• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Minimax Approximations and the Remez Algorithm</title>
5<link rel="stylesheet" href="../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../internals.html" title="Internal tools">
9<link rel="prev" href="tuples.html" title="Tuples">
10<link rel="next" href="error_test.html" title="Relative Error and Testing">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="tuples.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="error_test.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="math_toolkit.internals.minimax"></a><a class="link" href="minimax.html" title="Minimax Approximations and the Remez Algorithm">Minimax Approximations
28      and the Remez Algorithm</a>
29</h3></div></div></div>
30<p>
31        The directory <code class="computeroutput"><span class="identifier">libs</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">minimax</span></code>
32        contains an interactive command-line driven program for the generation of
33        minimax approximations using the Remez algorithm. Both polynomial and rational
34        approximations are supported, although the latter are tricky to converge:
35        it is not uncommon for convergence of rational forms to fail. No such limitations
36        are present for polynomial approximations which should always converge smoothly.
37      </p>
38<p>
39        It's worth stressing that developing rational approximations to functions
40        is often not an easy task, and one to which many books have been devoted.
41        To use this tool, you will need to have a reasonable grasp of what the Remez
42        algorithm is, and the general form of the approximation you want to achieve.
43      </p>
44<p>
45        Unless you already familiar with the Remez method, you should first read
46        the <a class="link" href="../remez.html" title="The Remez Method">brief background article explaining
47        the principles behind the Remez algorithm</a>.
48      </p>
49<p>
50        The program consists of two parts:
51      </p>
52<div class="variablelist">
53<p class="title"><b></b></p>
54<dl class="variablelist">
55<dt><span class="term">main.cpp</span></dt>
56<dd><p>
57              Contains the command line parser, and all the calls to the Remez code.
58            </p></dd>
59<dt><span class="term">f.cpp</span></dt>
60<dd><p>
61              Contains the function to approximate.
62            </p></dd>
63</dl>
64</div>
65<p>
66        Therefore to use this tool, you must modify f.cpp to return the function
67        to approximate. The tools supports multiple function approximations within
68        the same compiled program: each as a separate variant:
69      </p>
70<pre class="programlisting"><span class="identifier">NTL</span><span class="special">::</span><span class="identifier">RR</span> <span class="identifier">f</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">NTL</span><span class="special">::</span><span class="identifier">RR</span><span class="special">&amp;</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">variant</span><span class="special">);</span>
71</pre>
72<p>
73        Returns the value of the function <span class="emphasis"><em>variant</em></span> at point
74        <span class="emphasis"><em>x</em></span>. So if you wish you can just add the function to approximate
75        as a new variant after the existing examples.
76      </p>
77<p>
78        In addition to those two files, the program needs to be linked to a <a class="link" href="../high_precision/use_ntl.html" title="Using NTL Library">patched NTL library to compile</a>.
79      </p>
80<p>
81        Note that the function <span class="emphasis"><em>f</em></span> must return the rational part
82        of the approximation: for example if you are approximating a function <span class="emphasis"><em>f(x)</em></span>
83        then it is quite common to use:
84      </p>
85<div class="blockquote"><blockquote class="blockquote"><p>
86          <span class="serif_italic">f(x) = g(x)(Y + R(x))</span>
87        </p></blockquote></div>
88<p>
89        where <span class="emphasis"><em>g(x)</em></span> is the dominant part of <span class="emphasis"><em>f(x)</em></span>,
90        <span class="emphasis"><em>Y</em></span> is some constant, and <span class="emphasis"><em>R(x)</em></span> is
91        the rational approximation part, usually optimised for a low absolute error
92        compared to |Y|.
93      </p>
94<p>
95        In this case you would define <span class="emphasis"><em>f</em></span> to return <span class="serif-italic">f(x)/g(x)</span>
96        and then set the y-offset of the approximation to <span class="emphasis"><em>Y</em></span>
97        (see command line options below).
98      </p>
99<p>
100        Many other forms are possible, but in all cases the objective is to split
101        <span class="emphasis"><em>f(x)</em></span> into a dominant part that you can evaluate easily
102        using standard math functions, and a smooth and slowly changing rational
103        approximation part. Refer to your favourite textbook for more examples.
104      </p>
105<p>
106        Command line options for the program are as follows:
107      </p>
108<div class="variablelist">
109<p class="title"><b></b></p>
110<dl class="variablelist">
111<dt><span class="term">variant N</span></dt>
112<dd><p>
113              Sets the current function variant to N. This allows multiple functions
114              that are to be approximated to be compiled into the same executable.
115              Defaults to 0.
116            </p></dd>
117<dt><span class="term">range a b</span></dt>
118<dd><p>
119              Sets the domain for the approximation to the range [a,b], defaults
120              to [0,1].
121            </p></dd>
122<dt><span class="term">relative</span></dt>
123<dd><p>
124              Sets the Remez code to optimise for relative error. This is the default
125              at program startup. Note that relative error can only be used if f(x)
126              has no roots over the range being optimised.
127            </p></dd>
128<dt><span class="term">absolute</span></dt>
129<dd><p>
130              Sets the Remez code to optimise for absolute error.
131            </p></dd>
132<dt><span class="term">pin [true|false]</span></dt>
133<dd><p>
134              "Pins" the code so that the rational approximation passes
135              through the origin. Obviously only set this to <span class="emphasis"><em>true</em></span>
136              if R(0) must be zero. This is typically used when trying to preserve
137              a root at [0,0] while also optimising for relative error.
138            </p></dd>
139<dt><span class="term">order N D</span></dt>
140<dd><p>
141              Sets the order of the approximation to <span class="emphasis"><em>N</em></span> in the
142              numerator and <span class="emphasis"><em>D</em></span> in the denominator. If <span class="emphasis"><em>D</em></span>
143              is zero then the result will be a polynomial approximation. There will
144              be N+D+2 coefficients in total, the first coefficient of the numerator
145              is zero if <span class="emphasis"><em>pin</em></span> was set to true, and the first
146              coefficient of the denominator is always one.
147            </p></dd>
148<dt><span class="term">working-precision N</span></dt>
149<dd><p>
150              Sets the working precision of NTL::RR to <span class="emphasis"><em>N</em></span> binary
151              digits. Defaults to 250.
152            </p></dd>
153<dt><span class="term">target-precision N</span></dt>
154<dd><p>
155              Sets the precision of printed output to <span class="emphasis"><em>N</em></span> binary
156              digits: set to the same number of digits as the type that will be used
157              to evaluate the approximation. Defaults to 53 (for double precision).
158            </p></dd>
159<dt><span class="term">skew val</span></dt>
160<dd><p>
161              "Skews" the initial interpolated control points towards one
162              end or the other of the range. Positive values skew the initial control
163              points towards the left hand side of the range, and negative values
164              towards the right hand side. If an approximation won't converge (a
165              common situation) try adjusting the skew parameter until the first
166              step yields the smallest possible error. <span class="emphasis"><em>val</em></span> should
167              be in the range [-100,+100], the default is zero.
168            </p></dd>
169<dt><span class="term">brake val</span></dt>
170<dd><p>
171              Sets a brake on each step so that the change in the control points
172              is braked by <span class="emphasis"><em>val%</em></span>. Defaults to 50, try a higher
173              value if an approximation won't converge, or a lower value to get speedier
174              convergence.
175            </p></dd>
176<dt><span class="term">x-offset val</span></dt>
177<dd><p>
178              Sets the x-offset to <span class="emphasis"><em>val</em></span>: the approximation will
179              be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">S</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">))</span> <span class="special">+</span> <span class="identifier">Y</span></code>
180              where <span class="emphasis"><em>X</em></span> is the x-offset, <span class="emphasis"><em>S</em></span>
181              is the x-scale and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults
182              to zero. To avoid rounding errors, take care to specify a value that
183              can be exactly represented as a floating point number.
184            </p></dd>
185<dt><span class="term">x-scale val</span></dt>
186<dd><p>
187              Sets the x-scale to <span class="emphasis"><em>val</em></span>: the approximation will
188              be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">S</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">))</span> <span class="special">+</span> <span class="identifier">Y</span></code>
189              where <span class="emphasis"><em>S</em></span> is the x-scale, <span class="emphasis"><em>X</em></span>
190              is the x-offset and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults
191              to one. To avoid rounding errors, take care to specify a value that
192              can be exactly represented as a floating point number.
193            </p></dd>
194<dt><span class="term">y-offset val</span></dt>
195<dd><p>
196              Sets the y-offset to <span class="emphasis"><em>val</em></span>: the approximation will
197              be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">S</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">))</span> <span class="special">+</span> <span class="identifier">Y</span></code>
198              where <span class="emphasis"><em>X</em></span> is the x-offset, <span class="emphasis"><em>S</em></span>
199              is the x-scale and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults
200              to zero. To avoid rounding errors, take care to specify a value that
201              can be exactly represented as a floating point number.
202            </p></dd>
203<dt><span class="term">y-offset auto</span></dt>
204<dd><p>
205              Sets the y-offset to the average value of f(x) evaluated at the two
206              endpoints of the range plus the midpoint of the range. The calculated
207              value is deliberately truncated to <span class="emphasis"><em>float</em></span> precision
208              (and should be stored as a <span class="emphasis"><em>float</em></span> in your code).
209              The approximation will be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">)</span> <span class="special">+</span> <span class="identifier">Y</span></code> where <span class="emphasis"><em>X</em></span> is
210              the x-offset and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults to
211              zero.
212            </p></dd>
213<dt><span class="term">graph N</span></dt>
214<dd><p>
215              Prints N evaluations of f(x) at evenly spaced points over the range
216              being optimised. If unspecified then <span class="emphasis"><em>N</em></span> defaults
217              to 3. Use to check that f(x) is indeed smooth over the range of interest.
218            </p></dd>
219<dt><span class="term">step N</span></dt>
220<dd><p>
221              Performs <span class="emphasis"><em>N</em></span> steps, or one step if <span class="emphasis"><em>N</em></span>
222              is unspecified. After each step prints: the peek error at the extrema
223              of the error function of the approximation, the theoretical error term
224              solved for on the last step, and the maximum relative change in the
225              location of the Chebyshev control points. The approximation is converged
226              on the minimax solution when the two error terms are (approximately)
227              equal, and the change in the control points has decreased to a suitably
228              small value.
229            </p></dd>
230<dt><span class="term">test [float|double|long]</span></dt>
231<dd><p>
232              Tests the current approximation at float, double, or long double precision.
233              Useful to check for rounding errors in evaluating the approximation
234              at fixed precision. Tests are conducted at the extrema of the error
235              function of the approximation, and at the zeros of the error function.
236            </p></dd>
237<dt><span class="term">test [float|double|long] N</span></dt>
238<dd><p>
239              Tests the current approximation at float, double, or long double precision.
240              Useful to check for rounding errors in evaluating the approximation
241              at fixed precision. Tests are conducted at N evenly spaced points over
242              the range of the approximation. If none of [float|double|long] are
243              specified then tests using NTL::RR, this can be used to obtain the
244              error function of the approximation.
245            </p></dd>
246<dt><span class="term">rescale a b</span></dt>
247<dd><p>
248              Takes the current Chebeshev control points, and rescales them over
249              a new interval [a,b]. Sometimes this can be used to obtain starting
250              control points for an approximation that can not otherwise be converged.
251            </p></dd>
252<dt><span class="term">rotate</span></dt>
253<dd><p>
254              Moves one term from the numerator to the denominator, but keeps the
255              Chebyshev control points the same. Sometimes this can be used to obtain
256              starting control points for an approximation that can not otherwise
257              be converged.
258            </p></dd>
259<dt><span class="term">info</span></dt>
260<dd><p>
261              Prints out the current approximation: the location of the zeros of
262              the error function, the location of the Chebyshev control points, the
263              x and y offsets, and of course the coefficients of the polynomials.
264            </p></dd>
265</dl>
266</div>
267</div>
268<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
269<td align="left"></td>
270<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
271      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
272      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
273      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
274      Daryle Walker and Xiaogang Zhang<p>
275        Distributed under the Boost Software License, Version 1.0. (See accompanying
276        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
277      </p>
278</div></td>
279</tr></table>
280<hr>
281<div class="spirit-nav">
282<a accesskey="p" href="tuples.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="error_test.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
283</div>
284</body>
285</html>
286