• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright Nick Thompson, 2017
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0.
4 // (See accompanying file LICENSE_1_0.txt
5 // or copy at http://www.boost.org/LICENSE_1_0.txt)
6 
7 #define BOOST_TEST_MODULE tanh_sinh_quadrature_test
8 
9 #include <complex>
10 //#include <boost/multiprecision/mpc.hpp>
11 #include <boost/config.hpp>
12 #include <boost/detail/workaround.hpp>
13 
14 #if !defined(BOOST_NO_CXX11_DECLTYPE) && !defined(BOOST_NO_CXX11_TRAILING_RESULT_TYPES) && !defined(BOOST_NO_SFINAE_EXPR)
15 
16 #include <boost/math/concepts/real_concept.hpp>
17 #include <boost/test/included/unit_test.hpp>
18 #include <boost/test/tools/floating_point_comparison.hpp>
19 #include <boost/math/quadrature/gauss.hpp>
20 #include <boost/math/special_functions/sinc.hpp>
21 #include <boost/multiprecision/cpp_bin_float.hpp>
22 #include <boost/multiprecision/cpp_complex.hpp>
23 
24 #ifdef BOOST_HAS_FLOAT128
25 #include <boost/multiprecision/complex128.hpp>
26 #endif
27 
28 #ifdef _MSC_VER
29 #pragma warning(disable:4127)  // Conditional expression is constant
30 #endif
31 
32 #if !defined(TEST1) && !defined(TEST2) && !defined(TEST3)
33 #  define TEST1
34 #  define TEST2
35 #  define TEST3
36 #endif
37 
38 using std::expm1;
39 using std::atan;
40 using std::tan;
41 using std::log;
42 using std::log1p;
43 using std::asinh;
44 using std::atanh;
45 using std::sqrt;
46 using std::isnormal;
47 using std::abs;
48 using std::sinh;
49 using std::tanh;
50 using std::cosh;
51 using std::pow;
52 using std::exp;
53 using std::sin;
54 using std::cos;
55 using std::string;
56 using boost::math::quadrature::gauss;
57 using boost::math::constants::pi;
58 using boost::math::constants::half_pi;
59 using boost::math::constants::two_div_pi;
60 using boost::math::constants::two_pi;
61 using boost::math::constants::half;
62 using boost::math::constants::third;
63 using boost::math::constants::half;
64 using boost::math::constants::third;
65 using boost::math::constants::catalan;
66 using boost::math::constants::ln_two;
67 using boost::math::constants::root_two;
68 using boost::math::constants::root_two_pi;
69 using boost::math::constants::root_pi;
70 using boost::multiprecision::cpp_bin_float_quad;
71 
72 //
73 // Error rates depend only on the number of points in the approximation, not the type being tested,
74 // define all our expected errors here:
75 //
76 
77 enum
78 {
79    test_ca_error_id,
80    test_ca_error_id_2,
81    test_three_quad_error_id,
82    test_three_quad_error_id_2,
83    test_integration_over_real_line_error_id,
84    test_right_limit_infinite_error_id,
85    test_left_limit_infinite_error_id
86 };
87 
88 template <unsigned Points>
expected_error(unsigned)89 double expected_error(unsigned)
90 {
91    return 0; // placeholder, all tests will fail
92 }
93 
94 template <>
expected_error(unsigned id)95 double expected_error<7>(unsigned id)
96 {
97    switch (id)
98    {
99    case test_ca_error_id:
100       return 1e-7;
101    case test_ca_error_id_2:
102       return 2e-5;
103    case test_three_quad_error_id:
104       return 1e-8;
105    case test_three_quad_error_id_2:
106       return 3.5e-3;
107    case test_integration_over_real_line_error_id:
108       return 6e-3;
109    case test_right_limit_infinite_error_id:
110    case test_left_limit_infinite_error_id:
111       return 1e-5;
112    }
113    return 0;  // placeholder, all tests will fail
114 }
115 
116 template <>
expected_error(unsigned id)117 double expected_error<9>(unsigned id)
118 {
119    switch (id)
120    {
121    case test_ca_error_id:
122       return 1e-7;
123    case test_ca_error_id_2:
124       return 2e-5;
125    case test_three_quad_error_id:
126       return 1e-8;
127    case test_three_quad_error_id_2:
128       return 3.5e-3;
129    case test_integration_over_real_line_error_id:
130       return 6e-3;
131    case test_right_limit_infinite_error_id:
132    case test_left_limit_infinite_error_id:
133       return 1e-5;
134    }
135    return 0;  // placeholder, all tests will fail
136 }
137 
138 template <>
expected_error(unsigned id)139 double expected_error<10>(unsigned id)
140 {
141    switch (id)
142    {
143    case test_ca_error_id:
144       return 1e-12;
145    case test_ca_error_id_2:
146       return 3e-6;
147    case test_three_quad_error_id:
148       return 2e-13;
149    case test_three_quad_error_id_2:
150       return 2e-3;
151    case test_integration_over_real_line_error_id:
152       return 6e-3;  // doesn't get any better with more points!
153    case test_right_limit_infinite_error_id:
154    case test_left_limit_infinite_error_id:
155       return 5e-8;
156    }
157    return 0;  // placeholder, all tests will fail
158 }
159 
160 template <>
expected_error(unsigned id)161 double expected_error<15>(unsigned id)
162 {
163    switch (id)
164    {
165    case test_ca_error_id:
166       return 6e-20;
167    case test_ca_error_id_2:
168       return 3e-7;
169    case test_three_quad_error_id:
170       return 1e-19;
171    case test_three_quad_error_id_2:
172       return 6e-4;
173    case test_integration_over_real_line_error_id:
174       return 6e-3;  // doesn't get any better with more points!
175    case test_right_limit_infinite_error_id:
176    case test_left_limit_infinite_error_id:
177       return 5e-11;
178    }
179    return 0;  // placeholder, all tests will fail
180 }
181 
182 template <>
expected_error(unsigned id)183 double expected_error<20>(unsigned id)
184 {
185    switch (id)
186    {
187    case test_ca_error_id:
188       return 1e-26;
189    case test_ca_error_id_2:
190       return 1e-7;
191    case test_three_quad_error_id:
192       return 3e-27;
193    case test_three_quad_error_id_2:
194       return 3e-4;
195    case test_integration_over_real_line_error_id:
196       return 5e-5;  // doesn't get any better with more points!
197    case test_right_limit_infinite_error_id:
198    case test_left_limit_infinite_error_id:
199       return 1e-15;
200    }
201    return 0;  // placeholder, all tests will fail
202 }
203 
204 template <>
expected_error(unsigned id)205 double expected_error<25>(unsigned id)
206 {
207    switch (id)
208    {
209    case test_ca_error_id:
210       return 5e-33;
211    case test_ca_error_id_2:
212       return 1e-8;
213    case test_three_quad_error_id:
214       return 1e-32;
215    case test_three_quad_error_id_2:
216       return 3e-4;
217    case test_integration_over_real_line_error_id:
218       return 1e-14;
219    case test_right_limit_infinite_error_id:
220    case test_left_limit_infinite_error_id:
221       return 3e-19;
222    }
223    return 0;  // placeholder, all tests will fail
224 }
225 
226 template <>
expected_error(unsigned id)227 double expected_error<30>(unsigned id)
228 {
229    switch (id)
230    {
231    case test_ca_error_id:
232       return 2e-34;
233    case test_ca_error_id_2:
234       return 5e-9;
235    case test_three_quad_error_id:
236       return 4e-34;
237    case test_three_quad_error_id_2:
238       return 1e-4;
239    case test_integration_over_real_line_error_id:
240       return 1e-16;
241    case test_right_limit_infinite_error_id:
242    case test_left_limit_infinite_error_id:
243       return 3e-23;
244    }
245    return 0;  // placeholder, all tests will fail
246 }
247 
248 
249 template<class Real, unsigned Points>
test_linear()250 void test_linear()
251 {
252     std::cout << "Testing linear functions are integrated properly by gauss on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
253     Real tol = boost::math::tools::epsilon<Real>() * 10;
254     auto f = [](const Real& x)
255     {
256        return 5*x + 7;
257     };
258     Real L1;
259     Real Q = gauss<Real, Points>::integrate(f, (Real) 0, (Real) 1, &L1);
260     BOOST_CHECK_CLOSE_FRACTION(Q, 9.5, tol);
261     BOOST_CHECK_CLOSE_FRACTION(L1, 9.5, tol);
262     Q = gauss<Real, Points>::integrate(f, (Real) 0, (Real) 0, &L1);
263     BOOST_CHECK_CLOSE(Q, 0, tol);
264     Q = gauss<Real, Points>::integrate(f, (Real) 1, (Real) 0, &L1);
265     BOOST_CHECK_CLOSE_FRACTION(Q, -9.5, tol);
266 }
267 
268 template<class Real, unsigned Points>
test_quadratic()269 void test_quadratic()
270 {
271     std::cout << "Testing quadratic functions are integrated properly by Gaussian quadrature on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
272     Real tol = boost::math::tools::epsilon<Real>() * 10;
273 
274     auto f = [](const Real& x) { return 5*x*x + 7*x + 12; };
275     Real L1;
276     Real Q = gauss<Real, Points>::integrate(f, 0, 1, &L1);
277     BOOST_CHECK_CLOSE_FRACTION(Q, (Real) 17 + half<Real>()*third<Real>(), tol);
278     BOOST_CHECK_CLOSE_FRACTION(L1, (Real) 17 + half<Real>()*third<Real>(), tol);
279 }
280 
281 // Examples taken from
282 //http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/quadrature.pdf
283 template<class Real, unsigned Points>
test_ca()284 void test_ca()
285 {
286     std::cout << "Testing integration of C(a) on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
287     Real tol = expected_error<Points>(test_ca_error_id);
288     Real L1;
289 
290     auto f1 = [](const Real& x) { return atan(x)/(x*(x*x + 1)) ; };
291     Real Q = gauss<Real, Points>::integrate(f1, 0, 1, &L1);
292     Real Q_expected = pi<Real>()*ln_two<Real>()/8 + catalan<Real>()*half<Real>();
293     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
294     BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);
295 
296     auto f2 = [](Real x)->Real { Real t0 = x*x + 1; Real t1 = sqrt(t0); return atan(t1)/(t0*t1); };
297     Q = gauss<Real, Points>::integrate(f2, 0 , 1, &L1);
298     Q_expected = pi<Real>()/4 - pi<Real>()/root_two<Real>() + 3*atan(root_two<Real>())/root_two<Real>();
299     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
300     BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);
301 
302     tol = expected_error<Points>(test_ca_error_id_2);
303     auto f5 = [](Real t)->Real { return t*t*log(t)/((t*t - 1)*(t*t*t*t + 1)); };
304     Q = gauss<Real, Points>::integrate(f5, 0 , 1);
305     Q_expected = pi<Real>()*pi<Real>()*(2 - root_two<Real>())/32;
306     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
307 }
308 
309 template<class Real, unsigned Points>
test_three_quadrature_schemes_examples()310 void test_three_quadrature_schemes_examples()
311 {
312     std::cout << "Testing integral in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
313     Real tol = expected_error<Points>(test_three_quad_error_id);
314     Real Q;
315     Real Q_expected;
316 
317     // Example 1:
318     auto f1 = [](const Real& t) { return t*boost::math::log1p(t); };
319     Q = gauss<Real, Points>::integrate(f1, 0 , 1);
320     Q_expected = half<Real>()*half<Real>();
321     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
322 
323 
324     // Example 2:
325     auto f2 = [](const Real& t) { return t*t*atan(t); };
326     Q = gauss<Real, Points>::integrate(f2, 0 , 1);
327     Q_expected = (pi<Real>() -2 + 2*ln_two<Real>())/12;
328     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, 2 * tol);
329 
330     // Example 3:
331     auto f3 = [](const Real& t) { return exp(t)*cos(t); };
332     Q = gauss<Real, Points>::integrate(f3, 0, half_pi<Real>());
333     Q_expected = boost::math::expm1(half_pi<Real>())*half<Real>();
334     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
335 
336     // Example 4:
337     auto f4 = [](Real x)->Real { Real t0 = sqrt(x*x + 2); return atan(t0)/(t0*(x*x+1)); };
338     Q = gauss<Real, Points>::integrate(f4, 0 , 1);
339     Q_expected = 5*pi<Real>()*pi<Real>()/96;
340     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
341 
342     tol = expected_error<Points>(test_three_quad_error_id_2);
343     // Example 5:
344     auto f5 = [](const Real& t) { return sqrt(t)*log(t); };
345     Q = gauss<Real, Points>::integrate(f5, 0 , 1);
346     Q_expected = -4/ (Real) 9;
347     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
348 
349     // Example 6:
350     auto f6 = [](const Real& t) { return sqrt(1 - t*t); };
351     Q = gauss<Real, Points>::integrate(f6, 0 , 1);
352     Q_expected = pi<Real>()/4;
353     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
354 }
355 
356 
357 template<class Real, unsigned Points>
test_integration_over_real_line()358 void test_integration_over_real_line()
359 {
360     std::cout << "Testing integrals over entire real line in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
361     Real tol = expected_error<Points>(test_integration_over_real_line_error_id);
362     Real Q;
363     Real Q_expected;
364     Real L1;
365 
366     auto f1 = [](const Real& t) { return 1/(1+t*t);};
367     Q = gauss<Real, Points>::integrate(f1, -boost::math::tools::max_value<Real>(), boost::math::tools::max_value<Real>(), &L1);
368     Q_expected = pi<Real>();
369     BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
370     BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);
371 }
372 
373 template<class Real, unsigned Points>
test_right_limit_infinite()374 void test_right_limit_infinite()
375 {
376     std::cout << "Testing right limit infinite for Gaussian quadrature in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
377     Real tol = expected_error<Points>(test_right_limit_infinite_error_id);
378     Real Q;
379     Real Q_expected;
380     Real L1;
381 
382     // Example 11:
383     auto f1 = [](const Real& t) { return 1/(1+t*t);};
384     Q = gauss<Real, Points>::integrate(f1, 0, boost::math::tools::max_value<Real>(), &L1);
385     Q_expected = half_pi<Real>();
386     BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol);
387 
388     auto f4 = [](const Real& t) { return 1/(1+t*t); };
389     Q = gauss<Real, Points>::integrate(f4, 1, boost::math::tools::max_value<Real>(), &L1);
390     Q_expected = pi<Real>()/4;
391     BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol);
392 }
393 
394 template<class Real, unsigned Points>
test_left_limit_infinite()395 void test_left_limit_infinite()
396 {
397     std::cout << "Testing left limit infinite for Gaussian quadrature in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
398     Real tol = expected_error<Points>(test_left_limit_infinite_error_id);
399     Real Q;
400     Real Q_expected;
401 
402     // Example 11:
403     auto f1 = [](const Real& t) { return 1/(1+t*t);};
404     Q = gauss<Real, Points>::integrate(f1, -boost::math::tools::max_value<Real>(), Real(0));
405     Q_expected = half_pi<Real>();
406     BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol);
407 }
408 
409 template<class Complex>
test_complex_lambert_w()410 void test_complex_lambert_w()
411 {
412     std::cout << "Testing that complex-valued integrands are integrated correctly by Gaussian quadrature on type " << boost::typeindex::type_id<Complex>().pretty_name() << "\n";
413     typedef typename Complex::value_type Real;
414     Real tol = 10e-9;
415     using boost::math::constants::pi;
416     Complex z{2, 3};
417     auto lw = [&z](Real v)->Complex {
418       using std::cos;
419       using std::sin;
420       using std::exp;
421       Real sinv = sin(v);
422       Real cosv = cos(v);
423 
424       Real cotv = cosv/sinv;
425       Real cscv = 1/sinv;
426       Real t = (1-v*cotv)*(1-v*cotv) + v*v;
427       Real x = v*cscv*exp(-v*cotv);
428       Complex den = z + x;
429       Complex num = t*(z/pi<Real>());
430       Complex res = num/den;
431       return res;
432     };
433 
434     //N[ProductLog[2+3*I], 150]
435     Complex Q = gauss<Real, 30>::integrate(lw, (Real) 0, pi<Real>());
436     BOOST_CHECK_CLOSE_FRACTION(Q.real(), boost::lexical_cast<Real>("1.09007653448579084630177782678166964987102108635357778056449870727913321296238687023915522935120701763447787503167111962008709116746523970476893277703"), tol);
437     BOOST_CHECK_CLOSE_FRACTION(Q.imag(), boost::lexical_cast<Real>("0.530139720774838801426860213574121741928705631382703178297940568794784362495390544411799468140433404536019992695815009036975117285537382995180319280835"), tol);
438 }
439 
BOOST_AUTO_TEST_CASE(gauss_quadrature_test)440 BOOST_AUTO_TEST_CASE(gauss_quadrature_test)
441 {
442 
443 #ifdef TEST1
444     test_linear<double, 7>();
445     test_quadratic<double, 7>();
446     test_ca<double, 7>();
447     test_three_quadrature_schemes_examples<double, 7>();
448     test_integration_over_real_line<double, 7>();
449     test_right_limit_infinite<double, 7>();
450     test_left_limit_infinite<double, 7>();
451 
452     test_linear<double, 9>();
453     test_quadratic<double, 9>();
454     test_ca<double, 9>();
455     test_three_quadrature_schemes_examples<double, 9>();
456     test_integration_over_real_line<double, 9>();
457     test_right_limit_infinite<double, 9>();
458     test_left_limit_infinite<double, 9>();
459 
460     test_linear<cpp_bin_float_quad, 10>();
461     test_quadratic<cpp_bin_float_quad, 10>();
462     test_ca<cpp_bin_float_quad, 10>();
463     test_three_quadrature_schemes_examples<cpp_bin_float_quad, 10>();
464     test_integration_over_real_line<cpp_bin_float_quad, 10>();
465     test_right_limit_infinite<cpp_bin_float_quad, 10>();
466     test_left_limit_infinite<cpp_bin_float_quad, 10>();
467 #endif
468 #ifdef TEST2
469     test_linear<cpp_bin_float_quad, 15>();
470     test_quadratic<cpp_bin_float_quad, 15>();
471     test_ca<cpp_bin_float_quad, 15>();
472     test_three_quadrature_schemes_examples<cpp_bin_float_quad, 15>();
473     test_integration_over_real_line<cpp_bin_float_quad, 15>();
474     test_right_limit_infinite<cpp_bin_float_quad, 15>();
475     test_left_limit_infinite<cpp_bin_float_quad, 15>();
476 
477     test_linear<cpp_bin_float_quad, 20>();
478     test_quadratic<cpp_bin_float_quad, 20>();
479     test_ca<cpp_bin_float_quad, 20>();
480     test_three_quadrature_schemes_examples<cpp_bin_float_quad, 20>();
481     test_integration_over_real_line<cpp_bin_float_quad, 20>();
482     test_right_limit_infinite<cpp_bin_float_quad, 20>();
483     test_left_limit_infinite<cpp_bin_float_quad, 20>();
484 
485     test_linear<cpp_bin_float_quad, 25>();
486     test_quadratic<cpp_bin_float_quad, 25>();
487     test_ca<cpp_bin_float_quad, 25>();
488     test_three_quadrature_schemes_examples<cpp_bin_float_quad, 25>();
489     test_integration_over_real_line<cpp_bin_float_quad, 25>();
490     test_right_limit_infinite<cpp_bin_float_quad, 25>();
491     test_left_limit_infinite<cpp_bin_float_quad, 25>();
492 
493     test_linear<cpp_bin_float_quad, 30>();
494     test_quadratic<cpp_bin_float_quad, 30>();
495     test_ca<cpp_bin_float_quad, 30>();
496     test_three_quadrature_schemes_examples<cpp_bin_float_quad, 30>();
497     test_integration_over_real_line<cpp_bin_float_quad, 30>();
498     test_right_limit_infinite<cpp_bin_float_quad, 30>();
499     test_left_limit_infinite<cpp_bin_float_quad, 30>();
500 
501 
502 #endif
503 #ifdef TEST3
504     test_left_limit_infinite<cpp_bin_float_quad, 30>();
505     test_complex_lambert_w<std::complex<double>>();
506     test_complex_lambert_w<std::complex<long double>>();
507 #ifdef BOOST_HAS_FLOAT128
508     test_left_limit_infinite<boost::multiprecision::float128, 30>();
509     test_complex_lambert_w<boost::multiprecision::complex128>();
510 #endif
511     test_complex_lambert_w<boost::multiprecision::cpp_complex_quad>();
512 #endif
513 }
514 
515 #else
516 
main()517 int main() { return 0; }
518 
519 #endif
520