1 // Copyright Paul A. Bristow 2010.
2 // Copyright John Maddock 2010.
3
4 // Use, modification and distribution are subject to the
5 // Boost Software License, Version 1.0.
6 // (See accompanying file LICENSE_1_0.txt
7 // or copy at http://www.boost.org/LICENSE_1_0.txt)
8
9 #ifdef _MSC_VER
10 # pragma warning (disable : 4224) // nonstandard extension used : formal parameter 'type' was previously defined as a type
11 // in Boost.test and lexical_cast
12 # pragma warning (disable : 4310) // cast truncates constant value
13 # pragma warning (disable : 4512) // assignment operator could not be generated
14
15 #endif
16
17 //#include <pch.hpp> // include directory libs/math/src/tr1/ is needed.
18
19 #include <boost/math/tools/test.hpp>
20 #include <boost/math/concepts/real_concept.hpp> // for real_concept
21 #define BOOST_TEST_MAIN
22 #include <boost/test/unit_test.hpp> // Boost.Test
23 #include <boost/test/tools/floating_point_comparison.hpp>
24
25 #include <boost/math/distributions/inverse_gaussian.hpp>
26 using boost::math::inverse_gaussian_distribution;
27 using boost::math::inverse_gaussian;
28
29 #include <boost/math/tools/test.hpp>
30 #include "test_out_of_range.hpp"
31
32 #include <iostream>
33 #include <iomanip>
34 using std::cout;
35 using std::endl;
36 using std::setprecision;
37 #include <limits>
38 using std::numeric_limits;
39
40 template <class RealType>
check_inverse_gaussian(RealType mean,RealType scale,RealType x,RealType p,RealType q,RealType tol)41 void check_inverse_gaussian(RealType mean, RealType scale, RealType x, RealType p, RealType q, RealType tol)
42 {
43 using boost::math::inverse_gaussian_distribution;
44
45 BOOST_CHECK_CLOSE_FRACTION(
46 ::boost::math::cdf( // Check cdf
47 inverse_gaussian_distribution<RealType>(mean, scale), // distribution.
48 x), // random variable.
49 p, // probability.
50 tol); // tolerance.
51 BOOST_CHECK_CLOSE_FRACTION(
52 ::boost::math::cdf( // Check cdf complement
53 complement(
54 inverse_gaussian_distribution<RealType>(mean, scale), // distribution.
55 x)), // random variable.
56 q, // probability complement.
57 tol); // %tolerance.
58 BOOST_CHECK_CLOSE_FRACTION(
59 ::boost::math::quantile( // Check quantile
60 inverse_gaussian_distribution<RealType>(mean, scale), // distribution.
61 p), // probability.
62 x, // random variable.
63 tol); // tolerance.
64 BOOST_CHECK_CLOSE_FRACTION(
65 ::boost::math::quantile( // Check quantile complement
66 complement(
67 inverse_gaussian_distribution<RealType>(mean, scale), // distribution.
68 q)), // probability complement.
69 x, // random variable.
70 tol); // tolerance.
71
72 inverse_gaussian_distribution<RealType> dist (mean, scale);
73
74 if((p < 0.999) && (q < 0.999))
75 { // We can only check this if P is not too close to 1,
76 // so that we can guarantee Q is accurate:
77 BOOST_CHECK_CLOSE_FRACTION(
78 cdf(complement(dist, x)), q, tol); // 1 - cdf
79 BOOST_CHECK_CLOSE_FRACTION(
80 quantile(dist, p), x, tol); // quantile(cdf) = x
81 BOOST_CHECK_CLOSE_FRACTION(
82 quantile(complement(dist, q)), x, tol); // quantile(complement(1 - cdf)) = x
83 }
84 }
85
86 template <class RealType>
test_spots(RealType)87 void test_spots(RealType)
88 {
89 // Basic sanity checks
90 RealType tolerance = static_cast<RealType>(1e-4L); //
91 cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << endl;
92
93 // Check some bad parameters to the distribution,
94 #ifndef BOOST_NO_EXCEPTIONS
95 BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType> nbad1(0, 0), std::domain_error); // zero scale
96 BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType> nbad1(0, -1), std::domain_error); // negative scale
97 #else
98 BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType>(0, 0), std::domain_error); // zero scale
99 BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType>(0, -1), std::domain_error); // negative scale
100 #endif
101
102 inverse_gaussian_distribution<RealType> w11;
103
104 // Error tests:
105 check_out_of_range<inverse_gaussian_distribution<RealType> >(0.25, 1);
106
107 // Check complements.
108
109 BOOST_CHECK_CLOSE_FRACTION(
110 cdf(complement(w11, 1.)), static_cast<RealType>(1) - cdf(w11, 1.), tolerance); // cdf complement
111 // cdf(complement = 1 - cdf - but if cdf near unity, then loss of accuracy in cdf,
112 // but cdf complement is near zero but more accurate.
113
114 BOOST_CHECK_CLOSE_FRACTION( // quantile(complement p) == quantile(1 - p)
115 quantile(complement(w11, static_cast<RealType>(0.5))),
116 quantile(w11, 1 - static_cast<RealType>(0.5)),
117 tolerance); // cdf complement
118
119 check_inverse_gaussian(
120 static_cast<RealType>(2),
121 static_cast<RealType>(3),
122 static_cast<RealType>(1),
123 static_cast<RealType>(0.28738674440477374),
124 static_cast<RealType>(1 - 0.28738674440477374),
125 tolerance);
126
127 RealType tolfeweps = boost::math::tools::epsilon<RealType>() * 5;
128
129 inverse_gaussian_distribution<RealType> dist(2, 3);
130
131 using namespace std; // ADL of std names.
132 // mean:
133 BOOST_CHECK_CLOSE_FRACTION(mean(dist),
134 static_cast<RealType>(2), tolfeweps);
135 BOOST_CHECK_CLOSE_FRACTION(scale(dist),
136 static_cast<RealType>(3), tolfeweps);
137
138 // variance:
139 BOOST_CHECK_CLOSE_FRACTION(variance(dist),
140 static_cast<RealType>(2.6666666666666666666666666666666666666666666666666666666667L), 1000*tolfeweps);
141 // std deviation:
142 BOOST_CHECK_CLOSE_FRACTION(standard_deviation(dist),
143 static_cast<RealType>(1.632993L), 1000 * tolerance);
144 //// hazard:
145 //BOOST_CHECK_CLOSE_FRACTION(hazard(dist, x),
146 // pdf(dist, x) / cdf(complement(dist, x)), tolerance);
147 //// cumulative hazard:
148 //BOOST_CHECK_CLOSE_FRACTION(chf(dist, x),
149 // -log(cdf(complement(dist, x))), tolerance);
150 // coefficient_of_variation:
151 BOOST_CHECK_CLOSE_FRACTION(coefficient_of_variation(dist),
152 standard_deviation(dist) / mean(dist), tolerance);
153 // mode:
154 BOOST_CHECK_CLOSE_FRACTION(mode(dist),
155 static_cast<RealType>(0.8284271L), tolerance);
156
157 // median
158 BOOST_CHECK_CLOSE_FRACTION(median(dist),
159 static_cast<RealType>(1.5122506636053668L), tolerance);
160 // Fails for real_concept - because std::numeric_limits<RealType>::digits = 0
161
162 // skewness:
163 BOOST_CHECK_CLOSE_FRACTION(skewness(dist),
164 static_cast<RealType>(2.449490L), tolerance);
165 // kurtosis:
166 BOOST_CHECK_CLOSE_FRACTION(kurtosis(dist),
167 static_cast<RealType>(10-3), tolerance);
168 BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(dist),
169 static_cast<RealType>(10), tolerance);
170 } // template <class RealType>void test_spots(RealType)
171
BOOST_AUTO_TEST_CASE(test_main)172 BOOST_AUTO_TEST_CASE( test_main )
173 {
174 using boost::math::inverse_gaussian;
175 using boost::math::inverse_gaussian_distribution;
176
177 //int precision = 17; // std::numeric_limits<double::max_digits10;
178 double tolfeweps = numeric_limits<double>::epsilon() * 5;
179 //double tol6decdigits = numeric_limits<float>::epsilon() * 2;
180 // Check that can generate inverse_gaussian distribution using the two convenience methods:
181 boost::math::inverse_gaussian w12(1., 2); // Using typedef
182 inverse_gaussian_distribution<> w23(2., 3); // Using default RealType double.
183 boost::math::inverse_gaussian w11; // Use default unity values for mean and scale.
184 // Note NOT myn01() as the compiler will interpret as a function!
185 BOOST_CHECK_EQUAL(w11.mean(), 1);
186 BOOST_CHECK_EQUAL(w11.scale(), 1);
187 BOOST_CHECK_EQUAL(w23.mean(), 2);
188 BOOST_CHECK_EQUAL(w23.scale(), 3);
189 BOOST_CHECK_EQUAL(w23.shape(), 1.5L);
190
191 // Check the synonyms, provided to allow generic use of find_location and find_scale.
192 BOOST_CHECK_EQUAL(w11.mean(), w11.location());
193 BOOST_CHECK_EQUAL(w11.scale(), w11.scale());
194
195 BOOST_CHECK_CLOSE_FRACTION(mean(w11), static_cast<double>(1), tolfeweps); // Default mean == unity
196 BOOST_CHECK_CLOSE_FRACTION(scale(w11), static_cast<double>(1), tolfeweps); // Default mean == unity
197
198 // median
199 // (test double because fails for real_concept because numeric_limits<real_concept>::digits = 0)
200 BOOST_CHECK_CLOSE_FRACTION(median(w11),
201 static_cast<double>(0.67584130569523893), tolfeweps);
202 BOOST_CHECK_CLOSE_FRACTION(median(w23),
203 static_cast<double>(1.5122506636053668), tolfeweps);
204
205 // Initial spot tests using double values from R.
206 // library(SuppDists)
207 // formatC(SuppDists::dinverse_gaussian(1, 1, 1), digits=17) ...
208 BOOST_CHECK_CLOSE_FRACTION( // x = 1
209 pdf(w11, 1.), static_cast<double>(0.3989422804014327), tolfeweps); // pdf
210 BOOST_CHECK_CLOSE_FRACTION(
211 cdf(w11, 1.), static_cast<double>(0.66810200122317065), 10 * tolfeweps); // cdf
212
213 BOOST_CHECK_CLOSE_FRACTION(
214 pdf(w11, 0.1), static_cast<double>(0.21979480031862672), tolfeweps); // pdf
215 BOOST_CHECK_CLOSE_FRACTION(
216 cdf(w11, 0.1), static_cast<double>(0.0040761113207110162), 10 * tolfeweps); // cdf
217
218 BOOST_CHECK_CLOSE_FRACTION( // small x
219 pdf(w11, 0.01), static_cast<double>(2.0811768202028392e-19), tolfeweps); // pdf
220 BOOST_CHECK_CLOSE_FRACTION(
221 cdf(w11, 0.01), static_cast<double>(4.122313403318778e-23), 10 * tolfeweps); // cdf
222
223 BOOST_CHECK_CLOSE_FRACTION( // smaller x
224 pdf(w11, 0.001), static_cast<double>(2.4420044378793562e-213), tolfeweps); // pdf
225 BOOST_CHECK_CLOSE_FRACTION(
226 cdf(w11, 0.001), static_cast<double>(4.8791443010851493e-219), 1000 * tolfeweps); // cdf
227 // 4.8791443010859224e-219 versus 4.8791443010851493e-219 so still 14 decimal digits.
228
229 BOOST_CHECK_CLOSE_FRACTION(
230 quantile(w11, 0.66810200122317065), static_cast<double>(1.), 1 * tolfeweps); // cdf
231 BOOST_CHECK_CLOSE_FRACTION(
232 quantile(w11, 0.0040761113207110162), static_cast<double>(0.1), 1 * tolfeweps); // cdf
233 BOOST_CHECK_CLOSE_FRACTION(
234 quantile(w11, 4.122313403318778e-23), 0.01, 1 * tolfeweps); // quantile
235 BOOST_CHECK_CLOSE_FRACTION(
236 quantile(w11, 2.4420044378793562e-213), 0.001, 0.03); // quantile
237 // quantile 0.001026926242348481 compared to expected 0.001, so much less accurate,
238 // but better than R that gives up completely!
239 // R Error in SuppDists::qinverse_gaussian(4.87914430108515e-219, 1, 1) : Infinite value in NewtonRoot()
240
241 BOOST_CHECK_CLOSE_FRACTION(
242 pdf(w11, 0.5), static_cast<double>(0.87878257893544476), tolfeweps); // pdf
243 BOOST_CHECK_CLOSE_FRACTION(
244 cdf(w11, 0.5), static_cast<double>(0.3649755481729598), tolfeweps); // cdf
245
246 BOOST_CHECK_CLOSE_FRACTION(
247 pdf(w11, 2), static_cast<double>(0.10984782236693059), tolfeweps); // pdf
248 BOOST_CHECK_CLOSE_FRACTION(
249 cdf(w11, 2), static_cast<double>(.88547542598600637), tolfeweps); // cdf
250
251 BOOST_CHECK_CLOSE_FRACTION(
252 pdf(w11, 10), static_cast<double>(0.00021979480031862676), tolfeweps); // pdf
253 BOOST_CHECK_CLOSE_FRACTION(
254 cdf(w11, 10), static_cast<double>(0.99964958546279115), tolfeweps); // cdf
255
256 BOOST_CHECK_CLOSE_FRACTION(
257 pdf(w11, 100), static_cast<double>(2.0811768202028246e-25), tolfeweps); // pdf
258 BOOST_CHECK_CLOSE_FRACTION(
259 cdf(w11, 100), static_cast<double>(1), tolfeweps); // cdf
260 BOOST_CHECK_CLOSE_FRACTION(
261 pdf(w11, 1000), static_cast<double>(2.4420044378793564e-222), 10 * tolfeweps); // pdf
262 BOOST_CHECK_CLOSE_FRACTION(
263 cdf(w11, 1000), static_cast<double>(1.), tolfeweps); // cdf
264
265 // A few more misc tests, probably not very useful.
266 BOOST_CHECK_CLOSE_FRACTION(
267 cdf(w11, 1.), static_cast<double>(0.66810200122317065), tolfeweps); // cdf
268 BOOST_CHECK_CLOSE_FRACTION(
269 cdf(w11, 0.1), static_cast<double>(0.0040761113207110162), tolfeweps * 5); // cdf
270 // 0.0040761113207110162 0.0040761113207110362
271 BOOST_CHECK_CLOSE_FRACTION(
272 cdf(w11, 0.2), static_cast<double>(0.063753567519976254), tolfeweps * 5); // cdf
273 BOOST_CHECK_CLOSE_FRACTION(
274 cdf(w11, 0.5), static_cast<double>(0.3649755481729598), tolfeweps); // cdf
275
276 BOOST_CHECK_CLOSE_FRACTION(
277 cdf(w11, 0.9), static_cast<double>(0.62502320258649202), tolfeweps); // cdf
278 BOOST_CHECK_CLOSE_FRACTION(
279 cdf(w11, 0.99), static_cast<double>(0.66408247396139031), tolfeweps); // cdf
280 BOOST_CHECK_CLOSE_FRACTION(
281 cdf(w11, 0.999), static_cast<double>(0.66770275955311675), tolfeweps); // cdf
282 BOOST_CHECK_CLOSE_FRACTION(
283 cdf(w11, 10.), static_cast<double>(0.99964958546279115), tolfeweps); // cdf
284 BOOST_CHECK_CLOSE_FRACTION(
285 cdf(w11, 50.), static_cast<double>(0.99999999999992029), tolfeweps); // cdf
286
287 BOOST_CHECK_CLOSE_FRACTION(
288 quantile(w11, 0.3649755481729598), static_cast<double>(0.5), tolfeweps); // quantile
289 BOOST_CHECK_CLOSE_FRACTION(
290 quantile(w11, 0.62502320258649202), static_cast<double>(0.9), tolfeweps); // quantile
291 BOOST_CHECK_CLOSE_FRACTION(
292 quantile(w11, 0.0040761113207110162), static_cast<double>(0.1), tolfeweps); // quantile
293
294 // Wald(2,3) tests
295 // ===================
296 BOOST_CHECK_CLOSE_FRACTION( // formatC(SuppDists::dinvGauss(1, 2, 3), digits=17) "0.47490884963330904"
297 pdf(w23, 1.), static_cast<double>(0.47490884963330904), tolfeweps ); // pdf
298
299 BOOST_CHECK_CLOSE_FRACTION(
300 pdf(w23, 0.1), static_cast<double>(2.8854207087665401e-05), tolfeweps * 2); // pdf
301 //2.8854207087665452e-005 2.8854207087665401e-005
302 BOOST_CHECK_CLOSE_FRACTION(
303 pdf(w23, 10.), static_cast<double>(0.0019822751498574636), tolfeweps); // pdf
304 BOOST_CHECK_CLOSE_FRACTION(
305 pdf(w23, 10.), static_cast<double>(0.0019822751498574636), tolfeweps); // pdf
306
307 // Bigger changes in mean and scale.
308
309 inverse_gaussian w012(0.1, 2);
310 BOOST_CHECK_CLOSE_FRACTION(
311 pdf(w012, 1.), static_cast<double>(3.7460367141230404e-36), tolfeweps ); // pdf
312 BOOST_CHECK_CLOSE_FRACTION(
313 cdf(w012, 1.), static_cast<double>(1), tolfeweps ); // pdf
314
315 inverse_gaussian w0110(0.1, 10);
316 BOOST_CHECK_CLOSE_FRACTION(
317 pdf(w0110, 1.), static_cast<double>(1.6279643678071011e-176), 100 * tolfeweps ); // pdf
318 BOOST_CHECK_CLOSE_FRACTION(
319 cdf(w0110, 1.), static_cast<double>(1), tolfeweps ); // cdf
320 BOOST_CHECK_CLOSE_FRACTION(
321 cdf(complement(w0110, 1.)), static_cast<double>(3.2787685715328683e-179), 1e6 * tolfeweps ); // cdf complement
322 // Differs because of loss of accuracy.
323
324 BOOST_CHECK_CLOSE_FRACTION(
325 pdf(w0110, 0.1), static_cast<double>(39.894228040143268), tolfeweps ); // pdf
326 BOOST_CHECK_CLOSE_FRACTION(
327 cdf(w0110, 0.1), static_cast<double>(0.51989761564832704), 10 * tolfeweps ); // cdf
328
329 // Basic sanity-check spot values for all floating-point types..
330 // (Parameter value, arbitrarily zero, only communicates the floating point type).
331 test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
332 test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
333 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
334 test_spots(0.0L); // Test long double.
335 #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
336 test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
337 #endif
338 #else
339 std::cout << "<note>The long double tests have been disabled on this platform "
340 "either because the long double overloads of the usual math functions are "
341 "not available at all, or because they are too inaccurate for these tests "
342 "to pass.</note>" << std::endl;
343 #endif
344 /* */
345
346 } // BOOST_AUTO_TEST_CASE( test_main )
347
348 /*
349
350 Output:
351
352
353 */
354
355
356