• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright Paul A. Bristow 2010.
2 // Copyright John Maddock 2010.
3 
4 // Use, modification and distribution are subject to the
5 // Boost Software License, Version 1.0.
6 // (See accompanying file LICENSE_1_0.txt
7 // or copy at http://www.boost.org/LICENSE_1_0.txt)
8 
9 #ifdef _MSC_VER
10 #  pragma warning (disable : 4224) // nonstandard extension used : formal parameter 'type' was previously defined as a type
11 // in Boost.test and lexical_cast
12 #  pragma warning (disable : 4310) // cast truncates constant value
13 #  pragma warning (disable : 4512) // assignment operator could not be generated
14 
15 #endif
16 
17 //#include <pch.hpp> // include directory libs/math/src/tr1/ is needed.
18 
19 #include <boost/math/tools/test.hpp>
20 #include <boost/math/concepts/real_concept.hpp> // for real_concept
21 #define BOOST_TEST_MAIN
22 #include <boost/test/unit_test.hpp> // Boost.Test
23 #include <boost/test/tools/floating_point_comparison.hpp>
24 
25 #include <boost/math/distributions/inverse_gaussian.hpp>
26 using boost::math::inverse_gaussian_distribution;
27 using boost::math::inverse_gaussian;
28 
29 #include <boost/math/tools/test.hpp>
30 #include "test_out_of_range.hpp"
31 
32 #include <iostream>
33 #include <iomanip>
34 using std::cout;
35 using std::endl;
36 using std::setprecision;
37 #include <limits>
38 using std::numeric_limits;
39 
40 template <class RealType>
check_inverse_gaussian(RealType mean,RealType scale,RealType x,RealType p,RealType q,RealType tol)41 void check_inverse_gaussian(RealType mean, RealType scale, RealType x, RealType p, RealType q, RealType tol)
42 {
43  using boost::math::inverse_gaussian_distribution;
44 
45   BOOST_CHECK_CLOSE_FRACTION(
46     ::boost::math::cdf(   // Check cdf
47     inverse_gaussian_distribution<RealType>(mean, scale),      // distribution.
48     x),    // random variable.
49     p,     // probability.
50     tol);   // tolerance.
51   BOOST_CHECK_CLOSE_FRACTION(
52     ::boost::math::cdf( // Check cdf complement
53     complement(
54     inverse_gaussian_distribution<RealType>(mean, scale),   // distribution.
55     x)),   // random variable.
56     q,      // probability complement.
57     tol);    // %tolerance.
58   BOOST_CHECK_CLOSE_FRACTION(
59     ::boost::math::quantile( // Check quantile
60     inverse_gaussian_distribution<RealType>(mean, scale),    // distribution.
61     p),   // probability.
62     x,   // random variable.
63     tol);   // tolerance.
64   BOOST_CHECK_CLOSE_FRACTION(
65     ::boost::math::quantile( // Check quantile complement
66     complement(
67     inverse_gaussian_distribution<RealType>(mean, scale),   // distribution.
68     q)),   // probability complement.
69     x,     // random variable.
70     tol);  // tolerance.
71 
72    inverse_gaussian_distribution<RealType> dist (mean, scale);
73 
74    if((p < 0.999) && (q < 0.999))
75    {  // We can only check this if P is not too close to 1,
76       // so that we can guarantee Q is accurate:
77       BOOST_CHECK_CLOSE_FRACTION(
78         cdf(complement(dist, x)), q, tol); // 1 - cdf
79       BOOST_CHECK_CLOSE_FRACTION(
80         quantile(dist, p), x, tol); // quantile(cdf) = x
81       BOOST_CHECK_CLOSE_FRACTION(
82         quantile(complement(dist, q)), x, tol); // quantile(complement(1 - cdf)) = x
83    }
84 }
85 
86 template <class RealType>
test_spots(RealType)87 void test_spots(RealType)
88 {
89   // Basic sanity checks
90   RealType tolerance = static_cast<RealType>(1e-4L); //
91   cout << "Tolerance for type " << typeid(RealType).name()  << " is " << tolerance << endl;
92 
93   // Check some bad parameters to the distribution,
94 #ifndef BOOST_NO_EXCEPTIONS
95   BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType> nbad1(0, 0), std::domain_error); // zero scale
96   BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType> nbad1(0, -1), std::domain_error); // negative scale
97 #else
98   BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType>(0, 0), std::domain_error); // zero scale
99   BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType>(0, -1), std::domain_error); // negative scale
100 #endif
101 
102   inverse_gaussian_distribution<RealType> w11;
103 
104   // Error tests:
105   check_out_of_range<inverse_gaussian_distribution<RealType> >(0.25, 1);
106 
107   // Check complements.
108 
109     BOOST_CHECK_CLOSE_FRACTION(
110      cdf(complement(w11, 1.)), static_cast<RealType>(1) - cdf(w11, 1.), tolerance); // cdf complement
111     // cdf(complement = 1 - cdf  - but if cdf near unity, then loss of accuracy in cdf,
112     // but cdf complement is near zero but more accurate.
113 
114      BOOST_CHECK_CLOSE_FRACTION( // quantile(complement p) == quantile(1 - p)
115      quantile(complement(w11, static_cast<RealType>(0.5))),
116      quantile(w11, 1 - static_cast<RealType>(0.5)),
117      tolerance); // cdf complement
118 
119   check_inverse_gaussian(
120      static_cast<RealType>(2),
121      static_cast<RealType>(3),
122      static_cast<RealType>(1),
123      static_cast<RealType>(0.28738674440477374),
124      static_cast<RealType>(1 - 0.28738674440477374),
125      tolerance);
126 
127   RealType tolfeweps = boost::math::tools::epsilon<RealType>() * 5;
128 
129   inverse_gaussian_distribution<RealType> dist(2, 3);
130 
131   using namespace std; // ADL of std names.
132   // mean:
133   BOOST_CHECK_CLOSE_FRACTION(mean(dist),
134     static_cast<RealType>(2), tolfeweps);
135   BOOST_CHECK_CLOSE_FRACTION(scale(dist),
136     static_cast<RealType>(3), tolfeweps);
137 
138   // variance:
139   BOOST_CHECK_CLOSE_FRACTION(variance(dist),
140     static_cast<RealType>(2.6666666666666666666666666666666666666666666666666666666667L), 1000*tolfeweps);
141   // std deviation:
142   BOOST_CHECK_CLOSE_FRACTION(standard_deviation(dist),
143     static_cast<RealType>(1.632993L), 1000 * tolerance);
144   //// hazard:
145   //BOOST_CHECK_CLOSE_FRACTION(hazard(dist, x),
146   //  pdf(dist, x) / cdf(complement(dist, x)), tolerance);
147   //// cumulative hazard:
148   //BOOST_CHECK_CLOSE_FRACTION(chf(dist, x),
149   //  -log(cdf(complement(dist, x))), tolerance);
150   // coefficient_of_variation:
151   BOOST_CHECK_CLOSE_FRACTION(coefficient_of_variation(dist),
152     standard_deviation(dist) / mean(dist), tolerance);
153   // mode:
154   BOOST_CHECK_CLOSE_FRACTION(mode(dist),
155     static_cast<RealType>(0.8284271L), tolerance);
156 
157   // median
158   BOOST_CHECK_CLOSE_FRACTION(median(dist),
159     static_cast<RealType>(1.5122506636053668L), tolerance);
160   // Fails for real_concept - because std::numeric_limits<RealType>::digits = 0
161 
162   // skewness:
163   BOOST_CHECK_CLOSE_FRACTION(skewness(dist),
164     static_cast<RealType>(2.449490L), tolerance);
165   // kurtosis:
166   BOOST_CHECK_CLOSE_FRACTION(kurtosis(dist),
167     static_cast<RealType>(10-3), tolerance);
168   BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(dist),
169     static_cast<RealType>(10), tolerance);
170 } // template <class RealType>void test_spots(RealType)
171 
BOOST_AUTO_TEST_CASE(test_main)172 BOOST_AUTO_TEST_CASE( test_main )
173 {
174   using boost::math::inverse_gaussian;
175   using boost::math::inverse_gaussian_distribution;
176 
177   //int precision = 17; // std::numeric_limits<double::max_digits10;
178   double tolfeweps = numeric_limits<double>::epsilon() * 5;
179   //double tol6decdigits = numeric_limits<float>::epsilon() * 2;
180   // Check that can generate inverse_gaussian distribution using the two convenience methods:
181   boost::math::inverse_gaussian w12(1., 2); // Using typedef
182   inverse_gaussian_distribution<> w23(2., 3); // Using default RealType double.
183   boost::math::inverse_gaussian w11; // Use default unity values for mean and scale.
184   // Note NOT myn01() as the compiler will interpret as a function!
185   BOOST_CHECK_EQUAL(w11.mean(), 1);
186   BOOST_CHECK_EQUAL(w11.scale(), 1);
187   BOOST_CHECK_EQUAL(w23.mean(), 2);
188   BOOST_CHECK_EQUAL(w23.scale(), 3);
189   BOOST_CHECK_EQUAL(w23.shape(), 1.5L);
190 
191   // Check the synonyms, provided to allow generic use of find_location and find_scale.
192   BOOST_CHECK_EQUAL(w11.mean(), w11.location());
193   BOOST_CHECK_EQUAL(w11.scale(), w11.scale());
194 
195   BOOST_CHECK_CLOSE_FRACTION(mean(w11), static_cast<double>(1), tolfeweps); // Default mean == unity
196   BOOST_CHECK_CLOSE_FRACTION(scale(w11), static_cast<double>(1), tolfeweps); // Default mean == unity
197 
198   // median
199   // (test double because fails for real_concept because numeric_limits<real_concept>::digits = 0)
200   BOOST_CHECK_CLOSE_FRACTION(median(w11),
201     static_cast<double>(0.67584130569523893), tolfeweps);
202   BOOST_CHECK_CLOSE_FRACTION(median(w23),
203     static_cast<double>(1.5122506636053668), tolfeweps);
204 
205   // Initial spot tests using double values from R.
206   // library(SuppDists)
207   // formatC(SuppDists::dinverse_gaussian(1, 1, 1), digits=17) ...
208   BOOST_CHECK_CLOSE_FRACTION( //  x = 1
209     pdf(w11, 1.), static_cast<double>(0.3989422804014327), tolfeweps); // pdf
210   BOOST_CHECK_CLOSE_FRACTION(
211     cdf(w11, 1.), static_cast<double>(0.66810200122317065), 10 * tolfeweps); // cdf
212 
213   BOOST_CHECK_CLOSE_FRACTION(
214     pdf(w11, 0.1), static_cast<double>(0.21979480031862672), tolfeweps); // pdf
215   BOOST_CHECK_CLOSE_FRACTION(
216     cdf(w11, 0.1), static_cast<double>(0.0040761113207110162), 10 * tolfeweps); // cdf
217 
218   BOOST_CHECK_CLOSE_FRACTION( // small x
219     pdf(w11, 0.01), static_cast<double>(2.0811768202028392e-19), tolfeweps); // pdf
220   BOOST_CHECK_CLOSE_FRACTION(
221     cdf(w11, 0.01), static_cast<double>(4.122313403318778e-23), 10 * tolfeweps); // cdf
222 
223   BOOST_CHECK_CLOSE_FRACTION( // smaller x
224     pdf(w11, 0.001), static_cast<double>(2.4420044378793562e-213),  tolfeweps); // pdf
225   BOOST_CHECK_CLOSE_FRACTION(
226     cdf(w11, 0.001), static_cast<double>(4.8791443010851493e-219), 1000 * tolfeweps); // cdf
227   // 4.8791443010859224e-219 versus 4.8791443010851493e-219 so still 14 decimal digits.
228 
229   BOOST_CHECK_CLOSE_FRACTION(
230     quantile(w11, 0.66810200122317065), static_cast<double>(1.), 1 * tolfeweps); // cdf
231   BOOST_CHECK_CLOSE_FRACTION(
232     quantile(w11, 0.0040761113207110162), static_cast<double>(0.1), 1 * tolfeweps); // cdf
233   BOOST_CHECK_CLOSE_FRACTION(
234     quantile(w11, 4.122313403318778e-23), 0.01, 1 * tolfeweps); // quantile
235   BOOST_CHECK_CLOSE_FRACTION(
236     quantile(w11, 2.4420044378793562e-213), 0.001, 0.03); // quantile
237   // quantile 0.001026926242348481 compared to expected 0.001, so much less accurate,
238   // but better than R that gives up completely!
239   // R Error in SuppDists::qinverse_gaussian(4.87914430108515e-219, 1, 1) : Infinite value in NewtonRoot()
240 
241   BOOST_CHECK_CLOSE_FRACTION(
242     pdf(w11, 0.5), static_cast<double>(0.87878257893544476), tolfeweps); // pdf
243   BOOST_CHECK_CLOSE_FRACTION(
244     cdf(w11, 0.5), static_cast<double>(0.3649755481729598), tolfeweps); // cdf
245 
246   BOOST_CHECK_CLOSE_FRACTION(
247     pdf(w11, 2), static_cast<double>(0.10984782236693059), tolfeweps); // pdf
248   BOOST_CHECK_CLOSE_FRACTION(
249     cdf(w11, 2), static_cast<double>(.88547542598600637), tolfeweps); // cdf
250 
251   BOOST_CHECK_CLOSE_FRACTION(
252     pdf(w11, 10), static_cast<double>(0.00021979480031862676), tolfeweps); // pdf
253   BOOST_CHECK_CLOSE_FRACTION(
254     cdf(w11, 10), static_cast<double>(0.99964958546279115), tolfeweps); // cdf
255 
256   BOOST_CHECK_CLOSE_FRACTION(
257     pdf(w11, 100), static_cast<double>(2.0811768202028246e-25), tolfeweps); // pdf
258   BOOST_CHECK_CLOSE_FRACTION(
259     cdf(w11, 100), static_cast<double>(1), tolfeweps); // cdf
260   BOOST_CHECK_CLOSE_FRACTION(
261     pdf(w11, 1000), static_cast<double>(2.4420044378793564e-222), 10 * tolfeweps); // pdf
262   BOOST_CHECK_CLOSE_FRACTION(
263     cdf(w11, 1000), static_cast<double>(1.), tolfeweps); // cdf
264 
265   // A few more misc tests, probably not very useful.
266   BOOST_CHECK_CLOSE_FRACTION(
267     cdf(w11, 1.), static_cast<double>(0.66810200122317065), tolfeweps); // cdf
268   BOOST_CHECK_CLOSE_FRACTION(
269     cdf(w11, 0.1), static_cast<double>(0.0040761113207110162), tolfeweps * 5); // cdf
270   // 0.0040761113207110162   0.0040761113207110362
271   BOOST_CHECK_CLOSE_FRACTION(
272     cdf(w11, 0.2), static_cast<double>(0.063753567519976254), tolfeweps * 5); // cdf
273   BOOST_CHECK_CLOSE_FRACTION(
274     cdf(w11, 0.5), static_cast<double>(0.3649755481729598), tolfeweps); // cdf
275 
276   BOOST_CHECK_CLOSE_FRACTION(
277     cdf(w11, 0.9), static_cast<double>(0.62502320258649202), tolfeweps); // cdf
278   BOOST_CHECK_CLOSE_FRACTION(
279     cdf(w11, 0.99), static_cast<double>(0.66408247396139031), tolfeweps); // cdf
280   BOOST_CHECK_CLOSE_FRACTION(
281     cdf(w11, 0.999), static_cast<double>(0.66770275955311675), tolfeweps); // cdf
282   BOOST_CHECK_CLOSE_FRACTION(
283     cdf(w11, 10.), static_cast<double>(0.99964958546279115), tolfeweps); // cdf
284   BOOST_CHECK_CLOSE_FRACTION(
285     cdf(w11, 50.), static_cast<double>(0.99999999999992029), tolfeweps); // cdf
286 
287   BOOST_CHECK_CLOSE_FRACTION(
288     quantile(w11, 0.3649755481729598), static_cast<double>(0.5), tolfeweps); // quantile
289   BOOST_CHECK_CLOSE_FRACTION(
290     quantile(w11, 0.62502320258649202), static_cast<double>(0.9), tolfeweps); // quantile
291   BOOST_CHECK_CLOSE_FRACTION(
292     quantile(w11, 0.0040761113207110162), static_cast<double>(0.1), tolfeweps); // quantile
293 
294   // Wald(2,3) tests
295   // ===================
296   BOOST_CHECK_CLOSE_FRACTION( // formatC(SuppDists::dinvGauss(1, 2, 3), digits=17) "0.47490884963330904"
297     pdf(w23, 1.), static_cast<double>(0.47490884963330904), tolfeweps ); // pdf
298 
299   BOOST_CHECK_CLOSE_FRACTION(
300     pdf(w23, 0.1), static_cast<double>(2.8854207087665401e-05), tolfeweps * 2); // pdf
301   //2.8854207087665452e-005 2.8854207087665401e-005
302   BOOST_CHECK_CLOSE_FRACTION(
303     pdf(w23, 10.), static_cast<double>(0.0019822751498574636), tolfeweps); // pdf
304   BOOST_CHECK_CLOSE_FRACTION(
305     pdf(w23, 10.), static_cast<double>(0.0019822751498574636), tolfeweps); // pdf
306 
307   // Bigger changes in mean and scale.
308 
309   inverse_gaussian w012(0.1, 2);
310   BOOST_CHECK_CLOSE_FRACTION(
311     pdf(w012, 1.), static_cast<double>(3.7460367141230404e-36), tolfeweps ); // pdf
312   BOOST_CHECK_CLOSE_FRACTION(
313     cdf(w012, 1.), static_cast<double>(1), tolfeweps ); // pdf
314 
315   inverse_gaussian w0110(0.1, 10);
316   BOOST_CHECK_CLOSE_FRACTION(
317     pdf(w0110, 1.), static_cast<double>(1.6279643678071011e-176), 100 * tolfeweps ); // pdf
318   BOOST_CHECK_CLOSE_FRACTION(
319     cdf(w0110, 1.), static_cast<double>(1), tolfeweps ); // cdf
320   BOOST_CHECK_CLOSE_FRACTION(
321      cdf(complement(w0110, 1.)), static_cast<double>(3.2787685715328683e-179), 1e6 * tolfeweps ); // cdf complement
322   // Differs because of loss of accuracy.
323 
324   BOOST_CHECK_CLOSE_FRACTION(
325     pdf(w0110, 0.1), static_cast<double>(39.894228040143268), tolfeweps ); // pdf
326   BOOST_CHECK_CLOSE_FRACTION(
327     cdf(w0110, 0.1), static_cast<double>(0.51989761564832704), 10 * tolfeweps ); // cdf
328 
329     // Basic sanity-check spot values for all floating-point types..
330   // (Parameter value, arbitrarily zero, only communicates the floating point type).
331   test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
332   test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
333 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
334   test_spots(0.0L); // Test long double.
335 #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
336   test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
337 #endif
338 #else
339   std::cout << "<note>The long double tests have been disabled on this platform "
340     "either because the long double overloads of the usual math functions are "
341     "not available at all, or because they are too inaccurate for these tests "
342     "to pass.</note>" << std::endl;
343 #endif
344   /*      */
345 
346 } // BOOST_AUTO_TEST_CASE( test_main )
347 
348 /*
349 
350 Output:
351 
352 
353 */
354 
355 
356