• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /********************************************************************************************/
3 /*                                                                                          */
4 /*                                HSO3.hpp header file                                      */
5 /*                                                                                          */
6 /* This file is not currently part of the Boost library. It is simply an example of the use */
7 /* quaternions can be put to. Hopefully it will be useful too.                              */
8 /*                                                                                          */
9 /* This file provides tools to convert between quaternions and R^3 rotation matrices.       */
10 /*                                                                                          */
11 /********************************************************************************************/
12 
13 //  (C) Copyright Hubert Holin 2001.
14 //  Distributed under the Boost Software License, Version 1.0. (See
15 //  accompanying file LICENSE_1_0.txt or copy at
16 //  http://www.boost.org/LICENSE_1_0.txt)
17 
18 #ifndef TEST_HSO3_HPP
19 #define TEST_HSO3_HPP
20 
21 #include <algorithm>
22 
23 #if    defined(__GNUC__) && (__GNUC__ < 3)
24 #include <boost/limits.hpp>
25 #else
26 #include <limits>
27 #endif
28 
29 #include <stdexcept>
30 #include <string>
31 
32 #include <boost/math/quaternion.hpp>
33 
34 
35 #if    defined(__GNUC__) && (__GNUC__ < 3)
36 // gcc 2.x ignores function scope using declarations, put them here instead:
37 using    namespace ::std;
38 using    namespace ::boost::math;
39 #endif
40 
41 template<typename TYPE_FLOAT>
42 struct  R3_matrix
43 {
44     TYPE_FLOAT a11, a12, a13;
45     TYPE_FLOAT a21, a22, a23;
46     TYPE_FLOAT a31, a32, a33;
47 };
48 
49 
50 // Note:    the input quaternion need not be of norm 1 for the following function
51 
52 template<typename TYPE_FLOAT>
quaternion_to_R3_rotation(::boost::math::quaternion<TYPE_FLOAT> const & q)53 R3_matrix<TYPE_FLOAT>    quaternion_to_R3_rotation(::boost::math::quaternion<TYPE_FLOAT> const & q)
54 {
55     using    ::std::numeric_limits;
56 
57     TYPE_FLOAT    a = q.R_component_1();
58     TYPE_FLOAT    b = q.R_component_2();
59     TYPE_FLOAT    c = q.R_component_3();
60     TYPE_FLOAT    d = q.R_component_4();
61 
62     TYPE_FLOAT    aa = a*a;
63     TYPE_FLOAT    ab = a*b;
64     TYPE_FLOAT    ac = a*c;
65     TYPE_FLOAT    ad = a*d;
66     TYPE_FLOAT    bb = b*b;
67     TYPE_FLOAT    bc = b*c;
68     TYPE_FLOAT    bd = b*d;
69     TYPE_FLOAT    cc = c*c;
70     TYPE_FLOAT    cd = c*d;
71     TYPE_FLOAT    dd = d*d;
72 
73     TYPE_FLOAT    norme_carre = aa+bb+cc+dd;
74 
75     if    (norme_carre <= numeric_limits<TYPE_FLOAT>::epsilon())
76     {
77         ::std::string            error_reporting("Argument to quaternion_to_R3_rotation is too small!");
78         ::std::underflow_error   bad_argument(error_reporting);
79 
80         throw(bad_argument);
81     }
82 
83     R3_matrix<TYPE_FLOAT>    out_matrix;
84 
85     out_matrix.a11 = (aa+bb-cc-dd)/norme_carre;
86     out_matrix.a12 = 2*(-ad+bc)/norme_carre;
87     out_matrix.a13 = 2*(ac+bd)/norme_carre;
88     out_matrix.a21 = 2*(ad+bc)/norme_carre;
89     out_matrix.a22 = (aa-bb+cc-dd)/norme_carre;
90     out_matrix.a23 = 2*(-ab+cd)/norme_carre;
91     out_matrix.a31 = 2*(-ac+bd)/norme_carre;
92     out_matrix.a32 = 2*(ab+cd)/norme_carre;
93     out_matrix.a33 = (aa-bb-cc+dd)/norme_carre;
94 
95     return(out_matrix);
96 }
97 
98 
99     template<typename TYPE_FLOAT>
find_invariant_vector(R3_matrix<TYPE_FLOAT> const & rot,TYPE_FLOAT & x,TYPE_FLOAT & y,TYPE_FLOAT & z)100     void    find_invariant_vector(  R3_matrix<TYPE_FLOAT> const & rot,
101                                     TYPE_FLOAT & x,
102                                     TYPE_FLOAT & y,
103                                     TYPE_FLOAT & z)
104     {
105         using    ::std::sqrt;
106 
107         using    ::std::numeric_limits;
108 
109         TYPE_FLOAT    b11 = rot.a11 - static_cast<TYPE_FLOAT>(1);
110         TYPE_FLOAT    b12 = rot.a12;
111         TYPE_FLOAT    b13 = rot.a13;
112         TYPE_FLOAT    b21 = rot.a21;
113         TYPE_FLOAT    b22 = rot.a22 - static_cast<TYPE_FLOAT>(1);
114         TYPE_FLOAT    b23 = rot.a23;
115         TYPE_FLOAT    b31 = rot.a31;
116         TYPE_FLOAT    b32 = rot.a32;
117         TYPE_FLOAT    b33 = rot.a33 - static_cast<TYPE_FLOAT>(1);
118 
119         TYPE_FLOAT    minors[9] =
120         {
121             b11*b22-b12*b21,
122             b11*b23-b13*b21,
123             b12*b23-b13*b22,
124             b11*b32-b12*b31,
125             b11*b33-b13*b31,
126             b12*b33-b13*b32,
127             b21*b32-b22*b31,
128             b21*b33-b23*b31,
129             b22*b33-b23*b32
130         };
131 
132         TYPE_FLOAT *        where = ::std::max_element(minors, minors+9);
133 
134         TYPE_FLOAT          det = *where;
135 
136         if    (det <= numeric_limits<TYPE_FLOAT>::epsilon())
137         {
138             ::std::string            error_reporting("Underflow error in find_invariant_vector!");
139             ::std::underflow_error   processing_error(error_reporting);
140 
141             throw(processing_error);
142         }
143 
144         switch    (where-minors)
145         {
146             case 0:
147 
148                 z = static_cast<TYPE_FLOAT>(1);
149 
150                 x = (-b13*b22+b12*b23)/det;
151                 y = (-b11*b23+b13*b21)/det;
152 
153                 break;
154 
155             case 1:
156 
157                 y = static_cast<TYPE_FLOAT>(1);
158 
159                 x = (-b12*b23+b13*b22)/det;
160                 z = (-b11*b22+b12*b21)/det;
161 
162                 break;
163 
164             case 2:
165 
166                 x = static_cast<TYPE_FLOAT>(1);
167 
168                 y = (-b11*b23+b13*b21)/det;
169                 z = (-b12*b21+b11*b22)/det;
170 
171                 break;
172 
173             case 3:
174 
175                 z = static_cast<TYPE_FLOAT>(1);
176 
177                 x = (-b13*b32+b12*b33)/det;
178                 y = (-b11*b33+b13*b31)/det;
179 
180                 break;
181 
182             case 4:
183 
184                 y = static_cast<TYPE_FLOAT>(1);
185 
186                 x = (-b12*b33+b13*b32)/det;
187                 z = (-b11*b32+b12*b31)/det;
188 
189                 break;
190 
191             case 5:
192 
193                 x = static_cast<TYPE_FLOAT>(1);
194 
195                 y = (-b11*b33+b13*b31)/det;
196                 z = (-b12*b31+b11*b32)/det;
197 
198                 break;
199 
200             case 6:
201 
202                 z = static_cast<TYPE_FLOAT>(1);
203 
204                 x = (-b23*b32+b22*b33)/det;
205                 y = (-b21*b33+b23*b31)/det;
206 
207                 break;
208 
209             case 7:
210 
211                 y = static_cast<TYPE_FLOAT>(1);
212 
213                 x = (-b22*b33+b23*b32)/det;
214                 z = (-b21*b32+b22*b31)/det;
215 
216                 break;
217 
218             case 8:
219 
220                 x = static_cast<TYPE_FLOAT>(1);
221 
222                 y = (-b21*b33+b23*b31)/det;
223                 z = (-b22*b31+b21*b32)/det;
224 
225                 break;
226 
227             default:
228 
229                 ::std::string        error_reporting("Impossible condition in find_invariant_vector");
230                 ::std::logic_error   processing_error(error_reporting);
231 
232                 throw(processing_error);
233 
234                 break;
235         }
236 
237         TYPE_FLOAT    vecnorm = sqrt(x*x+y*y+z*z);
238 
239         if    (vecnorm <= numeric_limits<TYPE_FLOAT>::epsilon())
240         {
241             ::std::string            error_reporting("Overflow error in find_invariant_vector!");
242             ::std::overflow_error    processing_error(error_reporting);
243 
244             throw(processing_error);
245         }
246 
247         x /= vecnorm;
248         y /= vecnorm;
249         z /= vecnorm;
250     }
251 
252 
253     template<typename TYPE_FLOAT>
find_orthogonal_vector(TYPE_FLOAT x,TYPE_FLOAT y,TYPE_FLOAT z,TYPE_FLOAT & u,TYPE_FLOAT & v,TYPE_FLOAT & w)254     void    find_orthogonal_vector( TYPE_FLOAT x,
255                                     TYPE_FLOAT y,
256                                     TYPE_FLOAT z,
257                                     TYPE_FLOAT & u,
258                                     TYPE_FLOAT & v,
259                                     TYPE_FLOAT & w)
260     {
261         using    ::std::abs;
262         using    ::std::sqrt;
263 
264         using    ::std::numeric_limits;
265 
266         TYPE_FLOAT    vecnormsqr = x*x+y*y+z*z;
267 
268         if    (vecnormsqr <= numeric_limits<TYPE_FLOAT>::epsilon())
269         {
270             ::std::string            error_reporting("Underflow error in find_orthogonal_vector!");
271             ::std::underflow_error   processing_error(error_reporting);
272 
273             throw(processing_error);
274         }
275 
276         TYPE_FLOAT        lambda;
277 
278         TYPE_FLOAT        components[3] =
279         {
280             abs(x),
281             abs(y),
282             abs(z)
283         };
284 
285         TYPE_FLOAT *    where = ::std::min_element(components, components+3);
286 
287         switch    (where-components)
288         {
289             case 0:
290 
291                 if    (*where <= numeric_limits<TYPE_FLOAT>::epsilon())
292                 {
293                     v =
294                     w = static_cast<TYPE_FLOAT>(0);
295                     u = static_cast<TYPE_FLOAT>(1);
296                 }
297                 else
298                 {
299                     lambda = -x/vecnormsqr;
300 
301                     u = static_cast<TYPE_FLOAT>(1) + lambda*x;
302                     v = lambda*y;
303                     w = lambda*z;
304                 }
305 
306                 break;
307 
308             case 1:
309 
310                 if    (*where <= numeric_limits<TYPE_FLOAT>::epsilon())
311                 {
312                     u =
313                     w = static_cast<TYPE_FLOAT>(0);
314                     v = static_cast<TYPE_FLOAT>(1);
315                 }
316                 else
317                 {
318                     lambda = -y/vecnormsqr;
319 
320                     u = lambda*x;
321                     v = static_cast<TYPE_FLOAT>(1) + lambda*y;
322                     w = lambda*z;
323                 }
324 
325                 break;
326 
327             case 2:
328 
329                 if    (*where <= numeric_limits<TYPE_FLOAT>::epsilon())
330                 {
331                     u =
332                     v = static_cast<TYPE_FLOAT>(0);
333                     w = static_cast<TYPE_FLOAT>(1);
334                 }
335                 else
336                 {
337                     lambda = -z/vecnormsqr;
338 
339                     u = lambda*x;
340                     v = lambda*y;
341                     w = static_cast<TYPE_FLOAT>(1) + lambda*z;
342                 }
343 
344                 break;
345 
346             default:
347 
348                 ::std::string        error_reporting("Impossible condition in find_invariant_vector");
349                 ::std::logic_error   processing_error(error_reporting);
350 
351                 throw(processing_error);
352 
353                 break;
354         }
355 
356         TYPE_FLOAT    vecnorm = sqrt(u*u+v*v+w*w);
357 
358         if    (vecnorm <= numeric_limits<TYPE_FLOAT>::epsilon())
359         {
360             ::std::string            error_reporting("Underflow error in find_orthogonal_vector!");
361             ::std::underflow_error   processing_error(error_reporting);
362 
363             throw(processing_error);
364         }
365 
366         u /= vecnorm;
367         v /= vecnorm;
368         w /= vecnorm;
369     }
370 
371 
372     // Note:    we want [[v, v, w], [r, s, t], [x, y, z]] to be a direct orthogonal basis
373     //            of R^3. It might not be orthonormal, however, and we do not check if the
374     //            two input vectors are colinear or not.
375 
376     template<typename TYPE_FLOAT>
find_vector_for_BOD(TYPE_FLOAT x,TYPE_FLOAT y,TYPE_FLOAT z,TYPE_FLOAT u,TYPE_FLOAT v,TYPE_FLOAT w,TYPE_FLOAT & r,TYPE_FLOAT & s,TYPE_FLOAT & t)377     void    find_vector_for_BOD(TYPE_FLOAT x,
378                                 TYPE_FLOAT y,
379                                 TYPE_FLOAT z,
380                                 TYPE_FLOAT u,
381                                 TYPE_FLOAT v,
382                                 TYPE_FLOAT w,
383                                 TYPE_FLOAT & r,
384                                 TYPE_FLOAT & s,
385                                 TYPE_FLOAT & t)
386     {
387         r = +y*w-z*v;
388         s = -x*w+z*u;
389         t = +x*v-y*u;
390     }
391 
392 
393 
394 template<typename TYPE_FLOAT>
is_R3_rotation_matrix(R3_matrix<TYPE_FLOAT> const & mat)395 inline bool                                is_R3_rotation_matrix(R3_matrix<TYPE_FLOAT> const & mat)
396 {
397     using    ::std::abs;
398 
399     using    ::std::numeric_limits;
400 
401     return    (
402                 !(
403                     (abs(mat.a11*mat.a11+mat.a21*mat.a21+mat.a31*mat.a31 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
404                     (abs(mat.a11*mat.a12+mat.a21*mat.a22+mat.a31*mat.a32 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
405                     (abs(mat.a11*mat.a13+mat.a21*mat.a23+mat.a31*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
406                     //(abs(mat.a11*mat.a12+mat.a21*mat.a22+mat.a31*mat.a32 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
407                     (abs(mat.a12*mat.a12+mat.a22*mat.a22+mat.a32*mat.a32 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
408                     (abs(mat.a12*mat.a13+mat.a22*mat.a23+mat.a32*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
409                     //(abs(mat.a11*mat.a13+mat.a21*mat.a23+mat.a31*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
410                     //(abs(mat.a12*mat.a13+mat.a22*mat.a23+mat.a32*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
411                     (abs(mat.a13*mat.a13+mat.a23*mat.a23+mat.a33*mat.a33 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())
412                 )
413             );
414 }
415 
416 
417 template<typename TYPE_FLOAT>
R3_rotation_to_quaternion(R3_matrix<TYPE_FLOAT> const & rot,::boost::math::quaternion<TYPE_FLOAT> const * hint=0)418 ::boost::math::quaternion<TYPE_FLOAT>    R3_rotation_to_quaternion(    R3_matrix<TYPE_FLOAT> const & rot,
419                                                                     ::boost::math::quaternion<TYPE_FLOAT> const * hint = 0)
420 {
421     using    ::boost::math::abs;
422 
423     using    ::std::abs;
424     using    ::std::sqrt;
425 
426     using    ::std::numeric_limits;
427 
428     if    (!is_R3_rotation_matrix(rot))
429     {
430         ::std::string        error_reporting("Argument to R3_rotation_to_quaternion is not an R^3 rotation matrix!");
431         ::std::range_error   bad_argument(error_reporting);
432 
433         throw(bad_argument);
434     }
435 
436     ::boost::math::quaternion<TYPE_FLOAT>    q;
437 
438     if    (
439             (abs(rot.a11 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon())&&
440             (abs(rot.a22 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon())&&
441             (abs(rot.a33 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon())
442         )
443     {
444         q = ::boost::math::quaternion<TYPE_FLOAT>(1);
445     }
446     else
447     {
448         TYPE_FLOAT    cos_theta = (rot.a11+rot.a22+rot.a33-static_cast<TYPE_FLOAT>(1))/static_cast<TYPE_FLOAT>(2);
449         TYPE_FLOAT    stuff = (cos_theta+static_cast<TYPE_FLOAT>(1))/static_cast<TYPE_FLOAT>(2);
450         TYPE_FLOAT    cos_theta_sur_2 = sqrt(stuff);
451         TYPE_FLOAT    sin_theta_sur_2 = sqrt(1-stuff);
452 
453         TYPE_FLOAT    x;
454         TYPE_FLOAT    y;
455         TYPE_FLOAT    z;
456 
457         find_invariant_vector(rot, x, y, z);
458 
459         TYPE_FLOAT    u;
460         TYPE_FLOAT    v;
461         TYPE_FLOAT    w;
462 
463         find_orthogonal_vector(x, y, z, u, v, w);
464 
465         TYPE_FLOAT    r;
466         TYPE_FLOAT    s;
467         TYPE_FLOAT    t;
468 
469         find_vector_for_BOD(x, y, z, u, v, w, r, s, t);
470 
471         TYPE_FLOAT    ru = rot.a11*u+rot.a12*v+rot.a13*w;
472         TYPE_FLOAT    rv = rot.a21*u+rot.a22*v+rot.a23*w;
473         TYPE_FLOAT    rw = rot.a31*u+rot.a32*v+rot.a33*w;
474 
475         TYPE_FLOAT    angle_sign_determinator = r*ru+s*rv+t*rw;
476 
477         if        (angle_sign_determinator > +numeric_limits<TYPE_FLOAT>::epsilon())
478         {
479             q = ::boost::math::quaternion<TYPE_FLOAT>(cos_theta_sur_2, +x*sin_theta_sur_2, +y*sin_theta_sur_2, +z*sin_theta_sur_2);
480         }
481         else if    (angle_sign_determinator < -numeric_limits<TYPE_FLOAT>::epsilon())
482         {
483             q = ::boost::math::quaternion<TYPE_FLOAT>(cos_theta_sur_2, -x*sin_theta_sur_2, -y*sin_theta_sur_2, -z*sin_theta_sur_2);
484         }
485         else
486         {
487             TYPE_FLOAT    desambiguator = u*ru+v*rv+w*rw;
488 
489             if    (desambiguator >= static_cast<TYPE_FLOAT>(1))
490             {
491                 q = ::boost::math::quaternion<TYPE_FLOAT>(0, +x, +y, +z);
492             }
493             else
494             {
495                 q = ::boost::math::quaternion<TYPE_FLOAT>(0, -x, -y, -z);
496             }
497         }
498     }
499 
500     if    ((hint != 0) && (abs(*hint+q) < abs(*hint-q)))
501     {
502         return(-q);
503     }
504 
505     return(q);
506 }
507 
508 #endif /* TEST_HSO3_HPP */
509 
510