• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright Nick Thompson, 2018
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #define BOOST_TEST_MODULE numerical_differentiation_test
7 
8 #include <cmath>
9 #include <limits>
10 #include <iostream>
11 #include <boost/type_index.hpp>
12 #include <boost/test/included/unit_test.hpp>
13 #include <boost/test/tools/floating_point_comparison.hpp>
14 #include <boost/math/special_functions/bessel.hpp>
15 #include <boost/math/special_functions/bessel_prime.hpp>
16 #include <boost/math/special_functions/next.hpp>
17 #include <boost/math/differentiation/finite_difference.hpp>
18 
19 using std::abs;
20 using std::pow;
21 using boost::math::differentiation::finite_difference_derivative;
22 using boost::math::differentiation::complex_step_derivative;
23 using boost::math::cyl_bessel_j;
24 using boost::math::cyl_bessel_j_prime;
25 using boost::math::constants::half;
26 
27 template<class Real, size_t order>
test_order(size_t points_to_test)28 void test_order(size_t points_to_test)
29 {
30     std::cout << "Testing order " <<  order  << " derivative error estimate on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
31     std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
32     //std::cout << std::fixed << std::scientific;
33     auto f = [](Real t) { return boost::math::cyl_bessel_j<Real>(1, t); };
34     Real min = -100000.0;
35     Real max = -min;
36     Real x = min;
37     Real max_error = 0;
38     Real max_relative_error_in_error = 0;
39     size_t j = 0;
40     size_t failures = 0;
41     while (j < points_to_test)
42     {
43         x = min + (Real) 2*j*max/ (Real) points_to_test;
44         Real error_estimate;
45         Real computed = finite_difference_derivative<decltype(f), Real, order>(f, x, &error_estimate);
46         Real expected = (Real) cyl_bessel_j_prime<Real>(1, x);
47         Real error = abs(computed - expected);
48         // The error estimate is provided under the assumption that the function is evaluated to 1 ULP.
49         // Presumably no one will be too offended by this estimate being off by a factor of 2 or so.
50         if (error > 2*error_estimate)
51         {
52             ++failures;
53             Real relative_error_in_error = abs(error - error_estimate)/ error;
54             if (relative_error_in_error > max_relative_error_in_error)
55             {
56                 max_relative_error_in_error = relative_error_in_error;
57             }
58             if (relative_error_in_error > 2)
59             {
60                 throw std::logic_error("Relative error in error is too high!");
61             }
62         }
63         if (error > max_error)
64         {
65             max_error = error;
66         }
67         ++j;
68     }
69     //std::cout << "Maximum error :" << max_error << "\n";
70     //std::cout <<  "Error estimate failed " << failures << " times out of " << points_to_test << "\n";
71     //std::cout << "Failure rate: " << (double) failures / (double) points_to_test << "\n";
72     //std::cout << "Maximum error in estimated error = " << max_relative_error_in_error << "\n";
73     //Real convergence_rate = (Real) order/ (Real) (order + 1);
74     //std::cout << "eps^(order/order+1) = " << pow(std::numeric_limits<Real>::epsilon(), convergence_rate) << "\n\n\n";
75 
76     bool max_error_good = max_error < 2*sqrt(std::numeric_limits<Real>::epsilon());
77     BOOST_TEST(max_error_good);
78 
79     bool error_estimate_good = max_relative_error_in_error < (Real) 2;
80     BOOST_TEST(error_estimate_good);
81 
82     double failure_rate = (double) failures / (double) points_to_test;
83     BOOST_CHECK_SMALL(failure_rate, 0.05);
84 }
85 
86 template<class Real>
test_bessel()87 void test_bessel()
88 {
89     std::cout << "Testing numerical derivatives of Bessel's function on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
90     std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
91 
92     Real eps = std::numeric_limits<Real>::epsilon();
93     Real x = static_cast<Real>(25.1);
94     auto f = [](Real t) { return boost::math::cyl_bessel_j(12, t); };
95 
96     Real computed = finite_difference_derivative<decltype(f), Real, 1>(f, x);
97     Real expected = cyl_bessel_j_prime(12, x);
98     Real error_estimate = 4*abs(f(x))*sqrt(eps);
99     //std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
100     //std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
101     //std::cout << "First order fd    : " << computed << std::endl;
102     //std::cout << "Error             : " << abs(computed - expected) << std::endl;
103     //std::cout << "a prior error est : " << error_estimate << std::endl;
104 
105     BOOST_CHECK_CLOSE_FRACTION(expected, computed, 10*error_estimate);
106 
107     computed = finite_difference_derivative<decltype(f), Real, 2>(f, x);
108     expected = cyl_bessel_j_prime(12, x);
109     error_estimate = abs(f(x))*pow(eps, boost::math::constants::two_thirds<Real>());
110     //std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
111     //std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
112     //std::cout << "Second order fd   : " << computed << std::endl;
113     //std::cout << "Error             : " << abs(computed - expected) << std::endl;
114     //std::cout << "a prior error est : " << error_estimate << std::endl;
115 
116     BOOST_CHECK_CLOSE_FRACTION(expected, computed, 50*error_estimate);
117 
118     computed = finite_difference_derivative<decltype(f), Real, 4>(f, x);
119     expected = cyl_bessel_j_prime(12, x);
120     error_estimate = abs(f(x))*pow(eps, (Real) 4 / (Real) 5);
121     //std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
122     //std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
123     //std::cout << "Fourth order fd   : " << computed << std::endl;
124     //std::cout << "Error             : " << abs(computed - expected) << std::endl;
125     //std::cout << "a prior error est : " << error_estimate << std::endl;
126 
127     BOOST_CHECK_CLOSE_FRACTION(expected, computed, 25*error_estimate);
128 
129 
130     computed = finite_difference_derivative<decltype(f), Real, 6>(f, x);
131     expected = cyl_bessel_j_prime(12, x);
132     error_estimate = abs(f(x))*pow(eps, (Real)  6/ (Real) 7);
133     //std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
134     //std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
135     //std::cout << "Sixth order fd    : " << computed << std::endl;
136     //std::cout << "Error             : " << abs(computed - expected) << std::endl;
137     //std::cout << "a prior error est : " << error_estimate << std::endl;
138 
139     BOOST_CHECK_CLOSE_FRACTION(expected, computed, 100*error_estimate);
140 
141     computed = finite_difference_derivative<decltype(f), Real, 8>(f, x);
142     expected = cyl_bessel_j_prime(12, x);
143     error_estimate = abs(f(x))*pow(eps, (Real)  8/ (Real) 9);
144     //std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
145     //std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
146     //std::cout << "Eighth order fd   : " << computed << std::endl;
147     //std::cout << "Error             : " << abs(computed - expected) << std::endl;
148     //std::cout << "a prior error est : " << error_estimate << std::endl;
149 
150     BOOST_CHECK_CLOSE_FRACTION(expected, computed, 25*error_estimate);
151 }
152 
153 // Example of a function which is subject to catastrophic cancellation using finite-differences, but is almost perfectly stable using complex step:
154 template<class RealOrComplex>
moler_example(RealOrComplex x)155 RealOrComplex moler_example(RealOrComplex x)
156 {
157     using std::sin;
158     using std::cos;
159     using std::exp;
160 
161     RealOrComplex cosx = cos(x);
162     RealOrComplex sinx = sin(x);
163     return exp(x)/(cosx*cosx*cosx + sinx*sinx*sinx);
164 }
165 
166 template<class RealOrComplex>
moler_example_derivative(RealOrComplex x)167 RealOrComplex moler_example_derivative(RealOrComplex x)
168 {
169     using std::sin;
170     using std::cos;
171     using std::exp;
172 
173     RealOrComplex expx = exp(x);
174     RealOrComplex cosx = cos(x);
175     RealOrComplex sinx = sin(x);
176     RealOrComplex coscubed_sincubed = cosx*cosx*cosx + sinx*sinx*sinx;
177     return (expx/coscubed_sincubed)*(1 - 3*(sinx*sinx*cosx - sinx*cosx*cosx)/ (coscubed_sincubed));
178 }
179 
180 
181 template<class Real>
test_complex_step()182 void test_complex_step()
183 {
184     using std::abs;
185     using std::complex;
186     using std::isfinite;
187     using std::isnormal;
188     std::cout << "Testing numerical derivatives of Bessel's function on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
189     std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
190     Real x = -100;
191     while ( x < 100 )
192     {
193         if (!isfinite(moler_example(x)))
194         {
195             x += 1;
196             continue;
197         }
198         Real expected = moler_example_derivative<Real>(x);
199         Real computed = complex_step_derivative(moler_example<complex<Real>>, x);
200         if (!isfinite(expected))
201         {
202             x += 1;
203             continue;
204         }
205         if (abs(expected) <= std::numeric_limits<Real>::epsilon())
206         {
207             bool issmall = computed < std::numeric_limits<Real>::epsilon();
208             BOOST_TEST(issmall);
209         }
210         else
211         {
212             BOOST_CHECK_CLOSE_FRACTION(expected, computed, 200*std::numeric_limits<Real>::epsilon());
213         }
214         x += 1;
215     }
216 }
217 
218 
BOOST_AUTO_TEST_CASE(numerical_differentiation_test)219 BOOST_AUTO_TEST_CASE(numerical_differentiation_test)
220 {
221     test_complex_step<float>();
222     test_complex_step<double>();
223 
224     test_bessel<float>();
225     test_bessel<double>();
226 
227 
228     size_t points_to_test = 1000;
229     test_order<float, 1>(points_to_test);
230     test_order<double, 1>(points_to_test);
231 
232 
233     test_order<float, 2>(points_to_test);
234     test_order<double, 2>(points_to_test);
235 
236     test_order<float, 4>(points_to_test);
237     test_order<double, 4>(points_to_test);
238 
239     test_order<float, 6>(points_to_test);
240     test_order<double, 6>(points_to_test);
241 
242     test_order<float, 8>(points_to_test);
243     test_order<double, 8>(points_to_test);
244 
245 }
246