1 // Copyright John Maddock 2006.
2 // Copyright Paul A. Bristow 2007, 2009
3 // Use, modification and distribution are subject to the
4 // Boost Software License, Version 1.0. (See accompanying file
5 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6
7 #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
8
9 #include <boost/math/concepts/real_concept.hpp>
10 #include <boost/math/special_functions/math_fwd.hpp>
11 #define BOOST_TEST_MAIN
12 #include <boost/test/unit_test.hpp>
13 #include <boost/test/tools/floating_point_comparison.hpp>
14 #include <boost/math/tools/stats.hpp>
15 #include <boost/math/tools/test.hpp>
16 #include <boost/math/tools/big_constant.hpp>
17 #include <boost/math/constants/constants.hpp>
18 #include <boost/type_traits/is_floating_point.hpp>
19 #include <boost/array.hpp>
20 #include "functor.hpp"
21
22 #include "handle_test_result.hpp"
23 #include "table_type.hpp"
24
25 #include <boost/math/special_functions/hypergeometric_1F1.hpp>
26 #include <boost/math/quadrature/exp_sinh.hpp>
27
28 #ifdef BOOST_MSVC
29 #pragma warning(disable:4127)
30 #endif
31
32 template <class Real, class T>
do_test_1F1(const T & data,const char * type_name,const char * test_name)33 void do_test_1F1(const T& data, const char* type_name, const char* test_name)
34 {
35 typedef Real value_type;
36
37 typedef value_type(*pg)(value_type, value_type, value_type);
38 #if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
39 pg funcp = boost::math::hypergeometric_0F1<value_type, value_type>;
40 #else
41 pg funcp = boost::math::hypergeometric_1F1;
42 #endif
43
44 boost::math::tools::test_result<value_type> result;
45
46 std::cout << "Testing " << test_name << " with type " << type_name
47 << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
48
49 //
50 // test hypergeometric_2F0 against data:
51 //
52 result = boost::math::tools::test_hetero<Real>(
53 data,
54 bind_func<Real>(funcp, 0, 1, 2),
55 extract_result<Real>(3));
56 handle_test_result(result, data[result.worst()], result.worst(), type_name, "hypergeometric_1F1", test_name);
57 std::cout << std::endl;
58 }
59
60 #ifndef SC_
61 #define SC_(x) BOOST_MATH_BIG_CONSTANT(T, 1000000, x)
62 #endif
63
64 template <class T>
test_spots1(T,const char * type_name)65 void test_spots1(T, const char* type_name)
66 {
67 #include "hypergeometric_1F1.ipp"
68
69 do_test_1F1<T>(hypergeometric_1F1, type_name, "Integer a values");
70
71 #include "hypergeometric_1F1_small_random.ipp"
72
73 do_test_1F1<T>(hypergeometric_1F1_small_random, type_name, "Small random values");
74 }
75
76 template <class T>
test_spots2(T,const char * type_name)77 void test_spots2(T, const char* type_name)
78 {
79 #include "hypergeometric_1F1_big.ipp"
80
81 do_test_1F1<T>(hypergeometric_1F1_big, type_name, "Large random values");
82 }
83
84 template <class T>
test_spots3(T,const char * type_name)85 void test_spots3(T, const char* type_name)
86 {
87 #include "hypergeometric_1F1_big_double_limited.ipp"
88
89 do_test_1F1<T>(hypergeometric_1F1_big_double_limited, type_name, "Large random values - double limited precision");
90 }
91
92 template <class T>
test_spots4(T,const char * type_name)93 void test_spots4(T, const char* type_name)
94 {
95 #include "hypergeometric_1F1_big_unsolved.ipp"
96
97 do_test_1F1<T>(hypergeometric_1F1_big, type_name, "Large random values - unsolved domains");
98 }
99
100 template <class T>
test_spots5(T,const char * type_name)101 void test_spots5(T, const char* type_name)
102 {
103 std::cout << "Testing special cases for type " << type_name << std::endl;
104 BOOST_MATH_STD_USING
105 //
106 // Special cases:
107 //
108 using boost::math::hypergeometric_1F1;
109 T tol = boost::math::tools::epsilon<T>() * 200;
110 if (std::numeric_limits<T>::digits > std::numeric_limits<double>::digits)
111 tol *= 2;
112 if (boost::is_class<T>::value)
113 tol *= 4;
114 // b = 2a
115 T computed = hypergeometric_1F1(T(-12.25), T(2 * -12.25), T(6.75));
116 T expected = boost::lexical_cast<T>("22.995348157760091167706081204212893687052775606591209203948675272473773725021024450870565197330528784707135828761");
117 BOOST_CHECK_CLOSE(computed, expected, tol);
118 computed = hypergeometric_1F1(T(12.25), T(2 * 12.25), T(6.75));
119 expected = boost::lexical_cast<T>("36.47281964229300610642392880149257389834650024065756742702265701321933782423217084029882132197130099355867287657");
120 BOOST_CHECK_CLOSE(computed, expected, tol);
121 computed = hypergeometric_1F1(T(-11), T(-12), T(6.75));
122 expected = boost::lexical_cast<T>("376.3166426246459656334542608880377435064935064935064935064935064935064935064935064935064935064935064935064935064");
123 BOOST_CHECK_CLOSE(computed, expected, tol);
124 computed = hypergeometric_1F1(T(-2), T(-12), T(6.75));
125 expected = boost::lexical_cast<T>("2.470170454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545454545");
126 BOOST_CHECK_CLOSE(computed, expected, tol);
127 computed = hypergeometric_1F1(T(-224), T(-1205), T(6.75));
128 expected = boost::lexical_cast<T>("3.497033449657595724636676193024114597507981035316405619832857546161530808157860391434240068189887198094611519953");
129 BOOST_CHECK_CLOSE(computed, expected, tol);
130 computed = hypergeometric_1F1(T(0.5), T(-1205.5), T(-6.75));
131 expected = boost::lexical_cast<T>("1.00281149043026925155096279505879868076290060374397866773878698584557482321961231721407215665017657501846692575");
132 BOOST_CHECK_CLOSE(computed, expected, tol);
133 computed = hypergeometric_1F1(T(-0.5), T(-1205.5), T(-6.75));
134 expected = boost::lexical_cast<T>("0.99719639844965644594352920596780535220516138060108955206195178371227403775248888108818326220977962797312690");
135 BOOST_CHECK_CLOSE(computed, expected, tol);
136 computed = hypergeometric_1F1(T(-12), T(16.25), T(1043.75));
137 expected = boost::lexical_cast<T>("1.26527673505477678311707565502355407505496430400394171269315320194708537626079491650410923064978320042481912e20");
138 BOOST_CHECK_CLOSE(computed, expected, tol * 3);
139
140 computed = hypergeometric_1F1(T(3.5), T(3.5), T(36.25));
141 expected = exp(T(36.25));
142 BOOST_CHECK_CLOSE(computed, expected, tol);
143 computed = hypergeometric_1F1(T(-3.5), T(-3.5), T(36.25));
144 expected = exp(T(36.25));
145 BOOST_CHECK_CLOSE(computed, expected, tol);
146 computed = hypergeometric_1F1(T(1), T(2), T(36.25));
147 expected = boost::math::expm1(T(36.25)) / T(36.25);
148 BOOST_CHECK_CLOSE(computed, expected, tol * 3);
149 computed = hypergeometric_1F1(T(10.25), T(9.25), T(36.25));
150 expected = exp(T(36.25)) * (T(9.25) + T(36.25)) / T(9.25);
151 BOOST_CHECK_CLOSE(computed, expected, tol);
152 computed = hypergeometric_1F1(T(-10.25), T(-11.25), T(36.25));
153 expected = exp(T(36.25)) * (T(-11.25) + T(36.25)) / T(-11.25);
154 BOOST_CHECK_CLOSE(computed, expected, tol);
155 computed = hypergeometric_1F1(T(-10.25), T(-11.25), T(-36.25));
156 expected = exp(T(-36.25)) * (T(-11.25) + T(-36.25)) / T(-11.25);
157 BOOST_CHECK_CLOSE(computed, expected, tol);
158 }
159
160 template <class T>
test_spots6(T,const char * type_name)161 void test_spots6(T, const char* type_name)
162 {
163 static const boost::array<boost::array<T, 4>, 91> hypergeometric_1F1_bugs = { {
164 { { static_cast<double>(17955.561660766602), static_cast<double>(9.6968994205831605e-09), static_cast<double>(-82.406154185533524), SC_(6.98056008378736714088730927132364938220428678e-11) }},
165 { { static_cast<double>(17955.561660766602), static_cast<double>(-9.6968994205831605e-09), static_cast<double>(-82.406154185533524), SC_(-6.98055306629610746072607353939306734740549551e-11) }},
166 { { static_cast<double>(-17955.561660766602), static_cast<double>(-9.6968994205831605e-09), static_cast<double>(82.406154185533524), SC_(-42897094853118832762870100.8669248353530950866) }} ,
167 { { static_cast<double>(17955.561660766602), static_cast<double>(17956.061660766602), static_cast<double>(82.406154185533524), SC_(613117565438499794408370861624072730.553215432) }},
168 { { static_cast<double>(2.9127331452327709e-07), static_cast<double>(-0.99999970872668542), static_cast<double>(0.15018942760070786), SC_(0.987526018990506843793601092932108059727149508) }},
169 { { static_cast<double>(-2.9127331452327709e-07), static_cast<double>(-1.0000002912733146), static_cast<double>(0.15018942760070786), SC_(0.987526120661366412484942089372497015837368389) }},
170 { { static_cast<double>(6.7191087900739423e-13), static_cast<double>(-0.99999999999932809), static_cast<double>(0.0011913633891253994), SC_(0.999999289758605006762757201699750974296453229) }},
171 { { static_cast<double>(6.7191087900739423e-13), static_cast<double>(-0.99999999999932809), static_cast<double>(-0.0011913633891253994), SC_(0.999999290885918468326416221021126912154021802) }},
172 { { static_cast<double>(-6.7191087900739423e-13), static_cast<double>(-1.0000000000006719), static_cast<double>(0.0011913633891253994), SC_(0.999999289758606609651292394510404091049823243) }},
173 { { static_cast<double>(-6.7191087900739423e-13), static_cast<double>(-1.0000000000006719), static_cast<double>(-0.0011913633891253994), SC_(0.999999290885916869252591036674587894145399498) }},
174 { { static_cast<double>(1.2860067365774887e-17), static_cast<double>(6.2442285664031425e-16), static_cast<double>(-2539.60133934021), SC_(0.979404874070484696999110600576068012417904384) }},
175 { { static_cast<double>(1.2860067365774887e-17), static_cast<double>(-6.2442285664031425e-16), static_cast<double>(-2539.60133934021), SC_(1.0205951259295150865252112924093487321207727) }},
176 { { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(6.2442285664031425e-16), static_cast<double>(-2539.60133934021), SC_(1.02059512592951530745923325071510441026202975) }},
177 { { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(-6.2442285664031425e-16), static_cast<double>(-2539.60133934021), SC_(0.979404874070484909016444856299500644331897735) }},
178 { { static_cast<double>(1.2860067365774887e-17), static_cast<double>(1), static_cast<double>(-2539.60133934021), SC_(0.999999999999999891757095137551552220860540801) }},
179 { { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(1), static_cast<double>(-2539.60133934021), SC_(1.00000000000000010824290486244845922375479178) }},
180 { { static_cast<double>(1.2860067365774887e-17), static_cast<double>(0.5), static_cast<double>(-2539.60133934021), SC_(0.999999999999999873931788919689096760455570214) }},
181 { { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(0.5), static_cast<double>(-2539.60133934021), SC_(1.0000000000000001260682110803109183167444166) }},
182 { { static_cast<double>(1.2860067365774887e-17), static_cast<double>(-0.5), static_cast<double>(-2539.60133934021), SC_(0.999999999999999899656990458526368219886894767) }},
183 { { static_cast<double>(-1.2860067365774887e-17), static_cast<double>(-0.5), static_cast<double>(-2539.60133934021), SC_(1.00000000000000010034300954147364037131355735) }},
184 { { static_cast<double>(1.9561377367172441e-13), static_cast<double>(-0.99999999999980438), static_cast<double>(0.53720525559037924), SC_(0.791950585963666119273677451162365759080483409) }},
185 { { static_cast<double>(1.9561377367172441e-13), static_cast<double>(-0.99999999999980438), static_cast<double>(-0.53720525559037924), SC_(0.898314630992769591673208399706587643905527327) }},
186 { { static_cast<double>(-1.9561377367172441e-13), static_cast<double>(-1.0000000000001956), static_cast<double>(0.53720525559037924), SC_(0.791950585964025761367113514279915403442035074) }},
187 { { static_cast<double>(-1.9561377367172441e-13), static_cast<double>(-1.0000000000001956), static_cast<double>(-0.53720525559037924), SC_(0.898314630992646771749564140770704893561753597) }},
188 { { static_cast<double>(5.1851756946064858e-12), static_cast<double>(-0.99999999999481481), static_cast<double>(-774.06985878944397), SC_(1.91306610467163858324476828831735612399803649e-06) }},
189 { { static_cast<double>(-5.1851756946064858e-12), static_cast<double>(-1.0000000000051852), static_cast<double>(-774.06985878944397), SC_(1.91306610479516297551035931150910859922270467e-06) }},
190
191 {{ static_cast<double>(4.782769898853794e-15), static_cast<double>(1.0000000000000049), static_cast<double>(43.289540141820908), SC_(715.678254892476818206948251991084031658534788) }},
192 { { static_cast<double>(-4.782769898853794e-15), static_cast<double>(0.99999999999999523), static_cast<double>(43.289540141820908), SC_(-713.67825489247727251051792450091274703212426) }},
193 { { static_cast<double>(4.782769898853794e-15), static_cast<double>(0.50000000000000477), static_cast<double>(43.289540141820908), SC_(8235.578376364917373771471380274179857713986) }},
194 { { static_cast<double>(-4.782769898853794e-15), static_cast<double>(0.49999999999999523), static_cast<double>(43.289540141820908), SC_(-8233.57837636502669085205930058992320862281194) }},
195 { { static_cast<double>(4.782769898853794e-15), static_cast<double>(-0.49999999999999523), static_cast<double>(43.289540141820908), SC_(-696269.800378137841948029488304613132151506346) }},
196 { { static_cast<double>(-4.782769898853794e-15), static_cast<double>(-0.50000000000000477), static_cast<double>(43.289540141820908), SC_(696271.8003781336298001417038674968935893361) }},
197 { { static_cast<double>(8.1104991963343309e-05), static_cast<double>(-0.99991889500803666), static_cast<double>(-289.12455415725708), SC_(7.89625448009377635153307897651433007437615965e-124) }},
198 { { static_cast<double>(-8.1104991963343309e-05), static_cast<double>(-1.0000811049919633), static_cast<double>(-289.12455415725708), SC_(7.8949781467741574268884621364833028722017032e-124) }},
199
200 {{ static_cast<double>(-1.98018241448205767), static_cast<double>(1.98450573845762079), static_cast<double>(54.4977916804564302), SC_(2972026581564772.790187123046255523239732028) }},
201
202 { { static_cast<double>(-7.8238229420435346e-05), static_cast<double>(-0.50007823822942044), static_cast<double>(-1896.0561106204987), SC_(1.00058778866237037053151236215058095904086972) }},
203
204 // Unexpected high error : 2.48268e+91 Found : -9.61305e+268 Expected : -1.74382e+193
205 { { static_cast<double>(5.9981750131794866e-15), static_cast<double>(-230.70702263712883), static_cast<double>(240.42092034220695), SC_(-1.74381782591884817018404492963109914357365958e+193) }},
206 // Unexpected high error : 1.79769313486231570814527423731704356798070568e+308 Found : -9.61305077326281580724540507004198316499661687e+268 Expected : 1.74381782591870724567837900957146707932623893e+193
207 { { static_cast<double>(-5.9981750131794866e-15), static_cast<double>(-230.70702263712883), static_cast<double>(240.42092034220695), SC_(1.74381782591870734495565763481520223752372107e+193) }},
208 //Unexpected exception : Error in function boost::math::hypergeometric_pFq<long double> : Cancellation is so severe that no bits in the reuslt are correct, last result was - 13497.312248525042
209 { { static_cast<double>(-0.00023636552788275367), static_cast<double>(0.49976363447211725), static_cast<double>(-55.448519088327885), SC_(1.00141219419064760011631555641142295011268795) }},
210 // Unexpected exception: Error in function boost::math::hypergeometric_pFq<long double>: Cancellation is so severe that no bits in the reuslt are correct, last result was -13497.312248525042
211 {{ static_cast<double>(-0.00023636552788275367), static_cast<double>(-0.50023636552788275), static_cast<double>(-55.448519088327885), SC_(1.00093463146763986302362749764017215184711625) }},
212 // Unexpected exception : Error in function boost::math::hypergeometric_pFq<long double> : Cancellation is so severe that no bits in the reuslt are correct, last result was - 1.3871133003351527e+47
213 { { static_cast<double>(-1.6548533913638905e-10), static_cast<double>(0.49999999983451465), static_cast<double>(-169.20843148231506), SC_(1.00000000117356793527360151094991866549128017) }},
214 // Unexpected exception: Error in function boost::math::hypergeometric_pFq<long double>: Cancellation is so severe that no bits in the reuslt are correct, last result was -1.3871133003351527e+47
215 {{ static_cast<double>(-1.6548533913638905e-10), static_cast<double>(-0.50000000016548529), static_cast<double>(-169.20843148231506), SC_(1.00000000084161045914716192484600809610013447) }},
216 // Unexpected high error : 17825.7893791562892147339880466461181640625 Found : -0.000253525216373273569459012577453904668800532818 Expected : -0.000253525216374277052779756536082800266740377992
217 { { static_cast<double>(-2.0211181797563725e-14), static_cast<double>(-1.0000000000000202), static_cast<double>(-25.653068032115698), SC_(-0.000253525216374277055047768086884693917115210113) }},
218 // Unexpected high error: 1.79769e+308 Found: -inf Expected: -2.63233e-197
219 {{ static_cast<double>(235.44106131792068), static_cast<double>(-2.250966744069919e-13), static_cast<double>(-974.28781914710999), SC_(-2.63233018990922939037251029961929844581862228e-197) }},
220 // Unexpected high error : 1.79769313486231570814527423731704356798070568e+308 Found : -inf Expected : -3.53316570137147325345279499243339692001224196e+226
221 { { static_cast<double>(-235.44106131792068), static_cast<double>(-2.250966744069919e-13), static_cast<double>(974.28781914710999), SC_(-3.53316570137147343919975579872097464691424847e+226) }},
222 // Unexpected high error : 2.48268e+91 Found : -9.61305e+268 Expected : -1.74382e+193
223 { { static_cast<double>(5.9981750131794866e-15), static_cast<double>(-230.70702263712883), static_cast<double>(240.42092034220695), SC_(-1.74381782591884817018404492963109914357365958e+193) }},
224 // Unexpected high error : 1.79769313486231570814527423731704356798070568e+308 Found : -9.61305077326281580724540507004198316499661687e+268 Expected : 1.74381782591870724567837900957146707932623893e+193
225 { { static_cast<double>(-5.9981750131794866e-15), static_cast<double>(-230.70702263712883), static_cast<double>(240.42092034220695), SC_(1.74381782591870734495565763481520223752372107e+193) }},
226 // Unexpected exception : Error in function boost::math::hypergeometric_pFq<long double> : Cancellation is so severe that no bits in the reuslt are correct, last result was 3.0871891698197084e+73
227 { { static_cast<double>(-5.9981750131794866e-15), static_cast<double>(0.499999999999994), static_cast<double>(-240.42092034220695), SC_(1.00000000000004464930530925572237133417488137) }},
228 // Unexpected exception : Error in function boost::math::hypergeometric_pFq<long double> : Cancellation is so severe that no bits in the reuslt are correct, last result was 3.0871891698197084e+73
229 { { static_cast<double>(-5.9981750131794866e-15), static_cast<double>(-0.500000000000006), static_cast<double>(-240.42092034220695), SC_(1.00000000000003262784934420226963147689063665) }},
230 // Unexpected high error : 18466.4373304979599197395145893096923828125 Found : 1.32865406167486480872551302123696359558380209e-08 Expected : 1.3286540616694168317751162703647255236560909e-08
231 { { static_cast<double>(6.772927684190258e-10), static_cast<double>(-0.99999999932270722), static_cast<double>(-483.69576895236969), SC_(1.32865406166941679958876322759721528297325713e-08) }},
232 // Unexpected high error: 1.79769e+308 Found: -nan(ind) Expected: 5.31173e-38
233 {{ static_cast<double>(6763.4877452850342), static_cast<double>(3.6834977949762315e-08), static_cast<double>(-210.20976513624191), SC_(5.31173132667573457976877380237496445775181141e-38) }},
234 // Unexpected high error : 1.79769313486231570814527423731704356798070568e+308 Found : -nan(ind) Expected : 1.04274264437409856500364465136386556989276338e+54
235 { { static_cast<double>(-6763.4877452850342), static_cast<double>(3.6834977949762315e-08), static_cast<double>(210.20976513624191), SC_(1.04274264437409861991447530452939035771734596e+54) }},
236 // Unexpected high error: 3.17219226436543247206316287281668161679098192e+185 Found: 1.00012411189051491970538746574092795078602734e+201 Expected: 14198882672502154063215954231296
237 {{ static_cast<double>(76763.042617797852), static_cast<double>(-21.722407214343548), static_cast<double>(-0.60326536209322512), SC_(14198882672502153010712531896984.8126667697959) }},
238
239 // Unexpected high error: 1.79769313486231570814527423731704356798070568e+308 Found: -2.39521645877904927856730119998375850409649219e+124 Expected: 2.3952164587795095929135248712964248422934629e+124
240 {{ static_cast<double>(-1.8857404964801872e-09), static_cast<double>(-226.52341184020042), static_cast<double>(160.86221924424171), SC_(2.39521645877950946848639784331327651190093595e+124) }},
241 // Unexpected high error : 73027.246763920571538619697093963623046875 Found : 0.000111810625893715248580992382976262433658121154 Expected : 0.000111810625895528292111404111697225971511215903
242 { { static_cast<double>(-7.5220323642510769e-13), static_cast<double>(-1.0000000000007523), static_cast<double>(-17.948102783411741), SC_(0.00011181062589552829441403260197223627311023229) }},
243 // Unexpected high error: 111726.15160028330865316092967987060546875 Found: 0.00856985181006919560786627698689699172973632813 Expected: 0.00856985180985659310282098743982714950107038021
244 {{ static_cast<double>(5.6136137469239618e-15), static_cast<double>(-0.99999999999999434), static_cast<double>(-1989.8742001056671), SC_(0.00856985180985659334965068576732515544478559175) }},
245 // Unexpected high error : 10431.000000023717802832834422588348388671875 Found : 0.99999999999772626324556767940521240234375 Expected : 1.00000000000004241051954068097984418272972107
246 { { static_cast<double>(-5.6136137469239618e-15), static_cast<double>(-0.50000000000000566), static_cast<double>(-1989.8742001056671), SC_(1.00000000000004243096226509338784935080089269) }},
247 // And more from error rate testing:
248 {{ (T)std::ldexp((double)-17079780487168000, -44), (T)std::ldexp((double)9462273998848000, -46), (T)std::ldexp((double)9928190459904000, -48), SC_(7.7358754011357422722746277257633664799903803239195e-72) }},
249 {{ (T)std::ldexp((double)-16238757384192000, -44), (T)std::ldexp((double)17248812490752000, -44), (T)std::ldexp((double)12549255331840000, -49), SC_(4.7354970214088286546733909450191631190700414608975e-10) }},
250 {{ static_cast<double>(-6.8543290253728628), static_cast<double>(607.72073245607316), static_cast<double>(253.26409819535911), SC_(0.024418741483258497441042709681531519387974841769189) }},
251 {{ (T)std::ldexp((double)-15569844699136000, -52), (T)std::ldexp((double)12855440629760000, -44), (T)std::ldexp((double)12563412279296000, -45), SC_(0.097879401070280078654536987721507669872679020399179) }},
252 {{ (T)std::ldexp((double)-13521484578816000, -48), (T)std::ldexp((double)11813014388736000, -46), (T)std::ldexp((double)12736881098752000, -48), SC_(9.1262751214688536871555425535678062558805718157237e-08) }},
253 {{ (T)std::ldexp((double)-13125670141952000, -44), (T)std::ldexp((double)16524914262016000, -44), (T)std::ldexp((double)12270166867968000, -49), SC_(2.0809215788388623809065210261671764534436583442155e-08) }},
254 {{ (T)std::ldexp((double)-9012443406336000, -45), (T)std::ldexp((double)12293411340288000, -46), (T)std::ldexp((double)15162862993408000, -52), SC_(0.00634911418172408957356631082162378669273898042) }},
255 {{ (T)std::ldexp((double)10907252916224000, -46), (T)std::ldexp((double)10872033234944000, -44), (T)std::ldexp((double)14845267734528000, -44), SC_(3.35597139167246486559762237420776458756928282e+152) }},
256 {{ (T)std::ldexp((double)10206210322432000, -44), (T)std::ldexp((double)-16798514331648000, -45), (T)std::ldexp((double)21261284909056000, -48), SC_(3.8172723666678171743099642722909945977624468e+207) }},
257 //{{ (T)std::ldexp((double)9125305942016000, -46), (T)std::ldexp((double)-15115828240384000, -45), (T)std::ldexp((double)9662868946944000, -47), SC_(4175579218962.24466854749118518544065513059142) }},
258 //
259 // These next few are the result of probing the boundary cases in hypergeometric_1F1_negative_b_recurrence_region
260 //
261 {{ (T)std::ldexp((double)10860755407856640, -40), (T)std::ldexp((double)-15992550230222440, -47), (T)std::ldexp((double)11953621172224000, -51), SC_(1.77767974631716859575450750736407296713916302e+278) }},
262 {{ (T)std::ldexp((double)10788477424245760, -40), (T)std::ldexp((double)-17098099940288104, -45), (T)std::ldexp((double)9309879533568000, -50), SC_(3.30879597828065234949261835734767876076477669e+268) }},
263 {{ (T)std::ldexp((double)10938221827471360, -40), (T)std::ldexp((double)-13207828614139084, -46), (T)std::ldexp((double)14276471291904000, -57), SC_(0.00563892736925233243283328398477659041011689599) }},
264 { { (T)std::ldexp((double)10886339790484480, -40), (T)std::ldexp((double)-15267677514969908, -46), (T)std::ldexp((double)11568125313024000, -56), SC_(0.000743168361387021436166355590813648069510383979) } },
265 { { (T)std::ldexp((double)10486036094119936, -40), (T)std::ldexp((double)-15535492710109184, -41), (T)std::ldexp((double)17014293405696000, -45), SC_(-2.61817515260939017621443182916266462279292638e+230) } },
266 { { (T)std::ldexp((double)10485257266971648, -40), (T)std::ldexp((double)-17826711054409018, -35), (T)std::ldexp((double)17138334978048000, -44), SC_(1.70138735099219741672706572460585684251928784e-08) } },
267 { { (T)std::ldexp((double)10485122560373760, -40), (T)std::ldexp((double)-11098279821997376, -39), (T)std::ldexp((double)16925852270592000, -45), SC_(9.77378642649349178995585980824930703376759021e-98) } },
268 { { (T)std::ldexp((double)10485292967829248, -40), (T)std::ldexp((double)-14859721380002656, -35), (T)std::ldexp((double)13729956970496000, -44), SC_(3.41094899910311302761937103011397882987669395e-08) } },
269 { { (T)std::ldexp((double)10485037389193216, -40), (T)std::ldexp((double)-10840488483391544, -35), (T)std::ldexp((double)17577061875712000, -45), SC_(2.8030884395368690164859926372380406504460219e-07) } },
270 //
271 // Negative a and b worst cases:
272 { { (T)std::ldexp((double)-9281686323200000, -44), (T)std::ldexp((double)-14062138056704000, -44), (T)std::ldexp((double)13563284652032000, -44), SC_(2.8338102961174890442403751063892055396228341374378e+265) } },
273 { { (T)std::ldexp((double)-17049048150016000, -44), (T)std::ldexp((double)-16971363917824000, -45), (T)std::ldexp((double)11759598960640000, -49), SC_(4636596575297708282.1539119952275597833292408543916) }},
274 { { (T)std::ldexp((double)-14233964060672000, -45), (T)std::ldexp((double)-12648356216832000, -47), (T)std::ldexp((double)9597206757376000, -46), SC_(-1.2995296554447445191533190670521132012426135496934e+104) }},
275 { { (T)std::ldexp((double)-16705334214656000, -45), (T)std::ldexp((double)-15447756718080000, -46), (T)std::ldexp((double)16395884134400000, -47), SC_(5.4068014134661635929301319845768046995946557071618e+113) }},
276 { { (T)std::ldexp((double)-13991530405888000, -45), (T)std::ldexp((double)-10196587347968000, -46), (T)std::ldexp((double)13331347734528000, -46), SC_(1.2861275297661534781908508971693782447411136476694e+138) }},
277 { { (T)std::ldexp((double)-15134950760448000, -45), (T)std::ldexp((double)-14587193786368000, -48), (T)std::ldexp((double)17022855921664000, -46), SC_(-8.8168904087758007346518546320759101059296394741359e+115) }},
278 { { (T)std::ldexp((double)-14854672039936000, -45), (T)std::ldexp((double)-10436558200832000, -45), (T)std::ldexp((double)11370918969344000, -47), SC_(8.8553524727253411744552846056891456360191660433059e+54) } },
279 { { (T)std::ldexp((double)-16711069286400000, -46), (T)std::ldexp((double)-14809815056384000, -46), (T)std::ldexp((double)10469312954368000, -47), SC_(50343352353398198766339890377687038177.388095267191) } },
280 { { (T)std::ldexp((double)-15026786402304000, -45), (T)std::ldexp((double)-16687356968960000, -46), (T)std::ldexp((double)14895621603328000, -47), SC_(2.8532956042460265690059969666558072704044483623242e+95) } },
281 { { (T)std::ldexp((double)-15519073435648000, -45), (T)std::ldexp((double)-14162009718784000, -45), (T)std::ldexp((double)9997818855424000, -48), SC_(95767987018108517.763999577428194082282035178055037) } },
282 { { (T)std::ldexp((double)-15317481275392000, -46), (T)std::ldexp((double)-16531865931776000, -44), (T)std::ldexp((double)17586268880896000, -45), SC_(1.4701248047083724279783071194324315286789986738882e+104) }},
283 { { (T)std::ldexp((double)-11335669673984000, -44), (T)std::ldexp((double)-13146047094784000, -44), (T)std::ldexp((double)13671437864960000, -44), SC_(-2.1887607284987089539904337941443591993019781369247e+288) }},
284 { { (T)std::ldexp((double)-16877985234944000, -46), (T)std::ldexp((double)-14384006086656000, -46), (T)std::ldexp((double)9074349342720000, -47), SC_(15376193613462463541358751744530105.412429016705833) }},
285 { { (T)std::ldexp((double)-9751199809536000, -45), (T)std::ldexp((double)-17654191685632000, -47), (T)std::ldexp((double)10587451850752000, -47), SC_(-1.9601415510439595625538337964298353914980331018955e+68) }},
286 { { (T)std::ldexp((double)-15233620754432000, -45), (T)std::ldexp((double)-12708283072512000, -46), (T)std::ldexp((double)10255461007360000, -46), SC_(-5.4344106361679075861859567858016187271235441673635e+125) }},
287 { { (T)std::ldexp((double)-11241354149888000, -45), (T)std::ldexp((double)-9580579905536000, -45), (T)std::ldexp((double)12224976846848000, -47), SC_(12046856548470067405870726490464935201150430438.035) }},
288 } };
289 static const boost::array<boost::array<T, 4>, 2> hypergeometric_1F1_big_bugs = { {
290 #if DBL_MAX_EXP == LDBL_MAX_EXP
291 {{ static_cast<double>(7.8238229420435346e-05), static_cast<double>(-5485.3222503662109), static_cast<double>(1896.0561106204987), BOOST_MATH_HUGE_CONSTANT(T, 1000, 4.33129800901478785957996719992774682013355926e+668) }},
292 {{ static_cast<double>(-7.8238229420435346e-05), static_cast<double>(-5485.3222503662109), static_cast<double>(1896.0561106204987), BOOST_MATH_HUGE_CONSTANT(T, 1000, -4.3248750673398590673783317624407455467680038e+668) }},
293 #else
294 { { static_cast<double>(7.8238229420435346e-05), static_cast<double>(-5485.3222503662109), static_cast<double>(1896.0561106204987), SC_(4.33129800901478785957996719992774682013355926e+668) } },
295 { { static_cast<double>(-7.8238229420435346e-05), static_cast<double>(-5485.3222503662109), static_cast<double>(1896.0561106204987), SC_(-4.3248750673398590673783317624407455467680038e+668) } },
296 #endif
297 } };
298 do_test_1F1<T>(hypergeometric_1F1_bugs, type_name, "Bug cases");
299 if(std::numeric_limits<T>::max_exponent10 > 800)
300 do_test_1F1<T>(hypergeometric_1F1_big_bugs, type_name, "Bug cases - oversized");
301 else
302 {
303 for (unsigned i = 0; i < hypergeometric_1F1_big_bugs.size(); ++i)
304 {
305 T val = boost::math::hypergeometric_1F1(hypergeometric_1F1_big_bugs[i][0], hypergeometric_1F1_big_bugs[i][1], hypergeometric_1F1_big_bugs[i][2]);
306 BOOST_CHECK((boost::math::isinf)(val));
307 }
308 }
309 }
310
311 template <class T>
test_spots(T z,const char * type_name)312 void test_spots(T z, const char* type_name)
313 {
314 test_spots1(z, type_name);
315 test_spots2(z, type_name);
316 //
317 // Test ranges that are limited to double precision, these contain test cases
318 // which require full double precision for the inputs, so we don't test
319 // at float precision as well as higher precisions:
320 //
321 if (std::numeric_limits<T>::digits10 == std::numeric_limits<double>::digits10)
322 test_spots3(z, type_name);
323 #ifdef TEST_UNSOLVED
324 test_spots4(z, type_name);
325 #endif
326 test_spots5(z, type_name);
327 //
328 // Try as we might, we can't get better than quad precision on some of these:
329 //
330 if(std::numeric_limits<T>::digits >= std::numeric_limits<double>::digits && std::numeric_limits<T>::digits <= 128)
331 test_spots6(z, type_name);
332 }
333
334
335 // Tests the Mellin transform formula given here: https://dlmf.nist.gov/13.10, Equation 13.10.10
336 template <class Real>
test_hypergeometric_mellin_transform()337 void test_hypergeometric_mellin_transform()
338 {
339 using boost::math::hypergeometric_1F1;
340 using boost::math::quadrature::exp_sinh;
341 using boost::math::tgamma;
342 using std::pow;
343
344 // Constraint: 0 < lambda < a.
345 Real lambda = 0.5;
346 Real a = 1;
347 Real b = 3;
348 auto f = [&](Real t)->Real { return pow(t, lambda - 1)*hypergeometric_1F1(a, b, -t); };
349
350 auto integrator = exp_sinh<double>();
351 Real computed = integrator.integrate(f, boost::math::tools::epsilon<Real>());
352 Real expected = tgamma(b)*tgamma(lambda)*tgamma(a - lambda) / (tgamma(a)*tgamma(b - lambda));
353
354 Real tol = boost::math::tools::epsilon<Real>() * 5;
355 BOOST_CHECK_CLOSE_FRACTION(computed, expected, tol);
356 }
357
358
359 // Tests the Laplace transform formula given here: https://dlmf.nist.gov/13.10, Equation 13.10.4
360 template <class Real>
test_hypergeometric_laplace_transform()361 void test_hypergeometric_laplace_transform()
362 {
363 using boost::math::hypergeometric_1F1;
364 using boost::math::quadrature::exp_sinh;
365 using boost::math::tgamma;
366 using std::pow;
367 using std::exp;
368
369 // Set a = 1 blows up for some reason . . .
370 Real a = -1;
371 Real b = 3;
372 Real z = 1.5;
373 auto f = [&](Real t)->Real { return exp(-z * t)*pow(t, b - 1)*hypergeometric_1F1(a, b, t); };
374
375 auto integrator = exp_sinh<double>();
376 Real computed = integrator.integrate(f, boost::math::tools::epsilon<Real>());
377 Real expected = tgamma(b) / (pow(z, b)*pow(1 - 1 / z, a));
378
379 Real tol = boost::math::tools::epsilon<Real>() * 200;
380 BOOST_CHECK_CLOSE(computed, expected, tol);
381 }
382