• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright John Maddock 2018.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #include <boost/math/tools/series.hpp>
7 #include <boost/assert.hpp>
8 
9 #include <iostream>
10 #include <complex>
11 #include <cassert>
12 
13 //[series_log1p
14 template <class T>
15 struct log1p_series
16 {
17    // we must define a result_type typedef:
18    typedef T result_type;
19 
log1p_serieslog1p_series20    log1p_series(T x)
21       : k(0), m_mult(-x), m_prod(-1) {}
22 
operator ()log1p_series23    T operator()()
24    {
25       // This is the function operator invoked by the summation
26       // algorithm, the first call to this operator should return
27       // the first term of the series, the second call the second
28       // term and so on.
29       m_prod *= m_mult;
30       return m_prod / ++k;
31    }
32 
33 private:
34    int k;
35    const T m_mult;
36    T m_prod;
37 };
38 //]
39 
40 //[series_log1p_func
41 template <class T>
log1p(T x)42 T log1p(T x)
43 {
44    // We really should add some error checking on x here!
45    BOOST_ASSERT(std::fabs(x) < 1);
46 
47    // Construct the series functor:
48    log1p_series<T> s(x);
49    // Set a limit on how many iterations we permit:
50    boost::uintmax_t max_iter = 1000;
51    // Add it up, with enough precision for full machine precision:
52    return boost::math::tools::sum_series(s, std::numeric_limits<T>::epsilon(), max_iter);
53 }
54 //]
55 
56 //[series_clog1p_func
57 template <class T>
58 struct log1p_series<std::complex<T> >
59 {
60    // we must define a result_type typedef:
61    typedef std::complex<T> result_type;
62 
log1p_serieslog1p_series63    log1p_series(std::complex<T> x)
64       : k(0), m_mult(-x), m_prod(-1) {}
65 
operator ()log1p_series66    std::complex<T> operator()()
67    {
68       // This is the function operator invoked by the summation
69       // algorithm, the first call to this operator should return
70       // the first term of the series, the second call the second
71       // term and so on.
72       m_prod *= m_mult;
73       return m_prod / T(++k);
74    }
75 
76 private:
77    int k;
78    const std::complex<T> m_mult;
79    std::complex<T> m_prod;
80 };
81 
82 
83 template <class T>
log1p(std::complex<T> x)84 std::complex<T> log1p(std::complex<T> x)
85 {
86    // We really should add some error checking on x here!
87    BOOST_ASSERT(abs(x) < 1);
88 
89    // Construct the series functor:
90    log1p_series<std::complex<T> > s(x);
91    // Set a limit on how many iterations we permit:
92    boost::uintmax_t max_iter = 1000;
93    // Add it up, with enough precision for full machine precision:
94    return boost::math::tools::sum_series(s, std::complex<T>(std::numeric_limits<T>::epsilon()), max_iter);
95 }
96 //]
97 
main()98 int main()
99 {
100    using namespace boost::math::tools;
101 
102    std::cout << log1p(0.25) << std::endl;
103 
104    std::cout << log1p(std::complex<double>(0.25, 0.25)) << std::endl;
105 
106    return 0;
107 }
108