• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  (C) Copyright Nick Thompson 2018.
3  *  Use, modification and distribution are subject to the
4  *  Boost Software License, Version 1.0. (See accompanying file
5  *  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6  */
7 
8 #include <iostream>
9 #include <iomanip>
10 #include <vector>
11 #include <array>
12 #include <forward_list>
13 #include <algorithm>
14 #include <random>
15 #include <boost/core/lightweight_test.hpp>
16 #include <boost/numeric/ublas/vector.hpp>
17 #include <boost/math/constants/constants.hpp>
18 #include <boost/math/statistics/univariate_statistics.hpp>
19 #include <boost/math/statistics/bivariate_statistics.hpp>
20 #include <boost/multiprecision/cpp_bin_float.hpp>
21 #include <boost/multiprecision/cpp_complex.hpp>
22 
23 using boost::multiprecision::cpp_bin_float_50;
24 using boost::multiprecision::cpp_complex_50;
25 
26 /*
27  * Test checklist:
28  * 1) Does it work with multiprecision?
29  * 2) Does it work with .cbegin()/.cend() if the data is not altered?
30  * 3) Does it work with ublas and std::array? (Checking Eigen and Armadillo will make the CI system really unhappy.)
31  * 4) Does it work with std::forward_list if a forward iterator is all that is required?
32  * 5) Does it work with complex data if complex data is sensible?
33  */
34 
35 using  boost::math::statistics::means_and_covariance;
36 using  boost::math::statistics::covariance;
37 
38 template<class Real>
test_covariance()39 void test_covariance()
40 {
41     std::cout << std::setprecision(std::numeric_limits<Real>::digits10+1);
42     Real tol = std::numeric_limits<Real>::epsilon();
43     using std::abs;
44 
45     // Covariance of a single thing is zero:
46     std::array<Real, 1> u1{8};
47     std::array<Real, 1> v1{17};
48     auto [mu_u1, mu_v1, cov1] = means_and_covariance(u1, v1);
49 
50     BOOST_TEST(abs(cov1) < tol);
51     BOOST_TEST(abs(mu_u1 - 8) < tol);
52     BOOST_TEST(abs(mu_v1 - 17) < tol);
53 
54 
55     std::array<Real, 2> u2{8, 4};
56     std::array<Real, 2> v2{3, 7};
57     auto [mu_u2, mu_v2, cov2] = means_and_covariance(u2, v2);
58 
59     BOOST_TEST(abs(cov2+4) < tol);
60     BOOST_TEST(abs(mu_u2 - 6) < tol);
61     BOOST_TEST(abs(mu_v2 - 5) < tol);
62 
63     std::vector<Real> u3{1,2,3};
64     std::vector<Real> v3{1,1,1};
65 
66     auto [mu_u3, mu_v3, cov3] = means_and_covariance(u3, v3);
67 
68     // Since v is constant, covariance(u,v) = 0 against everything any u:
69     BOOST_TEST(abs(cov3) < tol);
70     BOOST_TEST(abs(mu_u3 - 2) < tol);
71     BOOST_TEST(abs(mu_v3 - 1) < tol);
72     // Make sure we pull the correct symbol out of means_and_covariance:
73     cov3 = covariance(u3, v3);
74     BOOST_TEST(abs(cov3) < tol);
75 
76     cov3 = covariance(v3, u3);
77     // Covariance is symmetric: cov(u,v) = cov(v,u)
78     BOOST_TEST(abs(cov3) < tol);
79 
80     // cov(u,u) = sigma(u)^2:
81     cov3 = covariance(u3, u3);
82     Real expected = Real(2)/Real(3);
83 
84     BOOST_TEST(abs(cov3 - expected) < tol);
85 
86     std::mt19937 gen(15);
87     // Can't template standard library on multiprecision, so use double and cast back:
88     std::uniform_real_distribution<double> dis(-1.0, 1.0);
89     std::vector<Real> u(500);
90     std::vector<Real> v(500);
91     for(size_t i = 0; i < u.size(); ++i)
92     {
93         u[i] = (Real) dis(gen);
94         v[i] = (Real) dis(gen);
95     }
96 
97     Real mu_u = boost::math::statistics::mean(u);
98     Real mu_v = boost::math::statistics::mean(v);
99     Real sigma_u_sq = boost::math::statistics::variance(u);
100     Real sigma_v_sq = boost::math::statistics::variance(v);
101 
102     auto [mu_u_, mu_v_, cov_uv] = means_and_covariance(u, v);
103     BOOST_TEST(abs(mu_u - mu_u_) < tol);
104     BOOST_TEST(abs(mu_v - mu_v_) < tol);
105 
106     // Cauchy-Schwartz inequality:
107     BOOST_TEST(cov_uv*cov_uv <= sigma_u_sq*sigma_v_sq);
108     // cov(X, X) = sigma(X)^2:
109     Real cov_uu = covariance(u, u);
110     BOOST_TEST(abs(cov_uu - sigma_u_sq) < tol);
111     Real cov_vv = covariance(v, v);
112     BOOST_TEST(abs(cov_vv - sigma_v_sq) < tol);
113 
114 }
115 
116 template<class Real>
test_correlation_coefficient()117 void test_correlation_coefficient()
118 {
119     using boost::math::statistics::correlation_coefficient;
120 
121     Real tol = std::numeric_limits<Real>::epsilon();
122     std::vector<Real> u{1};
123     std::vector<Real> v{1};
124     Real rho_uv = correlation_coefficient(u, v);
125     BOOST_TEST(abs(rho_uv - 1) < tol);
126 
127     u = {1,1};
128     v = {1,1};
129     rho_uv = correlation_coefficient(u, v);
130     BOOST_TEST(abs(rho_uv - 1) < tol);
131 
132     u = {1, 2, 3};
133     v = {1, 2, 3};
134     rho_uv = correlation_coefficient(u, v);
135     BOOST_TEST(abs(rho_uv - 1) < tol);
136 
137     u = {1, 2, 3};
138     v = {-1, -2, -3};
139     rho_uv = correlation_coefficient(u, v);
140     BOOST_TEST(abs(rho_uv + 1) < tol);
141 
142     rho_uv = correlation_coefficient(v, u);
143     BOOST_TEST(abs(rho_uv + 1) < tol);
144 
145     u = {1, 2, 3};
146     v = {0, 0, 0};
147     rho_uv = correlation_coefficient(v, u);
148     BOOST_TEST(abs(rho_uv) < tol);
149 
150     u = {1, 2, 3};
151     v = {0, 0, 3};
152     rho_uv = correlation_coefficient(v, u);
153     // mu_u = 2, sigma_u^2 = 2/3, mu_v = 1, sigma_v^2 = 2, cov(u,v) = 1.
154     BOOST_TEST(abs(rho_uv - sqrt(Real(3))/Real(2)) < tol);
155 }
156 
main()157 int main()
158 {
159     test_covariance<float>();
160     test_covariance<double>();
161     test_covariance<long double>();
162     test_covariance<cpp_bin_float_50>();
163 
164     test_correlation_coefficient<float>();
165     test_correlation_coefficient<double>();
166     test_correlation_coefficient<long double>();
167     test_correlation_coefficient<cpp_bin_float_50>();
168 
169     return boost::report_errors();
170 }
171