• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright John Maddock 2018.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #define BOOST_TEST_MODULE test_recurrences
7 
8 #include <boost/config.hpp>
9 
10 #ifndef BOOST_NO_CXX11_HDR_TUPLE
11 #include <boost/multiprecision/cpp_bin_float.hpp>
12 #include <boost/math/tools/recurrence.hpp>
13 #include <boost/math/special_functions/bessel.hpp>
14 #include <boost/test/included/unit_test.hpp>
15 #include <boost/test/floating_point_comparison.hpp>
16 //#include <boost/test/tools/floating_point_comparison.hpp>
17 #include <boost/math/concepts/real_concept.hpp>
18 
19 #ifdef BOOST_MSVC
20 #pragma warning(disable:4127)
21 #endif
22 
23 template <class T>
24 struct bessel_jy_recurrence
25 {
bessel_jy_recurrencebessel_jy_recurrence26    bessel_jy_recurrence(T v, T z) : v(v), z(z) {}
operator ()bessel_jy_recurrence27    boost::math::tuple<T, T, T> operator()(int k)const
28    {
29       return boost::math::tuple<T, T, T>(T(1), -2 * (v + k) / z, T(1));
30    }
31 
32    T v, z;
33 };
34 
35 template <class T>
36 struct bessel_ik_recurrence
37 {
bessel_ik_recurrencebessel_ik_recurrence38    bessel_ik_recurrence(T v, T z) : v(v), z(z) {}
operator ()bessel_ik_recurrence39    boost::math::tuple<T, T, T> operator()(int k)const
40    {
41       return boost::math::tuple<T, T, T>(T(1), -2 * (v + k) / z, T(-1));
42    }
43 
44    T v, z;
45 };
46 
47 
48 template <class T>
test_spots(T,const char * name)49 void test_spots(T, const char* name)
50 {
51    std::cout << "Running tests for type " << name << std::endl;
52    T tol = boost::math::tools::epsilon<T>() * 5;
53    if ((std::numeric_limits<T>::digits > 53) || (std::numeric_limits<T>::digits == 0))
54       tol *= 5;
55    //
56    // Test forward recurrence on Y_v(x):
57    //
58    {
59       T v = 22.25;
60       T x = 4.125;
61       bessel_jy_recurrence<T> coef(v, x);
62       T prev;
63       T first = boost::math::cyl_neumann(v - 1, x);
64       T second = boost::math::cyl_neumann(v, x);
65       T sixth = boost::math::tools::apply_recurrence_relation_forward(coef, 6, first, second, (int*)0, &prev);
66       T expected1 = boost::math::cyl_neumann(v + 6, x);
67       T expected2 = boost::math::cyl_neumann(v + 5, x);
68       BOOST_CHECK_CLOSE_FRACTION(sixth, expected1, tol);
69       BOOST_CHECK_CLOSE_FRACTION(prev, expected2, tol);
70 
71       boost::math::tools::forward_recurrence_iterator< bessel_jy_recurrence<T> > it(coef, first, second);
72       for (unsigned i = 0; i < 15; ++i)
73       {
74          expected1 = boost::math::cyl_neumann(v + i, x);
75          T found = *it;
76          BOOST_CHECK_CLOSE_FRACTION(found, expected1, tol);
77          ++it;
78       }
79 
80       if (std::numeric_limits<T>::max_exponent > 300)
81       {
82          //
83          // This calculates the ratio Y_v(x)/Y_v+1(x) from the recurrence relations
84          // which are only transiently stable since Y_v is not minimal as v->-INF
85          // but only as v->0.  We have to be sure that v is sufficiently large that
86          // convergence is complete before we reach the origin.
87          //
88          v = 102.75;
89          boost::uintmax_t max_iter = 200;
90          T ratio = boost::math::tools::function_ratio_from_forwards_recurrence(bessel_jy_recurrence<T>(v, x), boost::math::tools::epsilon<T>(), max_iter);
91          first = boost::math::cyl_neumann(v, x);
92          second = boost::math::cyl_neumann(v + 1, x);
93          BOOST_CHECK_CLOSE_FRACTION(ratio, first / second, tol);
94 
95          boost::math::tools::forward_recurrence_iterator< bessel_jy_recurrence<T> > it2(bessel_jy_recurrence<T>(v, x), boost::math::cyl_neumann(v, x));
96          for (unsigned i = 0; i < 15; ++i)
97          {
98             expected1 = boost::math::cyl_neumann(v + i, x);
99             T found = *it2;
100             BOOST_CHECK_CLOSE_FRACTION(found, expected1, tol);
101             ++it2;
102          }
103       }
104 
105    }
106    //
107    // Test backward recurrence on J_v(x):
108    //
109    {
110       if ((std::numeric_limits<T>::digits > 53) || !std::numeric_limits<T>::is_specialized)
111          tol *= 5;
112 
113       T v = 22.25;
114       T x = 4.125;
115       bessel_jy_recurrence<T> coef(v, x);
116       T prev;
117       T first = boost::math::cyl_bessel_j(v + 1, x);
118       T second = boost::math::cyl_bessel_j(v, x);
119       T sixth = boost::math::tools::apply_recurrence_relation_backward(coef, 6, first, second, (int*)0, &prev);
120       T expected1 = boost::math::cyl_bessel_j(v - 6, x);
121       T expected2 = boost::math::cyl_bessel_j(v - 5, x);
122       BOOST_CHECK_CLOSE_FRACTION(sixth, expected1, tol);
123       BOOST_CHECK_CLOSE_FRACTION(prev, expected2, tol);
124 
125       boost::math::tools::backward_recurrence_iterator< bessel_jy_recurrence<T> > it(coef, first, second);
126       for (unsigned i = 0; i < 15; ++i)
127       {
128          expected1 = boost::math::cyl_bessel_j(v - i, x);
129          T found = *it;
130          BOOST_CHECK_CLOSE_FRACTION(found, expected1, tol);
131          ++it;
132       }
133 
134       boost::uintmax_t max_iter = 200;
135       T ratio = boost::math::tools::function_ratio_from_backwards_recurrence(bessel_jy_recurrence<T>(v, x), boost::math::tools::epsilon<T>(), max_iter);
136       first = boost::math::cyl_bessel_j(v, x);
137       second = boost::math::cyl_bessel_j(v - 1, x);
138       BOOST_CHECK_CLOSE_FRACTION(ratio, first / second, tol);
139 
140       boost::math::tools::backward_recurrence_iterator< bessel_jy_recurrence<T> > it2(bessel_jy_recurrence<T>(v, x), boost::math::cyl_bessel_j(v, x));
141       //boost::math::tools::backward_recurrence_iterator< bessel_jy_recurrence<T> > it3(bessel_jy_recurrence<T>(v, x), boost::math::cyl_neumann(v+1, x), boost::math::cyl_neumann(v, x));
142       for (unsigned i = 0; i < 15; ++i)
143       {
144          expected1 = boost::math::cyl_bessel_j(v - i, x);
145          T found = *it2;
146          BOOST_CHECK_CLOSE_FRACTION(found, expected1, tol);
147          ++it2;
148       }
149 
150    }
151 }
152 
153 
BOOST_AUTO_TEST_CASE(test_main)154 BOOST_AUTO_TEST_CASE( test_main )
155 {
156    BOOST_MATH_CONTROL_FP;
157 #if !defined(TEST) || TEST == 1
158    test_spots(0.0F, "float");
159    test_spots(0.0, "double");
160 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
161    test_spots(0.0L, "long double");
162 #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
163    test_spots(boost::math::concepts::real_concept(0.1), "real_concept");
164 #endif
165 #endif
166 #endif
167 #if !defined(TEST) || TEST == 2 || TEST == 3
168    test_spots(boost::multiprecision::cpp_bin_float_quad(), "cpp_bin_float_quad");
169 #endif
170 }
171 
172 #else
173 
main()174 int main() { return 0; }
175 
176 #endif
177