• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright Nick Thompson, 2017
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0.
4 // (See accompanying file LICENSE_1_0.txt
5 // or copy at http://www.boost.org/LICENSE_1_0.txt)
6 
7 #define BOOST_TEST_MODULE barycentric_rational
8 
9 #include <cmath>
10 #include <random>
11 #include <boost/random/uniform_real_distribution.hpp>
12 #include <boost/type_index.hpp>
13 #include <boost/test/included/unit_test.hpp>
14 #include <boost/test/tools/floating_point_comparison.hpp>
15 #include <boost/math/interpolators/barycentric_rational.hpp>
16 #include <boost/multiprecision/cpp_bin_float.hpp>
17 
18 #ifdef BOOST_HAS_FLOAT128
19 #include <boost/multiprecision/float128.hpp>
20 #endif
21 
22 using std::sqrt;
23 using std::abs;
24 using std::numeric_limits;
25 using boost::multiprecision::cpp_bin_float_50;
26 
27 template<class Real>
test_interpolation_condition()28 void test_interpolation_condition()
29 {
30     std::cout << "Testing interpolation condition for barycentric interpolation on type " << boost::typeindex::type_id<Real>().pretty_name()  << "\n";
31     std::mt19937 gen(4);
32     boost::random::uniform_real_distribution<Real> dis(0.1f, 1);
33     std::vector<Real> x(100);
34     std::vector<Real> y(100);
35     x[0] = dis(gen);
36     y[0] = dis(gen);
37     for (size_t i = 1; i < x.size(); ++i)
38     {
39         x[i] = x[i-1] + dis(gen);
40         y[i] = dis(gen);
41     }
42 
43     boost::math::barycentric_rational<Real> interpolator(x.data(), y.data(), y.size());
44 
45     for (size_t i = 0; i < x.size(); ++i)
46     {
47         Real z = interpolator(x[i]);
48         BOOST_CHECK_CLOSE(z, y[i], 100*numeric_limits<Real>::epsilon());
49     }
50 
51     // Make sure that the move constructor does the same thing:
52     std::vector<Real> x_copy = x;
53     std::vector<Real> y_copy = y;
54     boost::math::barycentric_rational<Real> move_interpolator(std::move(x), std::move(y));
55 
56     for (size_t i = 0; i < x_copy.size(); ++i)
57     {
58         Real z = move_interpolator(x_copy[i]);
59         BOOST_CHECK_CLOSE(z, y_copy[i], 100*numeric_limits<Real>::epsilon());
60     }
61 }
62 
63 template<class Real>
test_interpolation_condition_high_order()64 void test_interpolation_condition_high_order()
65 {
66     std::cout << "Testing interpolation condition in high order for barycentric interpolation on type " << boost::typeindex::type_id<Real>().pretty_name()  << "\n";
67     std::mt19937 gen(5);
68     boost::random::uniform_real_distribution<Real> dis(0.1f, 1);
69     std::vector<Real> x(100);
70     std::vector<Real> y(100);
71     x[0] = dis(gen);
72     y[0] = dis(gen);
73     for (size_t i = 1; i < x.size(); ++i)
74     {
75         x[i] = x[i-1] + dis(gen);
76         y[i] = dis(gen);
77     }
78 
79     // Order 5 approximation:
80     boost::math::barycentric_rational<Real> interpolator(x.data(), y.data(), y.size(), 5);
81 
82     for (size_t i = 0; i < x.size(); ++i)
83     {
84         Real z = interpolator(x[i]);
85         BOOST_CHECK_CLOSE(z, y[i], 100*numeric_limits<Real>::epsilon());
86     }
87 }
88 
89 
90 template<class Real>
test_constant()91 void test_constant()
92 {
93     std::cout << "Testing that constants are interpolated correctly using barycentric interpolation on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
94 
95     std::mt19937 gen(6);
96     boost::random::uniform_real_distribution<Real> dis(0.1f, 1);
97     std::vector<Real> x(100);
98     std::vector<Real> y(100);
99     Real constant = -8;
100     x[0] = dis(gen);
101     y[0] = constant;
102     for (size_t i = 1; i < x.size(); ++i)
103     {
104         x[i] = x[i-1] + dis(gen);
105         y[i] = y[0];
106     }
107 
108     boost::math::barycentric_rational<Real> interpolator(x.data(), y.data(), y.size());
109 
110     for (size_t i = 0; i < x.size(); ++i)
111     {
112         // Don't evaluate the constant at x[i]; that's already tested in the interpolation condition test.
113         Real t = x[i] + dis(gen);
114         Real z = interpolator(t);
115         BOOST_CHECK_CLOSE(z, constant, 100*sqrt(numeric_limits<Real>::epsilon()));
116         BOOST_CHECK_SMALL(interpolator.prime(t), sqrt(numeric_limits<Real>::epsilon()));
117     }
118 }
119 
120 template<class Real>
test_constant_high_order()121 void test_constant_high_order()
122 {
123     std::cout << "Testing that constants are interpolated correctly in high order using barycentric interpolation on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
124 
125     std::mt19937 gen(7);
126     boost::random::uniform_real_distribution<Real> dis(0.1f, 1);
127     std::vector<Real> x(100);
128     std::vector<Real> y(100);
129     Real constant = 5;
130     x[0] = dis(gen);
131     y[0] = constant;
132     for (size_t i = 1; i < x.size(); ++i)
133     {
134         x[i] = x[i-1] + dis(gen);
135         y[i] = y[0];
136     }
137 
138     // Set interpolation order to 7:
139     boost::math::barycentric_rational<Real> interpolator(x.data(), y.data(), y.size(), 7);
140 
141     for (size_t i = 0; i < x.size(); ++i)
142     {
143         Real t = x[i] + dis(gen);
144         Real z = interpolator(t);
145         BOOST_CHECK_CLOSE(z, constant, 1000*sqrt(numeric_limits<Real>::epsilon()));
146         BOOST_CHECK_SMALL(interpolator.prime(t), 100*sqrt(numeric_limits<Real>::epsilon()));
147     }
148 }
149 
150 
151 template<class Real>
test_runge()152 void test_runge()
153 {
154     std::cout << "Testing interpolation of Runge's 1/(1+25x^2) function using barycentric interpolation on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
155 
156     std::mt19937 gen(8);
157     boost::random::uniform_real_distribution<Real> dis(0.005f, 0.01f);
158     std::vector<Real> x(100);
159     std::vector<Real> y(100);
160     x[0] = -2;
161     y[0] = 1/(1+25*x[0]*x[0]);
162     for (size_t i = 1; i < x.size(); ++i)
163     {
164         x[i] = x[i-1] + dis(gen);
165         y[i] = 1/(1+25*x[i]*x[i]);
166     }
167 
168     boost::math::barycentric_rational<Real> interpolator(x.data(), y.data(), y.size(), 5);
169 
170     for (size_t i = 0; i < x.size(); ++i)
171     {
172         Real t = x[i];
173         Real z = interpolator(t);
174         BOOST_CHECK_CLOSE(z, y[i], 0.03);
175         Real z_prime = interpolator.prime(t);
176         Real num = -50*t;
177         Real denom = (1+25*t*t)*(1+25*t*t);
178         if (abs(num/denom) > 0.00001)
179         {
180             BOOST_CHECK_CLOSE_FRACTION(z_prime, num/denom, 0.03);
181         }
182     }
183 
184 
185     Real tol = 0.0001;
186     for (size_t i = 0; i < x.size(); ++i)
187     {
188         Real t = x[i] + dis(gen);
189         Real z = interpolator(t);
190         BOOST_CHECK_CLOSE(z, 1/(1+25*t*t), tol);
191         Real z_prime = interpolator.prime(t);
192         Real num = -50*t;
193         Real denom = (1+25*t*t)*(1+25*t*t);
194         Real runge_prime = num/denom;
195 
196         if (abs(runge_prime) > 0 && abs(z_prime - runge_prime)/abs(runge_prime) > tol)
197         {
198             std::cout << "Error too high for t = " << t << " which is a distance " << t - x[i] << " from node " << i << "/" << x.size() << " associated with data (" << x[i] << ", " << y[i] << ")\n";
199             BOOST_CHECK_CLOSE_FRACTION(z_prime, runge_prime, tol);
200         }
201     }
202 }
203 
204 template<class Real>
test_weights()205 void test_weights()
206 {
207     std::cout << "Testing weights are calculated correctly using barycentric interpolation on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
208 
209     std::mt19937 gen(9);
210     boost::random::uniform_real_distribution<Real> dis(0.005, 0.01);
211     std::vector<Real> x(100);
212     std::vector<Real> y(100);
213     x[0] = -2;
214     y[0] = 1/(1+25*x[0]*x[0]);
215     for (size_t i = 1; i < x.size(); ++i)
216     {
217         x[i] = x[i-1] + dis(gen);
218         y[i] = 1/(1+25*x[i]*x[i]);
219     }
220 
221     boost::math::detail::barycentric_rational_imp<Real> interpolator(x.data(), x.data() + x.size(), y.data(), 0);
222 
223     for (size_t i = 0; i < x.size(); ++i)
224     {
225         Real w = interpolator.weight(i);
226         if (i % 2 == 0)
227         {
228             BOOST_CHECK_CLOSE(w, 1, 0.00001);
229         }
230         else
231         {
232             BOOST_CHECK_CLOSE(w, -1, 0.00001);
233         }
234     }
235 
236     // d = 1:
237     interpolator = boost::math::detail::barycentric_rational_imp<Real>(x.data(), x.data() + x.size(), y.data(), 1);
238 
239     for (size_t i = 1; i < x.size() -1; ++i)
240     {
241         Real w = interpolator.weight(i);
242         Real w_expect = 1/(x[i] - x[i - 1]) + 1/(x[i+1] - x[i]);
243         if (i % 2 == 0)
244         {
245             BOOST_CHECK_CLOSE(w, -w_expect, 0.00001);
246         }
247         else
248         {
249             BOOST_CHECK_CLOSE(w, w_expect, 0.00001);
250         }
251     }
252 
253 }
254 
255 
BOOST_AUTO_TEST_CASE(barycentric_rational)256 BOOST_AUTO_TEST_CASE(barycentric_rational)
257 {
258     // The tests took too long at the higher precisions.
259     // They still pass, but the CI system is starting to time out,
260     // so I figured it'd be polite to comment out the most expensive tests.
261     test_weights<double>();
262 
263     test_constant<float>();
264     //test_constant<double>();
265     test_constant<long double>();
266     //test_constant<cpp_bin_float_50>();
267 
268     //test_constant_high_order<float>();
269     test_constant_high_order<double>();
270     //test_constant_high_order<long double>();
271     //test_constant_high_order<cpp_bin_float_50>();
272 
273     test_interpolation_condition<float>();
274     test_interpolation_condition<double>();
275     //test_interpolation_condition<long double>();
276     //test_interpolation_condition<cpp_bin_float_50>();
277 
278     //test_interpolation_condition_high_order<float>();
279     test_interpolation_condition_high_order<double>();
280     //test_interpolation_condition_high_order<long double>();
281     //test_interpolation_condition_high_order<cpp_bin_float_50>();
282 
283     test_runge<double>();
284     //test_runge<long double>();
285     //test_runge<cpp_bin_float_50>();
286 
287 #ifdef BOOST_HAS_FLOAT128
288     //test_interpolation_condition<boost::multiprecision::float128>();
289     //test_constant<boost::multiprecision::float128>();
290     //test_constant_high_order<boost::multiprecision::float128>();
291     //test_interpolation_condition_high_order<boost::multiprecision::float128>();
292     //test_runge<boost::multiprecision::float128>();
293 #endif
294 
295 }
296