• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1[/
2Copyright (c) 2019 Nick Thompson
3Copyright (c) 2019 Paul A. Bristow
4Use, modification and distribution are subject to the
5Boost Software License, Version 1.0. (See accompanying file
6LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
7]
8
9[section:wavelet_transforms Wavelet Transforms]
10
11[heading Synopsis]
12
13```
14    #include <boost/math/quadrature/wavelet_transforms.hpp>
15
16    namespace boost::math::quadrature {
17
18    template<class F, typename Real, int p>
19    class daubechies_wavelet_transform
20    {
21    public:
22        daubechies_wavelet_transform(F f, int grid_refinements = -1, Real tol = 100*std::numeric_limits<Real>::epsilon(),
23        int max_refinements = 12) {}
24
25        daubechies_wavelet_transform(F f, boost::math::daubechies_wavelet<Real, p> wavelet, Real tol = 100*std::numeric_limits<Real>::epsilon(),
26        int max_refinements = 12);
27
28        auto operator()(Real s, Real t)->decltype(std::declval<F>()(std::declval<Real>())) const;
29
30    };
31    }
32```
33
34The wavelet transform of a function /f/ with respect to a wavelet \u03C8 is
35
36[$../graphs/wavelet_transform_definition.svg]
37
38For compactly supported Daubechies wavelets, the bounds can always be taken as finite, and we have
39
40[$../graphs/daubechies_wavelet_transform_definition.svg]
41
42which also defines the /s/=0 case.
43
44The code provided by Boost merely forwards a lambda to the trapezoidal quadrature routine, which converges quickly due to the Euler-Maclaurin summation formula.
45However, the convergence is not as rapid as for infinitely differentiable functions, so the default tolerances are modified.
46
47A basic usage is
48
49    auto psi = daubechies_wavelet<double, 8>();
50    auto f = [](double x) {
51        return sin(1/x);
52    };
53    auto Wf = daubechies_wavelet_transform(f, psi);
54
55    double w = Wf(0.8, 7.2);
56
57An image from this function is shown below.
58
59[$../graphs/scalogram_sin1t_light.png]
60
61
62[endsect] [/section:wavelet_transforms]
63