• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Jacobi Zeta Function</title>
5<link rel="stylesheet" href="../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../ellint.html" title="Elliptic Integrals">
9<link rel="prev" href="ellint_d.html" title="Elliptic Integral D - Legendre Form">
10<link rel="next" href="heuman_lambda.html" title="Heuman Lambda Function">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="ellint_d.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="heuman_lambda.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="math_toolkit.ellint.jacobi_zeta"></a><a class="link" href="jacobi_zeta.html" title="Jacobi Zeta Function">Jacobi Zeta Function</a>
28</h3></div></div></div>
29<h5>
30<a name="math_toolkit.ellint.jacobi_zeta.h0"></a>
31        <span class="phrase"><a name="math_toolkit.ellint.jacobi_zeta.synopsis"></a></span><a class="link" href="jacobi_zeta.html#math_toolkit.ellint.jacobi_zeta.synopsis">Synopsis</a>
32      </h5>
33<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">jacobi_zeta</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
34</pre>
35<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
36
37<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
38<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">jacobi_zeta</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
39
40<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
41<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">jacobi_zeta</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
42
43<span class="special">}}</span> <span class="comment">// namespaces</span>
44</pre>
45<h5>
46<a name="math_toolkit.ellint.jacobi_zeta.h1"></a>
47        <span class="phrase"><a name="math_toolkit.ellint.jacobi_zeta.description"></a></span><a class="link" href="jacobi_zeta.html#math_toolkit.ellint.jacobi_zeta.description">Description</a>
48      </h5>
49<p>
50        This function evaluates the Jacobi Zeta Function <span class="emphasis"><em>Z(φ, k)</em></span>
51      </p>
52<div class="blockquote"><blockquote class="blockquote"><p>
53          <span class="inlinemediaobject"><img src="../../../equations/jacobi_zeta.svg"></span>
54
55        </p></blockquote></div>
56<p>
57        Please note the use of φ, and <span class="emphasis"><em>k</em></span> as the parameters, the
58        function is often defined as <span class="emphasis"><em>Z(φ, m)</em></span> with <span class="emphasis"><em>m
59        = k<sup>2</sup></em></span>, see for example <a href="http://mathworld.wolfram.com/JacobiZetaFunction.html" target="_top">Weisstein,
60        Eric W. "Jacobi Zeta Function." From MathWorld--A Wolfram Web Resource.</a>
61        Or else as <a href="https://dlmf.nist.gov/22.16#E32" target="_top"><span class="emphasis"><em>Z(x, k)</em></span></a>
62        with <span class="emphasis"><em>φ = am(x, k)</em></span>, where <span class="emphasis"><em>am</em></span> is the
63        <a href="https://dlmf.nist.gov/22.16#E1" target="_top">Jacobi amplitude function</a>
64        which is equivalent to <span class="emphasis"><em>asin(jacobi_elliptic(k, x))</em></span>.
65      </p>
66<p>
67        The return type of this function is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
68        type calculation rules</em></span></a> when the arguments are of different
69        types: when they are the same type then the result is the same type as the
70        arguments.
71      </p>
72<p>
73        Requires <span class="emphasis"><em>-1 &lt;= k &lt;= 1</em></span>, otherwise returns the result
74        of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
75        (outside this range the result would be complex).
76      </p>
77<p>
78        The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
79        be used to control the behaviour of the function: how it handles errors,
80        what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
81        documentation for more details</a>.
82      </p>
83<p>
84        Note that there is no complete analogue of this function (where φ = π / 2) as
85        this takes the value 0 for all <span class="emphasis"><em>k</em></span>.
86      </p>
87<h5>
88<a name="math_toolkit.ellint.jacobi_zeta.h2"></a>
89        <span class="phrase"><a name="math_toolkit.ellint.jacobi_zeta.accuracy"></a></span><a class="link" href="jacobi_zeta.html#math_toolkit.ellint.jacobi_zeta.accuracy">Accuracy</a>
90      </h5>
91<p>
92        These functions are trivially computed in terms of other elliptic integrals
93        and generally have very low error rates (a few epsilon) unless parameter
94        φ
95is very large, in which case the usual trigonometric function argument-reduction
96        issues apply.
97      </p>
98<div class="table">
99<a name="math_toolkit.ellint.jacobi_zeta.table_jacobi_zeta"></a><p class="title"><b>Table 8.68. Error rates for jacobi_zeta</b></p>
100<div class="table-contents"><table class="table" summary="Error rates for jacobi_zeta">
101<colgroup>
102<col>
103<col>
104<col>
105<col>
106<col>
107</colgroup>
108<thead><tr>
109<th>
110              </th>
111<th>
112                <p>
113                  GNU C++ version 7.1.0<br> linux<br> double
114                </p>
115              </th>
116<th>
117                <p>
118                  GNU C++ version 7.1.0<br> linux<br> long double
119                </p>
120              </th>
121<th>
122                <p>
123                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
124                </p>
125              </th>
126<th>
127                <p>
128                  Microsoft Visual C++ version 14.1<br> Win32<br> double
129                </p>
130              </th>
131</tr></thead>
132<tbody>
133<tr>
134<td>
135                <p>
136                  Elliptic Integral Jacobi Zeta: Mathworld Data
137                </p>
138              </td>
139<td>
140                <p>
141                  <span class="blue">Max = 0ε (Mean = 0ε)</span>
142                </p>
143              </td>
144<td>
145                <p>
146                  <span class="blue">Max = 1.66ε (Mean = 0.48ε)</span>
147                </p>
148              </td>
149<td>
150                <p>
151                  <span class="blue">Max = 1.66ε (Mean = 0.48ε)</span>
152                </p>
153              </td>
154<td>
155                <p>
156                  <span class="blue">Max = 1.52ε (Mean = 0.357ε)</span>
157                </p>
158              </td>
159</tr>
160<tr>
161<td>
162                <p>
163                  Elliptic Integral Jacobi Zeta: Random Data
164                </p>
165              </td>
166<td>
167                <p>
168                  <span class="blue">Max = 0ε (Mean = 0ε)</span>
169                </p>
170              </td>
171<td>
172                <p>
173                  <span class="blue">Max = 2.99ε (Mean = 0.824ε)</span>
174                </p>
175              </td>
176<td>
177                <p>
178                  <span class="blue">Max = 3.96ε (Mean = 1.06ε)</span>
179                </p>
180              </td>
181<td>
182                <p>
183                  <span class="blue">Max = 3.89ε (Mean = 0.824ε)</span>
184                </p>
185              </td>
186</tr>
187<tr>
188<td>
189                <p>
190                  Elliptic Integral Jacobi Zeta: Large Phi Values
191                </p>
192              </td>
193<td>
194                <p>
195                  <span class="blue">Max = 0ε (Mean = 0ε)</span>
196                </p>
197              </td>
198<td>
199                <p>
200                  <span class="blue">Max = 2.92ε (Mean = 0.951ε)</span>
201                </p>
202              </td>
203<td>
204                <p>
205                  <span class="blue">Max = 3.05ε (Mean = 1.13ε)</span>
206                </p>
207              </td>
208<td>
209                <p>
210                  <span class="blue">Max = 2.52ε (Mean = 0.977ε)</span>
211                </p>
212              </td>
213</tr>
214</tbody>
215</table></div>
216</div>
217<br class="table-break"><h5>
218<a name="math_toolkit.ellint.jacobi_zeta.h3"></a>
219        <span class="phrase"><a name="math_toolkit.ellint.jacobi_zeta.testing"></a></span><a class="link" href="jacobi_zeta.html#math_toolkit.ellint.jacobi_zeta.testing">Testing</a>
220      </h5>
221<p>
222        The tests use a mixture of spot test values calculated using values calculated
223        at <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>, and random
224        test data generated using MPFR at 1000-bit precision and a deliberately naive
225        implementation in terms of the Legendre integrals.
226      </p>
227<h5>
228<a name="math_toolkit.ellint.jacobi_zeta.h4"></a>
229        <span class="phrase"><a name="math_toolkit.ellint.jacobi_zeta.implementation"></a></span><a class="link" href="jacobi_zeta.html#math_toolkit.ellint.jacobi_zeta.implementation">Implementation</a>
230      </h5>
231<p>
232        The implementation for Z(φ, k) first makes the argument φ positive using:
233      </p>
234<div class="blockquote"><blockquote class="blockquote"><p>
235          <span class="serif_italic"><span class="emphasis"><em>Z(-φ, k) = -Z(φ, k)</em></span></span>
236        </p></blockquote></div>
237<p>
238        The function is then implemented in terms of Carlson's integral R<sub>J</sub>
239using the
240        relation:
241      </p>
242<div class="blockquote"><blockquote class="blockquote"><p>
243          <span class="inlinemediaobject"><img src="../../../equations/jacobi_zeta.svg"></span>
244
245        </p></blockquote></div>
246<p>
247        There is one special case where the above relation fails: when <span class="emphasis"><em>k
248        = 1</em></span>, in that case the function simplifies to
249      </p>
250<div class="blockquote"><blockquote class="blockquote"><p>
251          <span class="serif_italic"><span class="emphasis"><em>Z(φ, 1) = sign(cos(φ)) sin(φ)</em></span></span>
252        </p></blockquote></div>
253<h6>
254<a name="math_toolkit.ellint.jacobi_zeta.h5"></a>
255        <span class="phrase"><a name="math_toolkit.ellint.jacobi_zeta.jacobi_zeta_example"></a></span><a class="link" href="jacobi_zeta.html#math_toolkit.ellint.jacobi_zeta.jacobi_zeta_example">Example</a>
256      </h6>
257<p>
258        A simple example comparing use of <a href="http://www.wolframalpha.com/" target="_top">Wolfram
259        Alpha</a> with Boost.Math (including much higher precision using Boost.Multiprecision)
260        is <a href="../../../../example/jacobi_zeta_example.cpp" target="_top">jacobi_zeta_example.cpp</a>.
261      </p>
262</div>
263<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
264<td align="left"></td>
265<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
266      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
267      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
268      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
269      Daryle Walker and Xiaogang Zhang<p>
270        Distributed under the Boost Software License, Version 1.0. (See accompanying
271        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
272      </p>
273</div></td>
274</tr></table>
275<hr>
276<div class="spirit-nav">
277<a accesskey="p" href="ellint_d.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="heuman_lambda.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
278</div>
279</body>
280</html>
281