1 // (C) Copyright Nick Thompson, 2018
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0. (See accompanying file
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5
6 #define BOOST_TEST_MODULE numerical_differentiation_test
7
8 #include <cmath>
9 #include <limits>
10 #include <iostream>
11 #include <boost/type_index.hpp>
12 #include <boost/test/included/unit_test.hpp>
13 #include <boost/test/tools/floating_point_comparison.hpp>
14 #include <boost/math/special_functions/bessel.hpp>
15 #include <boost/math/special_functions/bessel_prime.hpp>
16 #include <boost/math/special_functions/next.hpp>
17 #include <boost/math/differentiation/finite_difference.hpp>
18
19 using std::abs;
20 using std::pow;
21 using boost::math::differentiation::finite_difference_derivative;
22 using boost::math::differentiation::complex_step_derivative;
23 using boost::math::cyl_bessel_j;
24 using boost::math::cyl_bessel_j_prime;
25 using boost::math::constants::half;
26
27 template<class Real, size_t order>
test_order(size_t points_to_test)28 void test_order(size_t points_to_test)
29 {
30 std::cout << "Testing order " << order << " derivative error estimate on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
31 std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
32 //std::cout << std::fixed << std::scientific;
33 auto f = [](Real t) { return boost::math::cyl_bessel_j<Real>(1, t); };
34 Real min = -100000.0;
35 Real max = -min;
36 Real x = min;
37 Real max_error = 0;
38 Real max_relative_error_in_error = 0;
39 size_t j = 0;
40 size_t failures = 0;
41 while (j < points_to_test)
42 {
43 x = min + (Real) 2*j*max/ (Real) points_to_test;
44 Real error_estimate;
45 Real computed = finite_difference_derivative<decltype(f), Real, order>(f, x, &error_estimate);
46 Real expected = (Real) cyl_bessel_j_prime<Real>(1, x);
47 Real error = abs(computed - expected);
48 // The error estimate is provided under the assumption that the function is evaluated to 1 ULP.
49 // Presumably no one will be too offended by this estimate being off by a factor of 2 or so.
50 if (error > 2*error_estimate)
51 {
52 ++failures;
53 Real relative_error_in_error = abs(error - error_estimate)/ error;
54 if (relative_error_in_error > max_relative_error_in_error)
55 {
56 max_relative_error_in_error = relative_error_in_error;
57 }
58 if (relative_error_in_error > 2)
59 {
60 throw std::logic_error("Relative error in error is too high!");
61 }
62 }
63 if (error > max_error)
64 {
65 max_error = error;
66 }
67 ++j;
68 }
69 //std::cout << "Maximum error :" << max_error << "\n";
70 //std::cout << "Error estimate failed " << failures << " times out of " << points_to_test << "\n";
71 //std::cout << "Failure rate: " << (double) failures / (double) points_to_test << "\n";
72 //std::cout << "Maximum error in estimated error = " << max_relative_error_in_error << "\n";
73 //Real convergence_rate = (Real) order/ (Real) (order + 1);
74 //std::cout << "eps^(order/order+1) = " << pow(std::numeric_limits<Real>::epsilon(), convergence_rate) << "\n\n\n";
75
76 bool max_error_good = max_error < 2*sqrt(std::numeric_limits<Real>::epsilon());
77 BOOST_TEST(max_error_good);
78
79 bool error_estimate_good = max_relative_error_in_error < (Real) 2;
80 BOOST_TEST(error_estimate_good);
81
82 double failure_rate = (double) failures / (double) points_to_test;
83 BOOST_CHECK_SMALL(failure_rate, 0.05);
84 }
85
86 template<class Real>
test_bessel()87 void test_bessel()
88 {
89 std::cout << "Testing numerical derivatives of Bessel's function on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
90 std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
91
92 Real eps = std::numeric_limits<Real>::epsilon();
93 Real x = static_cast<Real>(25.1);
94 auto f = [](Real t) { return boost::math::cyl_bessel_j(12, t); };
95
96 Real computed = finite_difference_derivative<decltype(f), Real, 1>(f, x);
97 Real expected = cyl_bessel_j_prime(12, x);
98 Real error_estimate = 4*abs(f(x))*sqrt(eps);
99 //std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
100 //std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
101 //std::cout << "First order fd : " << computed << std::endl;
102 //std::cout << "Error : " << abs(computed - expected) << std::endl;
103 //std::cout << "a prior error est : " << error_estimate << std::endl;
104
105 BOOST_CHECK_CLOSE_FRACTION(expected, computed, 10*error_estimate);
106
107 computed = finite_difference_derivative<decltype(f), Real, 2>(f, x);
108 expected = cyl_bessel_j_prime(12, x);
109 error_estimate = abs(f(x))*pow(eps, boost::math::constants::two_thirds<Real>());
110 //std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
111 //std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
112 //std::cout << "Second order fd : " << computed << std::endl;
113 //std::cout << "Error : " << abs(computed - expected) << std::endl;
114 //std::cout << "a prior error est : " << error_estimate << std::endl;
115
116 BOOST_CHECK_CLOSE_FRACTION(expected, computed, 50*error_estimate);
117
118 computed = finite_difference_derivative<decltype(f), Real, 4>(f, x);
119 expected = cyl_bessel_j_prime(12, x);
120 error_estimate = abs(f(x))*pow(eps, (Real) 4 / (Real) 5);
121 //std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
122 //std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
123 //std::cout << "Fourth order fd : " << computed << std::endl;
124 //std::cout << "Error : " << abs(computed - expected) << std::endl;
125 //std::cout << "a prior error est : " << error_estimate << std::endl;
126
127 BOOST_CHECK_CLOSE_FRACTION(expected, computed, 25*error_estimate);
128
129
130 computed = finite_difference_derivative<decltype(f), Real, 6>(f, x);
131 expected = cyl_bessel_j_prime(12, x);
132 error_estimate = abs(f(x))*pow(eps, (Real) 6/ (Real) 7);
133 //std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
134 //std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
135 //std::cout << "Sixth order fd : " << computed << std::endl;
136 //std::cout << "Error : " << abs(computed - expected) << std::endl;
137 //std::cout << "a prior error est : " << error_estimate << std::endl;
138
139 BOOST_CHECK_CLOSE_FRACTION(expected, computed, 100*error_estimate);
140
141 computed = finite_difference_derivative<decltype(f), Real, 8>(f, x);
142 expected = cyl_bessel_j_prime(12, x);
143 error_estimate = abs(f(x))*pow(eps, (Real) 8/ (Real) 9);
144 //std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
145 //std::cout << "cyl_bessel_j_prime: " << expected << std::endl;
146 //std::cout << "Eighth order fd : " << computed << std::endl;
147 //std::cout << "Error : " << abs(computed - expected) << std::endl;
148 //std::cout << "a prior error est : " << error_estimate << std::endl;
149
150 BOOST_CHECK_CLOSE_FRACTION(expected, computed, 25*error_estimate);
151 }
152
153 // Example of a function which is subject to catastrophic cancellation using finite-differences, but is almost perfectly stable using complex step:
154 template<class RealOrComplex>
moler_example(RealOrComplex x)155 RealOrComplex moler_example(RealOrComplex x)
156 {
157 using std::sin;
158 using std::cos;
159 using std::exp;
160
161 RealOrComplex cosx = cos(x);
162 RealOrComplex sinx = sin(x);
163 return exp(x)/(cosx*cosx*cosx + sinx*sinx*sinx);
164 }
165
166 template<class RealOrComplex>
moler_example_derivative(RealOrComplex x)167 RealOrComplex moler_example_derivative(RealOrComplex x)
168 {
169 using std::sin;
170 using std::cos;
171 using std::exp;
172
173 RealOrComplex expx = exp(x);
174 RealOrComplex cosx = cos(x);
175 RealOrComplex sinx = sin(x);
176 RealOrComplex coscubed_sincubed = cosx*cosx*cosx + sinx*sinx*sinx;
177 return (expx/coscubed_sincubed)*(1 - 3*(sinx*sinx*cosx - sinx*cosx*cosx)/ (coscubed_sincubed));
178 }
179
180
181 template<class Real>
test_complex_step()182 void test_complex_step()
183 {
184 using std::abs;
185 using std::complex;
186 using std::isfinite;
187 using std::isnormal;
188 std::cout << "Testing numerical derivatives of Bessel's function on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
189 std::cout << std::setprecision(std::numeric_limits<Real>::digits10);
190 Real x = -100;
191 while ( x < 100 )
192 {
193 if (!isfinite(moler_example(x)))
194 {
195 x += 1;
196 continue;
197 }
198 Real expected = moler_example_derivative<Real>(x);
199 Real computed = complex_step_derivative(moler_example<complex<Real>>, x);
200 if (!isfinite(expected))
201 {
202 x += 1;
203 continue;
204 }
205 if (abs(expected) <= std::numeric_limits<Real>::epsilon())
206 {
207 bool issmall = computed < std::numeric_limits<Real>::epsilon();
208 BOOST_TEST(issmall);
209 }
210 else
211 {
212 BOOST_CHECK_CLOSE_FRACTION(expected, computed, 200*std::numeric_limits<Real>::epsilon());
213 }
214 x += 1;
215 }
216 }
217
218
BOOST_AUTO_TEST_CASE(numerical_differentiation_test)219 BOOST_AUTO_TEST_CASE(numerical_differentiation_test)
220 {
221 test_complex_step<float>();
222 test_complex_step<double>();
223
224 test_bessel<float>();
225 test_bessel<double>();
226
227
228 size_t points_to_test = 1000;
229 test_order<float, 1>(points_to_test);
230 test_order<double, 1>(points_to_test);
231
232
233 test_order<float, 2>(points_to_test);
234 test_order<double, 2>(points_to_test);
235
236 test_order<float, 4>(points_to_test);
237 test_order<double, 4>(points_to_test);
238
239 test_order<float, 6>(points_to_test);
240 test_order<double, 6>(points_to_test);
241
242 test_order<float, 8>(points_to_test);
243 test_order<double, 8>(points_to_test);
244
245 }
246