">
1605<title>Switch statement</title>
1606</section>
1607
1608<para>
1609The lambda expressions for <literal>switch</literal> control structures are more complex since the number of cases may vary.
1610The general form of a switch lambda expression is:
1611
1612<programlisting>
1613switch_statement(<parameter>condition</parameter>,
1614  case_statement&lt;<parameter>label</parameter>&gt;(<parameter>lambda expression</parameter>),
1615  case_statement&lt;<parameter>label</parameter>&gt;(<parameter>lambda expression</parameter>),
1616  ...
1617  default_statement(<parameter>lambda expression</parameter>)
1618)
1619</programlisting>
1620
1621The <literal><parameter>condition</parameter></literal> argument must be a lambda expression that creates a lambda functor with an integral return type.
1622The different cases are created with the <literal>case_statement</literal> functions, and the optional default case with the <literal>default_statement</literal> function.
1623The case labels are given as explicitly specified template arguments to <literal>case_statement</literal> functions and
1624<literal>break</literal> statements are implicitly part of each case.
1625For example, <literal><![CDATA[case_statement<1>(a)]]></literal>, where <literal>a</literal> is some lambda functor,  generates the code:
1626
1627<programlisting>
1628case 1:
1629  <parameter>evaluate lambda functor</parameter> a;
1630  break;
1631</programlisting>
1632The <literal>switch_statement</literal> function is specialized for up to 9 case statements.
1633
1634</para>
1635
1636<para>
1637As a concrete example, the following code iterates over some container <literal>v</literal> and ouptuts <quote>zero</quote> for each <literal>0</literal>, <quote>one</quote> for each <literal>1</literal>, and <quote>other: <parameter>n</parameter></quote> for any other value <parameter>n</parameter>.
1638Note that another lambda expression is sequenced after the <literal>switch_statement</literal> to output a line break after each element:
1639
1640<programlisting>
1641<![CDATA[std::for_each(v.begin(), v.end(),
1642  (
1643    switch_statement(
1644      _1,
1645      case_statement<0>(std::cout << constant("zero")),
1646      case_statement<1>(std::cout << constant("one")),
1647      default_statement(cout << constant("other: ") << _1)
1648    ),
1649    cout << constant("\n")
1650  )
1651);]]>
1652</programlisting>
1653</para>
1654
1655</section>
1656
1657<section id="lambda.exceptions">
1658<title>Exceptions</title>
1659
1660<para>
1661The BLL provides lambda functors that throw and catch exceptions.
1662Lambda functors for throwing exceptions are created with the unary function <literal>throw_exception</literal>.
1663The argument to this function is the exception to be thrown, or a lambda functor which creates the exception to be thrown.
1664A lambda functor for rethrowing exceptions is created with the nullary <literal>rethrow</literal> function.
1665</para>
1666
1667<para>
1668Lambda expressions for handling exceptions are somewhat more complex.
1669The general form of a lambda expression for try catch blocks is as follows:
1670
1671<programlisting>
1672try_catch(
1673  <parameter>lambda expression</parameter>,
1674  catch_exception&lt;<parameter>type</parameter>&gt;(<parameter>lambda expression</parameter>),
1675  catch_exception&lt;<parameter>type</parameter>&gt;(<parameter>lambda expression</parameter>),
1676  ...
1677  catch_all(<parameter>lambda expression</parameter>)
1678)
1679</programlisting>
1680
1681The first lambda expression is the try block.
1682Each <literal>catch_exception</literal> defines a catch block where the
1683explicitly specified template argument defines the type of the exception
1684to catch.
1685
1686The lambda expression within the <literal>catch_exception</literal> defines
1687the actions to take if the exception is caught.
1688
1689Note that the resulting exception handlers catch the exceptions as
1690references, i.e., <literal>catch_exception&lt;T&gt;(...)</literal>
1691results in the catch block:
1692
1693<programlisting>
1694catch(T&amp; e) { ... }
1695</programlisting>
1696
1697The last catch block can alternatively be a call to
1698<literal>catch_exception&lt;<parameter>type</parameter>&gt;</literal>
1699or to
1700<literal>catch_all</literal>, which is the lambda expression equivalent to
1701<literal>catch(...)</literal>.
1702
1703</para>
1704
1705<para>
1706
1707The <xref linkend="ex:exceptions"/> demonstrates the use of the BLL
1708exception handling tools.
1709The first handler catches exceptions of type <literal>foo_exception</literal>.
1710Note the use of <literal>_1</literal> placeholder in the body of the handler.
1711</para>
1712
1713<para>
1714The second handler shows how to throw exceptions, and demonstrates the
1715use of the <emphasis>exception placeholder</emphasis> <literal>_e</literal>.
1716
1717It is a special placeholder, which refers to the caught exception object
1718within the handler body.
1719
1720Here we are handling an exception of type <literal>std::exception</literal>,
1721which carries a string explaining the cause of the exception.
1722
1723This explanation can be queried with the zero-argument member
1724function <literal>what</literal>.
1725
1726The expression
1727<literal>bind(&amp;std::exception::what, _e)</literal> creates the lambda
1728function for making that call.
1729
1730Note that <literal>_e</literal> cannot be used outside of an exception handler lambda expression.
1731<!--Violating this rule is caught by the compiler.-->
1732
1733The last line of the second handler constructs a new exception object and
1734throws that with <literal>throw exception</literal>.
1735
1736Constructing and destructing objects within lambda expressions is
1737explained in <xref linkend="lambda.construction_and_destruction"/>
1738</para>
1739
1740<para>
1741Finally, the third handler (<literal>catch_all</literal>) demonstrates
1742rethrowing exceptions.
1743</para>
1744
1745<example id="ex:exceptions">
1746<title>Throwing and handling exceptions in lambda expressions.</title>
1747<programlisting>
1748<![CDATA[for_each(
1749  a.begin(), a.end(),
1750  try_catch(
1751    bind(foo, _1),                 // foo may throw
1752    catch_exception<foo_exception>(
1753      cout << constant("Caught foo_exception: ")
1754           << "foo was called with argument = " << _1
1755    ),
1756    catch_exception<std::exception>(
1757      cout << constant("Caught std::exception: ")
1758           << bind(&std::exception::what, _e),
1759      throw_exception(bind(constructor<bar_exception>(), _1)))
1760    ),
1761    catch_all(
1762      (cout << constant("Unknown"), rethrow())
1763    )
1764  )
1765);]]>
1766</programlisting>
1767</example>
1768
1769</section>
1770
1771<section id="lambda.construction_and_destruction">
1772<title>Construction and destruction</title>
1773
1774
1775<para>
1776Operators <literal>new</literal> and <literal>delete</literal> can be
1777overloaded, but their return types are fixed.
1778
1779Particularly, the return types cannot be lambda functors,
1780which prevents them to be overloaded for lambda expressions.
1781
1782It is not possible to take the address of a constructor,
1783hence constructors cannot be used as target functions in bind expressions.
1784
1785The same is true for destructors.
1786
1787As a way around these constraints, BLL defines wrapper classes for
1788<literal>new</literal> and <literal>delete</literal> calls,
1789as well as for constructors and destructors.
1790
1791Instances of these classes are function objects, that can be used as
1792target functions of bind expressions.
1793
1794For example:
1795
1796<programlisting>
1797<![CDATA[int* a[10];
1798for_each(a, a+10, _1 = bind(new_ptr<int>()));
1799for_each(a, a+10, bind(delete_ptr(), _1));]]>
1800</programlisting>
1801
1802The <literal>new_ptr&lt;int&gt;()</literal> expression creates
1803a function object that calls <literal>new int()</literal> when invoked,
1804and wrapping that inside <literal>bind</literal> makes it a lambda functor.
1805
1806In the same way, the expression <literal>delete_ptr()</literal> creates
1807a function object that invokes <literal>delete</literal> on its argument.
1808
1809Note that <literal>new_ptr&lt;<parameter>T</parameter>&gt;()</literal>
1810can take arguments as well.
1811
1812They are passed directly to the constructor invocation and thus allow
1813calls to constructors which take arguments.
1814
1815</para>
1816
1817<para>
1818
1819As an example of constructor calls in lambda expressions,
1820the following code reads integers from two containers <literal>x</literal>
1821and <literal>y</literal>,
1822constructs pairs out of them and inserts them into a third container:
1823
1824<programlisting>
1825<![CDATA[vector<pair<int, int> > v;
1826transform(x.begin(), x.end(), y.begin(), back_inserter(v),
1827          bind(constructor<pair<int, int> >(), _1, _2));]]>
1828</programlisting>
1829
1830<xref linkend="table:constructor_destructor_fos"/> lists all the function
1831objects related to creating and destroying objects,
1832 showing the expression to create and call the function object,
1833and the effect of evaluating that expression.
1834
1835</para>
1836
1837
1838
1839<table id="table:constructor_destructor_fos">
1840<title>Construction and destruction related function objects.</title>
1841<tgroup cols="2">
1842<thead>
1843<row>
1844<entry>Function object call</entry>
1845<entry>Wrapped expression</entry>
1846</row>
1847</thead>
1848<tbody>
1849<row>
1850<entry><literal>constructor&lt;T&gt;()(<parameter>arg_list</parameter>)</literal></entry>
1851<entry>T(<parameter>arg_list</parameter>)</entry>
1852</row>
1853<row>
1854<entry><literal>destructor()(a)</literal></entry>
1855<entry><literal>a.~A()</literal>, where <literal>a</literal> is of type <literal>A</literal></entry>
1856</row>
1857<row>
1858<entry><literal>destructor()(pa)</literal></entry>
1859<entry><literal>pa->~A()</literal>, where <literal>pa</literal> is of type <literal>A*</literal></entry>
1860</row>
1861<row>
1862<entry><literal>new_ptr&lt;T&gt;()(<parameter>arg_list</parameter>)</literal></entry>
1863<entry><literal>new T(<parameter>arg_list</parameter>)</literal></entry>
1864</row>
1865<row>
1866<entry><literal>new_array&lt;T&gt;()(sz)</literal></entry>
1867<entry><literal>new T[sz]</literal></entry>
1868</row>
1869<row>
1870<entry><literal>delete_ptr()(p)</literal></entry>
1871<entry><literal>delete p</literal></entry>
1872</row>
1873<row>
1874<entry><literal>delete_array()(p)</literal></entry>
1875<entry><literal>delete p[]</literal></entry>
1876</row>
1877
1878
1879</tbody>
1880</tgroup>
1881</table>
1882
1883</section>
1884
1885
1886<section>
1887<title>Special lambda expressions</title>
1888
1889<section>
1890<title>Preventing argument substitution</title>
1891
1892<para>
1893When a lambda functor is called, the default behavior is to substitute
1894the actual arguments for the placeholders within all subexpressions.
1895
1896This section describes the tools to prevent the substitution and
1897evaluation of a subexpression, and explains when these tools should be used.
1898</para>
1899
1900
1901<para>
1902The arguments to a bind expression can be arbitrary lambda expressions,
1903e.g., other bind expressions.
1904
1905For example:
1906
1907<programlisting>
1908int foo(int); int bar(int);
1909...
1910int i;
1911bind(foo, bind(bar, _1))(i);
1912</programlisting>
1913
1914The last line makes the call <literal>foo(bar(i));</literal>
1915
1916Note that the first argument in a bind expression, the target function,
1917is no exception, and can thus be a bind expression too.
1918
1919The innermost lambda functor just has to return something that can be used
1920as a target function: another lambda functor, function pointer,
1921pointer to member function etc.
1922
1923For example, in the following code the innermost lambda functor makes
1924a selection between two functions, and returns a pointer to one of them:
1925
1926<programlisting>
1927int add(int a, int b) { return a+b; }
1928int mul(int a, int b) { return a*b; }
1929
1930int(*)(int, int)  add_or_mul(bool x) {
1931  return x ? add : mul;
1932}
1933
1934bool condition; int i; int j;
1935...
1936bind(bind(&amp;add_or_mul, _1), _2, _3)(condition, i, j);
1937</programlisting>
1938
1939</para>
1940
1941
1942
1943<section id="lambda.unlambda">
1944<title>Unlambda</title>
1945
1946<para>A nested bind expression may occur inadvertently,
1947if the target function is a variable with a type that depends on a
1948template parameter.
1949
1950Typically the target function could be a formal parameter of a
1951function template.
1952
1953In such a case, the programmer may not know whether the target function is a lambda functor or not.
1954</para>
1955
1956<para>Consider the following function template:
1957
1958<programlisting>
1959<![CDATA[template<class F>
1960int nested(const F& f) {
1961  int x;
1962  ...
1963  bind(f, _1)(x);
1964  ...
1965}]]>
1966</programlisting>
1967
1968Somewhere inside the function the formal parameter
1969<literal>f</literal> is used as a target function in a bind expression.
1970
1971In order for this <literal>bind</literal> call to be valid,
1972<literal>f</literal> must be a unary function.
1973
1974Suppose the following two calls to <literal>nested</literal> are made:
1975
1976<programlisting>
1977<![CDATA[int foo(int);
1978int bar(int, int);
1979nested(&foo);
1980nested(bind(bar, 1, _1));]]>
1981</programlisting>
1982
1983Both are unary functions, or function objects, with appropriate argument
1984and return types, but the latter will not compile.
1985
1986In the latter call, the bind expression inside <literal>nested</literal>
1987will become:
1988
1989<programlisting>
1990bind(bind(bar, 1, _1), _1)
1991</programlisting>
1992
1993When this is invoked with <literal>x</literal>,
1994after substituitions we end up trying to call
1995
1996<programlisting>
1997bar(1, x)(x)
1998</programlisting>
1999
2000which is an error.
2001
2002The call to <literal>bar</literal> returns int,
2003not a unary function or function object.
2004</para>
2005
2006<para>
2007In the example above, the intent of the bind expression in the
2008<literal>nested</literal> function is to treat <literal>f</literal>
2009as an ordinary function object, instead of a lambda functor.
2010
2011The BLL provides the function template <literal>unlambda</literal> to
2012express this: a lambda functor wrapped inside <literal>unlambda</literal>
2013is not a lambda functor anymore, and does not take part into the
2014argument substitution process.
2015
2016Note that for all other argument types <literal>unlambda</literal> is
2017an identity operation, except for making non-const objects const.
2018</para>
2019
2020<para>
2021Using <literal>unlambda</literal>, the <literal>nested</literal>
2022function is written as:
2023
2024<programlisting>
2025<![CDATA[template<class F>
2026int nested(const F& f) {
2027  int x;
2028  ...
2029  bind(unlambda(f), _1)(x);
2030  ...
2031}]]>
2032</programlisting>
2033
2034</para>
2035
2036</section>
2037
2038<section>
2039<title>Protect</title>
2040
2041<para>
2042The <literal>protect</literal> function is related to unlambda.
2043
2044It is also used to prevent the argument substitution taking place,
2045but whereas <literal>unlambda</literal> turns a lambda functor into
2046an ordinary function object for good, <literal>protect</literal> does
2047this temporarily, for just one evaluation round.
2048
2049For example:
2050
2051<programlisting>
2052int x = 1, y = 10;
2053(_1 + protect(_1 + 2))(x)(y);
2054</programlisting>
2055
2056The first call substitutes <literal>x</literal> for the leftmost
2057<literal>_1</literal>, and results in another lambda functor
2058<literal>x + (_1 + 2)</literal>, which after the call with
2059<literal>y</literal> becomes <literal>x + (y + 2)</literal>,
2060and thus finally 13.
2061</para>
2062
2063<para>
2064Primary motivation for including <literal>protect</literal> into the library,
2065was to allow nested STL algorithm invocations
2066(<xref linkend="lambda.nested_stl_algorithms"/>).
2067</para>
2068
2069</section>
2070
2071</section>
2072
2073<section id="lambda.rvalues_as_actual_arguments">
2074<title>Rvalues as actual arguments to lambda functors</title>
2075
2076<!--      <para><emphasis>This section and all of its subsections
2077       are no longer (or currently) relevant;
2078       acual arguments can be non-const rvalues and these workarounds are thus
2079       not needed.
2080       The section can, however, become relevant again, if in the future BLL will support
2081       lambda functors with higher arities than 3.</emphasis></para> -->
2082
2083<para>
2084Actual arguments to the lambda functors cannot be non-const rvalues.
2085This is due to a deliberate design decision: either we have this restriction,
2086or there can be no side-effects to the actual arguments.
2087
2088There are ways around this limitation.
2089
2090We repeat the example from section
2091<xref linkend="lambda.actual_arguments_to_lambda_functors"/> and list the
2092different solutions:
2093
2094<programlisting>
2095int i = 1; int j = 2;
2096(_1 + _2)(i, j); // ok
2097(_1 + _2)(1, 2); // error (!)
2098</programlisting>
2099
2100<orderedlist>
2101<listitem>
2102<para>
2103If the rvalue is of a class type, the return type of the function that
2104creates the rvalue should be defined as const.
2105Due to an unfortunate language restriction this does not work for
2106built-in types, as built-in rvalues cannot be const qualified.
2107</para>
2108</listitem>
2109
2110<listitem>
2111<para>
2112If the lambda function call is accessible, the <literal>make_const</literal>
2113function can be used to <emphasis>constify</emphasis> the rvalue. E.g.:
2114
2115<programlisting>
2116(_1 + _2)(make_const(1), make_const(2)); // ok
2117</programlisting>
2118
2119Commonly the lambda function call site is inside a standard algorithm
2120function template, preventing this solution to be used.
2121
2122</para>
2123</listitem>
2124
2125<listitem>
2126<para>
2127If neither of the above is possible, the lambda expression can be wrapped
2128in a <literal>const_parameters</literal> function.
2129It creates another type of lambda functor, which takes its arguments as
2130const references. For example:
2131
2132<programlisting>
2133const_parameters(_1 + _2)(1, 2); // ok
2134</programlisting>
2135
2136Note that <literal>const_parameters</literal> makes all arguments const.
2137Hence, in the case were one of the arguments is a non-const rvalue,
2138and another argument needs to be passed as a non-const reference,
2139this approach cannot be used.
2140</para>
2141
2142</listitem>
2143
2144<listitem>
2145<para>If none of the above is possible, there is still one solution,
2146which unfortunately can break const correctness.
2147
2148The solution is yet another lambda functor wrapper, which we have named
2149<literal>break_const</literal> to alert the user of the potential dangers
2150of this function.
2151
2152The <literal>break_const</literal> function creates a lambda functor that
2153takes its arguments as const, and casts away constness prior to the call
2154to the original wrapped lambda functor.
2155
2156For example:
2157<programlisting>
2158int i;
2159...
2160(_1 += _2)(i, 2);                 // error, 2 is a non-const rvalue
2161const_parameters(_1 += _2)(i, 2); // error, i becomes const
2162break_const(_1 += _2)(i, 2);      // ok, but dangerous
2163</programlisting>
2164
2165Note, that the results of <literal> break_const</literal> or
2166<literal>const_parameters</literal> are not lambda functors,
2167so they cannot be used as subexpressions of lambda expressions. For instance:
2168
2169<programlisting>
2170break_const(_1 + _2) + _3; // fails.
2171const_parameters(_1 + _2) + _3; // fails.
2172</programlisting>
2173
2174However, this kind of code should never be necessary,
2175since calls to sub lambda functors are made inside the BLL,
2176and are not affected by the non-const rvalue problem.
2177</para>
2178</listitem>
2179
2180</orderedlist>
2181
2182</para>
2183</section>
2184
2185</section>
2186
2187
2188<section>
2189<title>Casts, sizeof and typeid</title>
2190
2191<section id="lambda.cast_expressions">
2192<title>
2193Cast expressions
2194</title>
2195<para>
2196The BLL defines its counterparts for the four cast expressions
2197<literal>static_cast</literal>, <literal>dynamic_cast</literal>,
2198<literal>const_cast</literal> and <literal>reinterpret_cast</literal>.
2199
2200The BLL versions of the cast expressions have the prefix
2201<literal>ll_</literal>.
2202
2203The type to cast to is given as an explicitly specified template argument,
2204and the sole argument is the expression from which to perform the cast.
2205
2206If the argument is a lambda functor, the lambda functor is evaluated first.
2207
2208For example, the following code uses <literal>ll_dynamic_cast</literal>
2209to count the number of <literal>derived</literal> instances in the container
2210<literal>a</literal>:
2211
2212<programlisting>
2213<![CDATA[class base {};
2214class derived : public base {};
2215
2216vector<base*> a;
2217...
2218int count = 0;
2219for_each(a.begin(), a.end(),
2220         if_then(ll_dynamic_cast<derived*>(_1), ++var(count)));]]>
2221</programlisting>
2222</para>
2223</section>
2224
2225<section>
2226<title>Sizeof and typeid</title>
2227<para>
2228The BLL counterparts for these expressions are named
2229<literal>ll_sizeof</literal> and <literal>ll_typeid</literal>.
2230
2231Both take one argument, which can be a lambda expression.
2232The lambda functor created wraps the <literal>sizeof</literal> or
2233<literal>typeid</literal> call, and when the lambda functor is called
2234the wrapped operation is performed.
2235
2236For example:
2237
2238<programlisting>
2239<![CDATA[vector<base*> a;
2240...
2241for_each(a.begin(), a.end(),
2242         cout << bind(&type_info::name, ll_typeid(*_1)));]]>
2243</programlisting>
2244
2245Here <literal>ll_typeid</literal> creates a lambda functor for
2246calling <literal>typeid</literal> for each element.
2247
2248The result of a <literal>typeid</literal> call is an instance of
2249the <literal>type_info</literal> class, and the bind expression creates
2250a lambda functor for calling the <literal>name</literal> member
2251function of that class.
2252
2253</para>
2254</section>
2255
2256
2257
2258</section>
2259
2260<section id="lambda.nested_stl_algorithms">
2261<title>Nesting STL algorithm invocations</title>
2262
2263<para>
2264The BLL defines common STL algorithms as function object classes,
2265instances of which can be used as target functions in bind expressions.
2266For example, the following code iterates over the elements of a
2267two-dimensional array, and computes their sum.
2268
2269<programlisting>
2270int a[100][200];
2271int sum = 0;
2272
2273std::for_each(a, a + 100,
2274	      bind(ll::for_each(), _1, _1 + 200, protect(sum += _1)));
2275</programlisting>
2276
2277The BLL versions of the STL algorithms are classes, which define the function call operator (or several overloaded ones) to call the corresponding function templates in the <literal>std</literal> namespace.
2278All these structs are placed in the subnamespace <literal>boost::lambda:ll</literal>.
2279<!--The supported algorithms are listed in <xref linkend="table:nested_algorithms"/>.-->
2280</para>
2281
2282<para>
2283Note that there is no easy way to express an overloaded member function
2284call in a lambda expression.
2285
2286This limits the usefulness of nested STL algorithms, as for instance
2287the <literal>begin</literal> function has more than one overloaded
2288definitions in container templates.
2289
2290In general, something analogous to the pseudo-code below cannot be written:
2291
2292<programlisting>
2293std::for_each(a.begin(), a.end(),
2294	      bind(ll::for_each(), _1.begin(), _1.end(), protect(sum += _1)));
2295</programlisting>
2296
2297Some aid for common special cases can be provided though.
2298
2299The BLL defines two helper function object classes,
2300<literal>call_begin</literal> and <literal>call_end</literal>,
2301which wrap a call to the <literal>begin</literal> and, respectively,
2302<literal>end</literal> functions of a container, and return the
2303<literal>const_iterator</literal> type of the container.
2304
2305With these helper templates, the above code becomes:
2306<programlisting>
2307std::for_each(a.begin(), a.end(),
2308	      bind(ll::for_each(),
2309                   bind(call_begin(), _1), bind(call_end(), _1),
2310                        protect(sum += _1)));
2311</programlisting>
2312
2313</para>
2314
2315<!--
2316<table id="table:nested_algorithms">
2317<title>The nested STL algorithms.</title>
2318<tgroup cols="1">
2319<thead>
2320<trow><entry>Otsikko</entry></trow>
2321</thead>
2322<tbody>
2323<row><entry><literal>for_each</literal></entry></row>
2324<row><entry><literal>find</literal></entry></row>
2325<row><entry><literal>find_if</literal></entry></row>
2326<row><entry><literal>find_end</literal></entry></row>
2327<row><entry><literal>find_first_of</literal></entry></row>
2328<row><entry><literal>transform</literal></entry></row>
2329</tbody>
2330</tgroup>
2331
2332</table>
2333
2334-->
2335
2336</section>
2337
2338
2339</section>
2340
2341
2342<!--
2343<section>
2344<title>Common gothcas</title>
2345
2346calling member functions a.begin()
2347
2348calling templated functions ...
2349
2350</section>
2351
2352-->
2353
2354<section id="lambda.extending">
2355<title>Extending return type deduction system</title>
2356
2357<para>
2358<!--The <xref linkend = "lambda.overriding_deduced_return_type"/> showed how to make BLL aware of the return type of a function object in bind expressions.-->
2359
2360In this section, we explain  how to extend the return type deduction system
2361to cover user defined operators.
2362
2363In many cases this is not necessary,
2364as the BLL defines default return types for operators.
2365
2366For example, the default return type for all comparison operators is
2367<literal>bool</literal>, and as long as the user defined comparison operators
2368have a bool return type, there is no need to write new specializations
2369for the return type deduction classes.
2370
2371Sometimes this cannot be avoided, though.
2372
2373</para>
2374
2375<para>
2376The overloadable user defined operators are either unary or binary.
2377
2378For each arity, there are two traits templates that define the
2379return types of the different operators.
2380
2381Hence, the return type system can be extended by providing more
2382specializations for these templates.
2383
2384The templates for unary functors are
2385
2386<literal>
2387<![CDATA[plain_return_type_1<Action, A>]]>
2388</literal>
2389
2390and
2391
2392<literal>
2393<![CDATA[return_type_1<Action, A>]]>
2394</literal>, and
2395
2396<literal>
2397<![CDATA[plain_return_type_2<Action, A, B>]]>
2398</literal>
2399
2400and
2401
2402<literal>
2403<![CDATA[return_type_2<Action, A, B>]]>
2404</literal>
2405
2406respectively for binary functors.
2407
2408</para>
2409
2410<para>
2411The first parameter (<literal>Action</literal>) to all these templates
2412is the <emphasis>action</emphasis> class, which specifies the operator.
2413
2414Operators with similar return type rules are grouped together into
2415<emphasis>action groups</emphasis>,
2416and only the action class and action group together define the operator
2417unambiguously.
2418
2419As an example, the action type
2420<literal><![CDATA[arithmetic_action<plus_action>]]></literal> stands for
2421<literal>operator+</literal>.
2422
2423The complete listing of different action types is shown in
2424<xref linkend="table:actions"/>.
2425</para>
2426
2427<para>
2428The latter parameters, <literal>A</literal> in the unary case,
2429or <literal>A</literal> and <literal>B</literal> in the binary case,
2430stand for the argument types of the operator call.
2431
2432The two sets of templates,
2433<literal>plain_return_type_<parameter>n</parameter></literal> and
2434<literal>return_type_<parameter>n</parameter></literal>
2435(<parameter>n</parameter> is 1 or 2) differ in the way how parameter types
2436are presented to them.
2437
2438For the former templates, the parameter types are always provided as
2439non-reference types, and do not have const or volatile qualifiers.
2440
2441This makes specializing easy, as commonly one specialization for each
2442user defined operator, or operator group, is enough.
2443
2444On the other hand, if a particular operator is overloaded for different
2445cv-qualifications of the same argument types,
2446and the return types of these overloaded versions differ, a more fine-grained control is needed.
2447
2448Hence, for the latter templates, the parameter types preserve the
2449cv-qualifiers, and are non-reference types as well.
2450
2451The downside is, that for an overloaded set of operators of the
2452kind described above, one may end up needing up to
245316 <literal>return_type_2</literal> specializations.
2454</para>
2455
2456<para>
2457Suppose the user has overloaded the following operators for some user defined
2458types <literal>X</literal>, <literal>Y</literal> and <literal>Z</literal>:
2459
2460<programlisting>
2461<![CDATA[Z operator+(const X&, const Y&);
2462Z operator-(const X&, const Y&);]]>
2463</programlisting>
2464
2465Now, one can add a specialization stating, that if the left hand argument
2466is of type <literal>X</literal>, and the right hand one of type
2467<literal>Y</literal>, the return type of all such binary arithmetic
2468operators is <literal>Z</literal>:
2469
2470<programlisting>
2471<![CDATA[namespace boost {
2472namespace lambda {
2473
2474template<class Act>
2475struct plain_return_type_2<arithmetic_action<Act>, X, Y> {
2476  typedef Z type;
2477};
2478
2479}
2480}]]>
2481</programlisting>
2482
2483Having this specialization defined, BLL is capable of correctly
2484deducing the return type of the above two operators.
2485
2486Note, that the specializations must be in the same namespace,
2487<literal>::boost::lambda</literal>, with the primary template.
2488
2489For brevity, we do not show the namespace definitions in the examples below.
2490</para>
2491
2492<para>
2493It is possible to specialize on the level of an individual operator as well,
2494in addition to providing a specialization for a group of operators.
2495Say, we add a new arithmetic operator for argument types <literal>X</literal>
2496and <literal>Y</literal>:
2497
2498<programlisting>
2499<![CDATA[X operator*(const X&, const Y&);]]>
2500</programlisting>
2501
2502Our first rule for all arithmetic operators specifies that the return
2503type of this operator is <literal>Z</literal>,
2504which obviously is not the case.
2505Hence, we provide a new rule for the multiplication operator:
2506
2507<programlisting>
2508<![CDATA[template<>
2509struct plain_return_type_2<arithmetic_action<multiply_action>, X, Y> {
2510  typedef X type;
2511};]]>
2512</programlisting>
2513</para>
2514
2515<para>
2516The specializations can define arbitrary mappings from the argument types
2517to the return type.
2518
2519Suppose we have some mathematical vector type, templated on the element type:
2520
2521<programlisting>
2522<![CDATA[template <class T> class my_vector;]]>
2523</programlisting>
2524
2525Suppose the addition operator is defined between any two
2526<literal>my_vector</literal> instantiations,
2527as long as the addition operator is defined between their element types.
2528
2529Furthermore, the element type of the resulting <literal>my_vector</literal>
2530is the same as the result type of the addition between the element types.
2531
2532E.g., adding <literal><![CDATA[my_vector<int>]]></literal> and
2533<literal><![CDATA[my_vector<double>]]></literal> results in
2534<literal><![CDATA[my_vector<double>]]></literal>.
2535
2536The BLL has traits classes to perform the implicit built-in and standard
2537type conversions between integral, floating point, and complex classes.
2538
2539Using BLL tools, the addition operator described above can be defined as:
2540
2541<programlisting>
2542<![CDATA[template<class A, class B>
2543my_vector<typename return_type_2<arithmetic_action<plus_action>, A, B>::type>
2544operator+(const my_vector<A>& a, const my_vector<B>& b)
2545{
2546  typedef typename
2547    return_type_2<arithmetic_action<plus_action>, A, B>::type res_type;
2548  return my_vector<res_type>();
2549}]]>
2550</programlisting>
2551</para>
2552
2553<para>
2554To allow BLL to deduce the type of <literal>my_vector</literal>
2555additions correctly, we can define:
2556
2557<programlisting>
2558<![CDATA[template<class A, class B>
2559class plain_return_type_2<arithmetic_action<plus_action>,
2560                           my_vector<A>, my_vector<B> > {
2561  typedef typename
2562    return_type_2<arithmetic_action<plus_action>, A, B>::type res_type;
2563public:
2564  typedef my_vector<res_type> type;
2565};]]>
2566</programlisting>
2567Note, that we are reusing the existing specializations for the
2568BLL <literal>return_type_2</literal> template,
2569which require that the argument types are references.
2570</para>
2571
2572<!-- TODO: is an example of specifying the other level needed at all -->
2573<!-- TODO: comma operator is a special case for that -->
2574
2575<table id = "table:actions">
2576<title>Action types</title>
2577<tgroup cols="2">
2578<tbody>
2579
2580<row><entry><literal><![CDATA[+]]></literal></entry><entry><literal><![CDATA[arithmetic_action<plus_action>]]></literal></entry></row>
2581<row><entry><literal><![CDATA[-]]></literal></entry><entry><literal><![CDATA[arithmetic_action<minus_action>]]></literal></entry></row>
2582<row><entry><literal><![CDATA[*]]></literal></entry><entry><literal><![CDATA[arithmetic_action<multiply_action>]]></literal></entry></row>
2583<row><entry><literal><![CDATA[/]]></literal></entry><entry><literal><![CDATA[arithmetic_action<divide_action>]]></literal></entry></row>
2584<row><entry><literal><![CDATA[%]]></literal></entry><entry><literal><![CDATA[arithmetic_action<remainder_action>]]></literal></entry></row>
2585
2586
2587
2588<row><entry><literal><![CDATA[+]]></literal></entry><entry><literal><![CDATA[unary_arithmetic_action<plus_action>]]></literal></entry></row>
2589<row><entry><literal><![CDATA[-]]></literal></entry><entry><literal><![CDATA[unary_arithmetic_action<minus_action>]]></literal></entry></row>
2590
2591
2592
2593<row><entry><literal><![CDATA[&]]></literal></entry><entry><literal><![CDATA[bitwise_action<and_action>]]></literal></entry></row>
2594<row><entry><literal><![CDATA[|]]></literal></entry><entry><literal><![CDATA[bitwise_action<or_action>]]></literal></entry></row>
2595<row><entry><literal><![CDATA[~]]></literal></entry><entry><literal><![CDATA[bitwise_action<not_action>]]></literal></entry></row>
2596<row><entry><literal><![CDATA[^]]></literal></entry><entry><literal><![CDATA[bitwise_action<xor_action>]]></literal></entry></row>
2597<row><entry><literal><![CDATA[<<]]></literal></entry><entry><literal><![CDATA[bitwise_action<leftshift_action_no_stream>]]></literal></entry></row>
2598<row><entry><literal><![CDATA[>>]]></literal></entry><entry><literal><![CDATA[bitwise_action<rightshift_action_no_stream>]]></literal></entry></row>
2599
2600
2601
2602<row><entry><literal><![CDATA[&&]]></literal></entry><entry><literal><![CDATA[logical_action<and_action>]]></literal></entry></row>
2603<row><entry><literal><![CDATA[||]]></literal></entry><entry><literal><![CDATA[logical_action<or_action>]]></literal></entry></row>
2604<row><entry><literal><![CDATA[!]]></literal></entry><entry><literal><![CDATA[logical_action<not_action>]]></literal></entry></row>
2605
2606
2607
2608<row><entry><literal><![CDATA[<]]></literal></entry><entry><literal><![CDATA[relational_action<less_action>]]></literal></entry></row>
2609<row><entry><literal><![CDATA[>]]></literal></entry><entry><literal><![CDATA[relational_action<greater_action>]]></literal></entry></row>
2610<row><entry><literal><![CDATA[<=]]></literal></entry><entry><literal><![CDATA[relational_action<lessorequal_action>]]></literal></entry></row>
2611<row><entry><literal><![CDATA[>=]]></literal></entry><entry><literal><![CDATA[relational_action<greaterorequal_action>]]></literal></entry></row>
2612<row><entry><literal><![CDATA[==]]></literal></entry><entry><literal><![CDATA[relational_action<equal_action>]]></literal></entry></row>
2613<row><entry><literal><![CDATA[!=]]></literal></entry><entry><literal><![CDATA[relational_action<notequal_action>]]></literal></entry></row>
2614
2615
2616
2617<row><entry><literal><![CDATA[+=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<plus_action>]]></literal></entry></row>
2618<row><entry><literal><![CDATA[-=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<minus_action>]]></literal></entry></row>
2619<row><entry><literal><![CDATA[*=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<multiply_action>]]></literal></entry></row>
2620<row><entry><literal><![CDATA[/=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<divide_action>]]></literal></entry></row>
2621<row><entry><literal><![CDATA[%=]]></literal></entry><entry><literal><![CDATA[arithmetic_assignment_action<remainder_action>]]></literal></entry></row>
2622
2623
2624
2625<row><entry><literal><![CDATA[&=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<and_action>]]></literal></entry></row>
2626<row><entry><literal><![CDATA[=|]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<or_action>]]></literal></entry></row>
2627<row><entry><literal><![CDATA[^=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<xor_action>]]></literal></entry></row>
2628<row><entry><literal><![CDATA[<<=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<leftshift_action>]]></literal></entry></row>
2629<row><entry><literal><![CDATA[>>=]]></literal></entry><entry><literal><![CDATA[bitwise_assignment_action<rightshift_action>]]></literal></entry></row>
2630
2631
2632
2633<row><entry><literal><![CDATA[++]]></literal></entry><entry><literal><![CDATA[pre_increment_decrement_action<increment_action>]]></literal></entry></row>
2634<row><entry><literal><![CDATA[--]]></literal></entry><entry><literal><![CDATA[pre_increment_decrement_action<decrement_action>]]></literal></entry></row>
2635<row><entry><literal><![CDATA[++]]></literal></entry><entry><literal><![CDATA[post_increment_decrement_action<increment_action>]]></literal></entry></row>
2636<row><entry><literal><![CDATA[--]]></literal></entry><entry><literal><![CDATA[post_increment_decrement_action<decrement_action>]]></literal></entry></row>
2637
2638
2639
2640<row><entry><literal><![CDATA[&]]></literal></entry><entry><literal><![CDATA[other_action<address_of_action>]]></literal></entry></row>
2641<row><entry><literal><![CDATA[*]]></literal></entry><entry><literal><![CDATA[other_action<contents_of_action>]]></literal></entry></row>
2642<row><entry><literal><![CDATA[,]]></literal></entry><entry><literal><![CDATA[other_action<comma_action>]]></literal></entry></row>
2643<row><entry><literal><![CDATA[->*]]></literal></entry><entry><literal><![CDATA[other_action<member_pointer_action>]]></literal></entry></row>
2644
2645</tbody>
2646</tgroup>
2647</table>
2648
2649</section>
2650
2651
2652<section>
2653<title>Practical considerations</title>
2654
2655
2656<section>
2657<title>Performance</title>
2658
2659<para>In theory, all overhead of using STL algorithms and lambda functors
2660compared to hand written loops can be optimized away, just as the overhead
2661from standard STL function objects and binders can.
2662
2663Depending on the compiler, this can also be true in practice.
2664We ran two tests with the GCC 3.0.4 compiler on 1.5 GHz Intel Pentium 4.
2665The optimization flag -03 was used.
2666</para>
2667
2668<para>
2669In the first test we compared lambda functors against explicitly written
2670function objects.
2671We used both of these styles to define unary functions which multiply the
2672argument repeatedly by itself.
2673We started with the identity function, going up to
2674x<superscript>5</superscript>.
2675The expressions were called inside a <literal>std::transform</literal> loop,
2676reading the argument from one <literal><![CDATA[std::vector<int>]]></literal>
2677and placing the result into another.
2678The length of the vectors was 100 elements.
2679The running times are listed in
2680<xref linkend="table:increasing_arithmetic_test"/>.
2681
2682We can observe that there is no significant difference between the
2683two approaches.
2684</para>
2685
2686<para>
2687In the second test we again used <literal>std::transform</literal> to
2688perform an operation to each element in a 100-element long vector.
2689This time the element type of the vectors was <literal>double</literal>
2690and we started with very simple arithmetic expressions and moved to
2691more complex ones.
2692The running times are listed in <xref linkend="table:ll_vs_stl_test"/>.
2693
2694Here, we also included classic STL style unnamed functions into tests.
2695We do not show these expressions, as they get rather complex.
2696For example, the
2697last expression in <xref linkend="table:ll_vs_stl_test"/> written with
2698classic STL tools contains 7 calls to <literal>compose2</literal>,
26998 calls to <literal>bind1st</literal>
2700and altogether 14 constructor invocations for creating
2701<literal>multiplies</literal>, <literal>minus</literal>
2702and <literal>plus</literal> objects.
2703
2704In this test the BLL expressions are a little slower (roughly 10% on average,
2705less than 14% in all cases)
2706than the corresponding hand-written function objects.
2707The performance hit is a bit greater with classic STL expressions,
2708up to 27% for the simplest expressios.
2709</para>
2710
2711<para>
2712The tests suggest that the BLL does not introduce a loss of performance
2713compared to STL function objects.
2714With a reasonable optimizing compiler, one should expect the performance characteristics be comparable to using classic STL.
2715Moreover, with simple expressions the performance can be expected to be close
2716to that of explicitly written function objects.
2717
2718<!-- We repeated both tests with the KAI C++ 4.0f compiler (using +K2 -O3 flags),
2719generally considered a good optimizing compiler.
2720We do not list the results here, since the running times for the two alternatives in the first test were essentially the same, just as the running times
2721for the three different alternatives in the second test.
2722These tests suggest there to be no performance penalty at all
2723with a good optimizing compiler.
2724-->
2725
2726Note however, that evaluating a lambda functor consist of a sequence of calls to small functions that are declared inline.
2727If the compiler fails to actually expand these functions inline,
2728the performance can suffer.
2729The running time can more than double if this happens.
2730Although the above tests do not include such an expression, we have experienced
2731this for some seemingly simple expressions.
2732
2733
2734<table id = "table:increasing_arithmetic_test">
2735<title>Test 1</title>
2736<caption>CPU time of expressions with integer multiplication written as a lambda expression and as a traditional hand-coded function object class.
2737The running times are expressed in arbitrary units.</caption>
2738<tgroup cols="3">
2739<thead>
2740<row>
2741<entry>expression</entry><entry>lambda expression</entry><entry>hand-coded function object</entry></row>
2742</thead>
2743
2744<tbody>
2745
2746<row>
2747<entry>x</entry><entry>240</entry><entry>230</entry>
2748</row>
2749
2750<row>
2751<entry>x*x</entry><entry>340</entry><entry>350</entry>
2752</row>
2753
2754<row>
2755<entry>x*x*x</entry><entry>770</entry><entry>760</entry>
2756</row>
2757
2758<row>
2759<entry>x*x*x*x</entry><entry>1180</entry><entry>1210</entry>
2760</row>
2761
2762<row>
2763<entry>x*x*x*x*x</entry><entry>1950</entry><entry>1910</entry>
2764</row>
2765
2766</tbody>
2767</tgroup>
2768</table>
2769</para>
2770
2771<!--
277216:19:49 bench [601] ./arith.out 100 1000000
2773
2774Number of elements = 100
2775L1 : 240
2776L2 : 340
2777L3 : 770
2778L4 : 1180
2779L5 : 1950
2780
2781P2 : 1700
2782P3 : 2130
2783P4 : 2530
2784P5 : 3000
2785
2786F1 : 230
2787F2 : 350
2788F3 : 760
2789F4 : 1210
2790F5 : 1910
2791
2792
2793Number of elements    = 100
2794Number of outer_iters = 1000000
2795L1 : 330
2796L2 : 350
2797L3 : 470
2798L4 : 620
2799L5 : 1660
2800LP : 1230
2801C1 : 370
2802C2 : 370
2803C3 : 500
2804C4 : 670
2805C5 : 1660
2806CP : 1770
2807F1 : 290
2808F2 : 310
2809F3 : 420
2810F4 : 600
2811F5 : 1460
2812FP : 1040
2813
2814-->
2815
2816
2817<para>
2818<table id = "table:ll_vs_stl_test">
2819<title>Test 2</title>
2820<caption>CPU time of arithmetic expressions written as lambda
2821expressions, as classic STL unnamed functions (using <literal>compose2</literal>, <literal>bind1st</literal> etc.) and as traditional hand-coded function object classes.
2822Using BLL terminology,
2823<literal>a</literal> and <literal>b</literal> are bound arguments in the expressions, and <literal>x</literal> is open.
2824All variables were of types <literal>double</literal>.
2825The running times are expressed in arbitrary units.</caption>
2826<tgroup cols="4">
2827<thead>
2828<row>
2829<entry>expression</entry><entry>lambda expression</entry><entry>classic STL expression</entry><entry>hand-coded function object</entry></row>
2830</thead>
2831
2832<tbody>
2833
2834<row>
2835<entry>ax</entry><entry>330</entry><entry>370</entry><entry>290</entry>
2836</row>
2837
2838<row>
2839<entry>-ax</entry><entry>350</entry><entry>370</entry><entry>310</entry>
2840</row>
2841
2842<row>
2843<entry>ax-(a+x)</entry><entry>470</entry><entry>500</entry><entry>420</entry>
2844</row>
2845
2846<row>
2847<entry>(ax-(a+x))(a+x)</entry><entry>620</entry><entry>670</entry><entry>600</entry>
2848</row>
2849
2850<row>
2851<entry>((ax) - (a+x))(bx - (b+x))(ax - (b+x))(bx - (a+x))</entry><entry>1660</entry><entry>1660</entry><entry>1460</entry>
2852</row>
2853
2854</tbody>
2855</tgroup>
2856
2857</table>
2858</para>
2859
2860
2861<para>Some additional performance testing with an earlier version of the
2862library is described
2863<xref linkend="cit:jarvi:00"/>.
2864</para>
2865
2866</section>
2867    <section>
2868      <title>About compiling</title>
2869
2870      <para>The BLL uses templates rather heavily, performing numerous recursive instantiations of the same templates.
2871This has (at least) three implications:
2872<itemizedlist>
2873
2874<listitem>
2875<para>
2876While it is possible to write incredibly complex lambda expressions, it probably isn't a good idea.
2877Compiling such expressions may end up requiring a lot of memory
2878at compile time, and being slow to compile.
2879</para>
2880</listitem>
2881
2882
2883<listitem>
2884<para>
2885The types of lambda functors that result from even the simplest lambda expressions are cryptic.
2886Usually the programmer doesn't need to deal with the lambda functor types at all, but in the case of an error in a lambda expression, the compiler usually outputs the types of the lambda functors involved.
2887This can make the error messages very long and difficult to interpret, particularly if the compiler outputs the whole chain of template instantiations.
2888</para>
2889</listitem>
2890
2891<listitem>
2892<para>
2893The C++ Standard suggests a template nesting level of 17 to help detect infinite recursion.
2894Complex lambda templates can easily exceed this limit.
2895Most compilers allow a greater number of nested templates, but commonly require the limit explicitly increased with a command line argument.
2896</para>
2897</listitem>
2898</itemizedlist></para>
2899
2900    </section>
2901
2902    <section>
2903      <title>Portability</title>
2904      <para>
2905The BLL works with the following compilers, that is, the compilers are capable of compiling the test cases that are included with the BLL:
2906
2907      <itemizedlist>
2908	<listitem>GCC 3.0.4
2909	</listitem>
2910	<listitem>KCC 4.0f with EDG 2.43.1
2911	</listitem>
2912	<listitem>GCC 2.96 (fails with one test case, the <filename>exception_test.cpp</filename> results in an internal compiler error.
2913)
2914
2915	</listitem>
2916      </itemizedlist>
2917</para>
2918
2919      <section>
2920	<title>Test coverage</title>
2921
2922<para>The following list describes the test files included and the features that each file covers:
2923
2924<itemizedlist>
2925<listitem>
2926<para>
2927<filename>bind_tests_simple.cpp</filename> : Bind expressions of different arities and types of target functions: function pointers, function objects and member functions.
2928Function composition with bind expressions.</para>
2929</listitem>
2930
2931<listitem>
2932<para><filename>bind_tests_simple_function_references.cpp</filename> :
2933Repeats all tests from <filename moreinfo="none">bind_tests_simple.cpp</filename> where the target function is a function pointer, but uses function references instead.
2934</para></listitem>
2935
2936
2937<listitem>
2938<para><filename>bind_tests_advanced.cpp</filename> : Contains tests for nested bind expressions, <literal>unlambda</literal>, <literal>protect</literal>, <literal>const_parameters</literal> and <literal>break_const</literal>.
2939Tests passing lambda functors as actual arguments to other lambda functors, currying, and using the <literal>sig</literal> template to specify the return type of a function object.
2940</para>
2941</listitem>
2942
2943<listitem>
2944<para>
2945<filename>operator_tests_simple.cpp</filename> :
2946Tests using all operators that are overloaded for lambda expressions, that is, unary and binary arithmetic,
2947bitwise,
2948comparison,
2949logical,
2950increment and decrement,
2951compound,
2952assignment,
2953subscrict,
2954address of,
2955dereference, and comma operators.
2956The streaming nature of shift operators is tested, as well as pointer arithmetic with plus and minus operators.
2957</para>
2958</listitem>
2959
2960<listitem>
2961<para><filename>member_pointer_test.cpp</filename> : The pointer to member operator is complex enough to warrant a separate test file.
2962</para>
2963</listitem>
2964
2965<listitem>
2966<para>
2967<filename>control_structures.cpp</filename> :
2968Tests for the looping and if constructs.
2969</para></listitem>
2970
2971<listitem>
2972<para>
2973<filename>switch_construct.cpp</filename> :
2974Includes tests for all supported arities of the switch statement, both with and without the default case.
2975</para>
2976</listitem>
2977
2978<listitem>
2979<para>
2980<filename>exception_test.cpp</filename> :
2981Includes tests for throwing exceptions and for try/catch constructs with varying number of catch blocks.
2982</para>
2983</listitem>
2984
2985<listitem>
2986<para>
2987<filename>constructor_tests.cpp</filename> :
2988Contains tests for <literal>constructor</literal>, <literal>destructor</literal>, <literal>new_ptr</literal>, <literal>delete_ptr</literal>, <literal>new_array</literal> and <literal>delete_array</literal>.
2989</para>
2990</listitem>
2991
2992<listitem>
2993<para>
2994<filename>cast_test.cpp</filename> : Tests for the four cast expressions, as well as <filename>typeid</filename> and <literal>sizeof</literal>.
2995</para>
2996</listitem>
2997
2998<listitem>
2999<para>
3000<filename>extending_return_type_traits.cpp</filename> : Tests extending the return type deduction system for user defined types.
3001Contains several user defined operators and the corresponding specializations for the return type deduction templates.
3002</para>
3003</listitem>
3004
3005<listitem>
3006<para>
3007<filename>is_instance_of_test.cpp</filename> : Includes tests for an internally used traits template, which can detect whether a given type is an instance of a certain template or not.
3008</para></listitem>
3009
3010<listitem>
3011<para>
3012<filename>bll_and_function.cpp</filename> :
3013Contains tests for using <literal>boost::function</literal> together with lambda functors.
3014</para></listitem>
3015
3016	  </itemizedlist>
3017
3018</para>
3019
3020      </section>
3021
3022    </section>
3023
3024
3025</section>
3026
3027
3028<section>
3029<title>Relation to other Boost libraries</title>
3030
3031<section>
3032<title>Boost Function</title>
3033
3034<para>Sometimes it is convenient to store lambda functors in variables.
3035However, the types of even the simplest lambda functors are long and unwieldy, and it is in general unfeasible to declare variables with lambda functor types.
3036<emphasis>The Boost Function library</emphasis> <xref linkend="cit:boost::function"/> defines wrappers for arbitrary function objects, for example
3037lambda functors; and these wrappers have types that are easy to type out.
3038
3039For example:
3040
3041<programlisting>
3042<![CDATA[boost::function<int(int, int)> f = _1 + _2;
3043boost::function<int&(int&)> g = (_1 += 10);
3044int i = 1, j = 2;
3045f(i, j); // returns 3
3046g(i);    // sets i to = 11;]]>
3047</programlisting>
3048
3049The return and parameter types of the wrapped function object must be written explicilty as the template argument to the wrapper template <literal>boost::function</literal>; even when lambda functors, which otherwise have generic parameters, are wrapped.
3050Wrapping a function object with <literal>boost::function</literal> introduces a performance cost comparable to virtual function dispatch, though virtual functions are not actually used.
3051
3052Note that storing lambda functors inside <literal>boost::function</literal>
3053introduces a danger.
3054Certain types of lambda functors may store references to the bound
3055arguments, instead as taking copies of the arguments of the lambda expression.
3056When temporary lambda functor objects are used
3057in STL algorithm invocations this is always safe, as the lambda functor gets
3058destructed immediately after the STL algortihm invocation is completed.
3059
3060However, a lambda functor wrapped inside <literal>boost::function</literal>
3061may continue to exist longer, creating the possibility of dangling references.
3062For example:
3063
3064<programlisting>
3065<![CDATA[int* sum = new int();
3066*sum = 0;
3067boost::function<int&(int)> counter = *sum += _1;
3068counter(5); // ok, *sum = 5;
3069delete sum;
3070counter(3); // error, *sum does not exist anymore]]>
3071</programlisting>
3072
3073</para>
3074
3075</section>
3076
3077<section>
3078<title>Boost Bind</title>
3079<para>
3080<emphasis>The Boost Bind</emphasis> <xref linkend="cit:boost::bind"/> library has partially overlapping functionality with the BLL.
3081Basically, the Boost Bind library (BB in the sequel) implements the bind expression part of BLL.
3082There are, however, some semantical differerences.
3083</para>
3084<para>
3085The BLL and BB evolved separately, and have different implementations.
3086This means that the bind expressions from the BB cannot be used within
3087bind expressions, or within other type of lambda expressions, of the BLL.
3088The same holds for using BLL bind expressions in the BB.
3089The libraries can coexist, however, as
3090the names of the BB library are in <literal>boost</literal> namespace,
3091whereas the BLL names are in <literal>boost::lambda</literal> namespace.
3092</para>
3093
3094<para>
3095The BLL requires a compiler that is reasonably conformant to the
3096C++ standard, whereas the BB library is more portable, and works with
3097a larger set of compilers.
3098</para>
3099
3100<para>
3101The following two sections describe what are the semantic differences
3102between the bind expressions in BB and BLL.
3103</para>
3104
3105
3106
3107
3108<section>
3109<title>First argument of bind expression</title>
3110
3111In BB the first argument of the bind expression, the target function,
3112is treated differently from the other arguments,
3113as no argument substitution takes place within that argument.
3114In BLL the first argument is not a special case in this respect.
3115
3116For example:
3117
3118<programlisting>
3119<![CDATA[template<class F>
3120int foo(const F& f) {
3121  int x;
3122  ..
3123  bind(f, _1)(x);
3124  ...
3125}]]>
3126</programlisting>
3127
3128<programlisting>
3129<![CDATA[int bar(int, int);
3130nested(bind(bar, 1, _1));]]>
3131</programlisting>
3132
3133The bind expression inside <literal>foo</literal> becomes:
3134<programlisting>
3135bind(bind(bar, 1, _1), _1)(x)
3136</programlisting>
3137
3138The BLL interpretes this as:
3139<programlisting>
3140bar(1, x)(x)
3141</programlisting>
3142whereas the BB library as
3143<programlisting>
3144bar(1, x)
3145</programlisting>
3146
3147To get this functionality in BLL, the bind expression inside the <literal moreinfo="none">foo</literal> function can be written as:
3148<programlisting>
3149bind(unlambda(f), _1)(x);
3150</programlisting>
3151as explained in <xref linkend = "lambda.unlambda"/>.
3152
3153</section>
3154
3155
3156
3157
3158<para>
3159The BB library supports up to nine placeholders, while the BLL
3160defines only three placeholders.
3161The rationale for not providing more, is that the highest arity of the
3162function objects accepted by any STL algorithm is two.
3163The placeholder count is easy to increase in the BB library.
3164In BLL it is possible, but more laborous.
3165The BLL currently passes the actual arguments to the lambda functors
3166internally just as they are and does not wrap them inside a tuple object.
3167The reason for this is that some widely used compilers are not capable
3168of optimizing the intermediate tuple objects away.
3169The creation of the intermediate tuples would cause a significant
3170performance hit, particularly for the simplest (and thus the most common)
3171lambda functors.
3172We are working on a hybrid approach, which will allow more placeholders
3173but not compromise the performance of simple lambda functors.
3174</para>
3175
3176</section>
3177
3178  </section>
3179
3180
3181<section>
3182<title>Contributors</title>
3183
3184The main body of the library was written by Jaakko J�rvi and Gary Powell.
3185We've got outside help, suggestions and ideas from Jeremy Siek, Peter Higley, Peter Dimov, Valentin Bonnard, William Kempf.
3186We would particularly like to mention Joel de Guzmann and his work with
3187Phoenix which has influenced BLL significantly, making it considerably simpler
3188to extend the library with new features.
3189
3190</section>
3191
3192
3193
3194<section>
3195<title>Rationale for some of the design decisions</title>
3196
3197<section id="lambda.why_weak_arity">
3198<title>
3199Lambda functor arity
3200</title>
3201
3202<para>
3203The highest placeholder index in a lambda expression determines the arity of the resulting function object.
3204However, this is just the minimal arity, as the function object can take arbitrarily many arguments; those not needed are discarded.
3205Consider the two bind expressions and their invocations below:
3206
3207<programlisting>
3208bind(g, _3, _3, _3)(x, y, z);
3209bind(g, _1, _1, _1)(x, y, z);
3210</programlisting>
3211
3212This first line discards arguments <literal>x</literal> and
3213<literal>y</literal>, and makes the call:
3214<programlisting>
3215g(z, z, z)
3216</programlisting>
3217whereas the second line discards arguments <literal>y</literal> and
3218<literal>z</literal>, and calls:
3219<programlisting>
3220g(x, x, x)
3221</programlisting>
3222In earlier versions of the library, the latter line resulted in a compile
3223time error.
3224
3225This is basically a tradeoff between safety and flexibility, and the issue
3226was extensively discussed during the Boost review period of the library.
3227The main points for the <emphasis>strict arity</emphasis> checking
3228was that it might
3229catch a programming error at an earlier time and that a lambda expression that
3230explicitly discards its arguments is easy to write:
3231<programlisting>
3232(_3, bind(g, _1, _1, _1))(x, y, z);
3233</programlisting>
3234This lambda expression takes three arguments.
3235The left-hand argument of the comma operator does nothing, and as comma
3236returns the result of evaluating the right-hand argument we end up with
3237the call
3238<literal>g(x, x, x)</literal>
3239even with the strict arity.
3240</para>
3241
3242<para>
3243The main points against the strict arity checking were that the need to
3244discard arguments is commonplace, and should therefore be straightforward,
3245and that strict arity checking does not really buy that much more safety,
3246particularly as it is not symmetric.
3247For example, if the programmer wanted to write the expression
3248<literal>_1 + _2</literal> but mistakenly wrote <literal>_1 + 2</literal>,
3249with strict arity checking, the complier would spot the error.
3250However, if the erroneous expression was <literal>1 + _2</literal> instead,
3251the error would go unnoticed.
3252Furthermore, weak arity checking simplifies the implementation a bit.
3253Following the recommendation of the Boost review, strict arity checking
3254was dropped.
3255</para>
3256
3257</section>
3258
3259</section>
3260
3261
3262
3263<bibliography>
3264
3265<biblioentry id="cit:stepanov:94">
3266<abbrev>STL94</abbrev>
3267<authorgroup>
3268<author>
3269<surname>Stepanov</surname>
3270<firstname>A. A.</firstname>
3271</author>
3272<author>
3273<surname>Lee</surname>
3274<firstname>M.</firstname>
3275</author>
3276</authorgroup>
3277<title>The Standard Template Library</title>
3278<orgname>Hewlett-Packard Laboratories</orgname>
3279<pubdate>1994</pubdate>
3280<bibliomisc>
3281<ulink url="http://www.hpl.hp.com/techreports">www.hpl.hp.com/techreports</ulink>
3282</bibliomisc>
3283</biblioentry>
3284
3285<biblioentry id="cit:sgi:02">
3286<abbrev>SGI02</abbrev>
3287<title>The SGI Standard Template Library</title>
3288<pubdate>2002</pubdate>
3289<bibliomisc><ulink url="http://www.sgi.com/tech/stl/">www.sgi.com/tech/stl/</ulink></bibliomisc>
3290
3291</biblioentry>
3292
3293<biblioentry id="cit:c++:98">
3294<abbrev>C++98</abbrev>
3295<title>International Standard, Programming Languages &ndash; C++</title>
3296<subtitle>ISO/IEC:14882</subtitle>
3297<pubdate>1998</pubdate>
3298</biblioentry>
3299
3300
3301<biblioentry id="cit:jarvi:99">
3302<abbrev>J�r99</abbrev>
3303
3304<articleinfo>
3305<author>
3306<surname>J�rvi</surname>
3307<firstname>Jaakko</firstname>
3308</author>
3309<title>C++ Function Object Binders Made Easy</title>
3310</articleinfo>
3311
3312<title>Lecture Notes in Computer Science</title>
3313<volumenum>1977</volumenum>
3314<publishername>Springer</publishername>
3315
3316<pubdate>2000</pubdate>
3317</biblioentry>
3318
3319
3320
3321<biblioentry id="cit:jarvi:00">
3322<abbrev>J�r00</abbrev>
3323<author>
3324<surname>J�rvi</surname>
3325<firstname>Jaakko</firstname>
3326</author>
3327<author>
3328<firstname>Gary</firstname>
3329<surname>Powell</surname>
3330</author>
3331<title>The Lambda Library : Lambda Abstraction in C++</title>
3332      <orgname>Turku Centre for Computer Science</orgname>
3333<bibliomisc>Technical Report </bibliomisc>
3334      <issuenum>378</issuenum>
3335<pubdate>2000</pubdate>
3336<bibliomisc><ulink url="http://www.tucs.fi/Publications/techreports/TR378.php">www.tucs.fi/publications</ulink></bibliomisc>
3337
3338
3339</biblioentry>
3340
3341
3342<biblioentry id="cit:jarvi:01">
3343<abbrev>J�r01</abbrev>
3344<author>
3345<surname>J�rvi</surname>
3346<firstname>Jaakko</firstname>
3347</author>
3348<author>
3349<firstname>Gary</firstname>
3350<surname>Powell</surname>
3351</author>
3352<title>The Lambda Library : Lambda Abstraction in C++</title>
3353      <confgroup>
3354	<conftitle>Second  Workshop on C++ Template Programming</conftitle>
3355	<address>Tampa Bay, OOPSLA'01</address>
3356      </confgroup>
3357<pubdate>2001</pubdate>
3358<bibliomisc><ulink url="http://www.oonumerics.org/tmpw01/">www.oonumerics.org/tmpw01/</ulink></bibliomisc>
3359</biblioentry>
3360
3361<biblioentry id="cit:jarvi:03">
3362<abbrev>J�r03</abbrev>
3363
3364<articleinfo>
3365
3366<author>
3367<surname>J�rvi</surname>
3368<firstname>Jaakko</firstname>
3369</author>
3370
3371<author>
3372<firstname>Gary</firstname>
3373<surname>Powell</surname>
3374</author>
3375
3376<author>
3377<firstname>Andrew</firstname>
3378<surname>Lumsdaine</surname>
3379</author>
3380<title>The Lambda Library : unnamed functions in C++</title>
3381
3382</articleinfo>
3383
3384<title>Software - Practice and Expreience</title>
3385<volumenum>33:259-291</volumenum>
3386
3387
3388<pubdate>2003</pubdate>
3389</biblioentry>
3390
3391
3392<biblioentry id="cit:boost::tuple">
3393<abbrev>tuple</abbrev>
3394<title>The Boost Tuple Library</title>
3395<bibliomisc><ulink url="http://www.boost.org/libs/tuple/doc/tuple_users_guide.html">www.boost.org/libs/tuple/doc/tuple_users_guide.html</ulink>
3396</bibliomisc>
3397<pubdate>2002</pubdate>
3398</biblioentry>
3399
3400<biblioentry id="cit:boost::type_traits">
3401<abbrev>type_traits</abbrev>
3402<title>The Boost type_traits</title>
3403<bibliomisc><ulink url="http://www.boost.org/libs/type_traits/index.htm">www.boost.org/libs/type_traits/</ulink>
3404</bibliomisc>
3405<pubdate>2002</pubdate>
3406</biblioentry>
3407
3408<biblioentry id="cit:boost::ref">
3409<abbrev>ref</abbrev>
3410<title>Boost ref</title>
3411<bibliomisc><ulink url="http://www.boost.org/libs/bind/ref.html">www.boost.org/libs/bind/ref.html</ulink>
3412</bibliomisc>
3413<pubdate>2002</pubdate>
3414</biblioentry>
3415
3416<biblioentry id="cit:boost::bind">
3417<abbrev>bind</abbrev>
3418<title>Boost Bind Library</title>
3419<bibliomisc><ulink url="http://www.boost.org/libs/bind/bind.html">www.boost.org/libs/bind/bind.html</ulink>
3420</bibliomisc>
3421<pubdate>2002</pubdate>
3422</biblioentry>
3423
3424<biblioentry id="cit:boost::function">
3425<abbrev>function</abbrev>
3426<title>Boost Function Library</title>
3427<bibliomisc><ulink url="http://www.boost.org/libs/function/">www.boost.org/libs/function/</ulink>
3428</bibliomisc>
3429<pubdate>2002</pubdate>
3430</biblioentry>
3431
3432<biblioentry id="cit:fc++">
3433<abbrev>fc++</abbrev>
3434<title>The FC++ library: Functional Programming in C++</title>
3435<author>
3436<surname>Smaragdakis</surname>
3437<firstname>Yannis</firstname>
3438</author>
3439<author>
3440<firstname>Brian</firstname>
3441<surname>McNamara</surname>
3442</author>
3443<bibliomisc><ulink url="http://yanniss.github.io/fc++/">yanniss.github.io/fc++/ </ulink>
3444</bibliomisc>
3445<pubdate>2002</pubdate>
3446</biblioentry>
3447
3448
3449</bibliography>
3450
3451
3452</library>
3453