1 // Copyright Nick Thompson, 2019
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0.
4 // (See accompanying file LICENSE_1_0.txt
5 // or copy at http://www.boost.org/LICENSE_1_0.txt)
6
7 #define BOOST_TEST_MODULE vector_barycentric_rational
8
9 #include <cmath>
10 #include <random>
11 #include <array>
12 #include <Eigen/Dense>
13 #include <boost/numeric/ublas/vector.hpp>
14 #include <boost/random/uniform_real_distribution.hpp>
15 #include <boost/type_index.hpp>
16 #include <boost/test/included/unit_test.hpp>
17 #include <boost/test/tools/floating_point_comparison.hpp>
18 #include <boost/math/interpolators/barycentric_rational.hpp>
19 #include <boost/math/interpolators/vector_barycentric_rational.hpp>
20
21 using std::sqrt;
22 using std::abs;
23 using std::numeric_limits;
24
25 template<class Real>
test_agreement_with_1d()26 void test_agreement_with_1d()
27 {
28 std::cout << "Testing with 1D interpolation on type "
29 << boost::typeindex::type_id<Real>().pretty_name() << "\n";
30 std::mt19937 gen(4723);
31 boost::random::uniform_real_distribution<Real> dis(0.1f, 1);
32 std::vector<Real> t(100);
33 std::vector<Eigen::Vector2d> y(100);
34 t[0] = dis(gen);
35 y[0][0] = dis(gen);
36 y[0][1] = dis(gen);
37 for (size_t i = 1; i < t.size(); ++i)
38 {
39 t[i] = t[i-1] + dis(gen);
40 y[i][0] = dis(gen);
41 y[i][1] = dis(gen);
42 }
43
44 std::vector<Eigen::Vector2d> y_copy = y;
45 std::vector<Real> t_copy = t;
46 std::vector<Real> t_copy0 = t;
47 std::vector<Real> t_copy1 = t;
48
49 std::vector<Real> y_copy0(y.size());
50 std::vector<Real> y_copy1(y.size());
51 for (size_t i = 0; i < y.size(); ++i) {
52 y_copy0[i] = y[i][0];
53 y_copy1[i] = y[i][1];
54 }
55
56 boost::random::uniform_real_distribution<Real> dis2(t[0], t[t.size()-1]);
57 boost::math::vector_barycentric_rational<decltype(t), decltype(y)> interpolator(std::move(t), std::move(y));
58 boost::math::barycentric_rational<Real> scalar_interpolator0(std::move(t_copy0), std::move(y_copy0));
59 boost::math::barycentric_rational<Real> scalar_interpolator1(std::move(t_copy1), std::move(y_copy1));
60
61
62 Eigen::Vector2d z;
63
64 size_t samples = 0;
65 while (samples++ < 1000)
66 {
67 Real t = dis2(gen);
68 interpolator(z, t);
69 BOOST_CHECK_CLOSE(z[0], scalar_interpolator0(t), 10000*numeric_limits<Real>::epsilon());
70 BOOST_CHECK_CLOSE(z[1], scalar_interpolator1(t), 10000*numeric_limits<Real>::epsilon());
71 }
72 }
73
74
75 template<class Real>
test_interpolation_condition_eigen()76 void test_interpolation_condition_eigen()
77 {
78 std::cout << "Testing interpolation condition for barycentric interpolation on Eigen vectors of type "
79 << boost::typeindex::type_id<Real>().pretty_name() << "\n";
80 std::mt19937 gen(4723);
81 boost::random::uniform_real_distribution<Real> dis(0.1f, 1);
82 std::vector<Real> t(100);
83 std::vector<Eigen::Vector2d> y(100);
84 t[0] = dis(gen);
85 y[0][0] = dis(gen);
86 y[0][1] = dis(gen);
87 for (size_t i = 1; i < t.size(); ++i)
88 {
89 t[i] = t[i-1] + dis(gen);
90 y[i][0] = dis(gen);
91 y[i][1] = dis(gen);
92 }
93
94 std::vector<Eigen::Vector2d> y_copy = y;
95 std::vector<Real> t_copy = t;
96 boost::math::vector_barycentric_rational<decltype(t), decltype(y)> interpolator(std::move(t), std::move(y));
97
98 Eigen::Vector2d z;
99 for (size_t i = 0; i < t_copy.size(); ++i)
100 {
101 interpolator(z, t_copy[i]);
102 BOOST_CHECK_CLOSE(z[0], y_copy[i][0], 100*numeric_limits<Real>::epsilon());
103 BOOST_CHECK_CLOSE(z[1], y_copy[i][1], 100*numeric_limits<Real>::epsilon());
104 }
105 }
106
107 template<class Real>
test_interpolation_condition_std_array()108 void test_interpolation_condition_std_array()
109 {
110 std::cout << "Testing interpolation condition for barycentric interpolation on std::array vectors of type "
111 << boost::typeindex::type_id<Real>().pretty_name() << "\n";
112 std::mt19937 gen(4723);
113 boost::random::uniform_real_distribution<Real> dis(0.1f, 1);
114 std::vector<Real> t(100);
115 std::vector<std::array<Real, 2>> y(100);
116 t[0] = dis(gen);
117 y[0][0] = dis(gen);
118 y[0][1] = dis(gen);
119 for (size_t i = 1; i < t.size(); ++i)
120 {
121 t[i] = t[i-1] + dis(gen);
122 y[i][0] = dis(gen);
123 y[i][1] = dis(gen);
124 }
125
126 std::vector<std::array<Real, 2>> y_copy = y;
127 std::vector<Real> t_copy = t;
128 boost::math::vector_barycentric_rational<decltype(t), decltype(y)> interpolator(std::move(t), std::move(y));
129
130 std::array<Real, 2> z;
131 for (size_t i = 0; i < t_copy.size(); ++i)
132 {
133 interpolator(z, t_copy[i]);
134 BOOST_CHECK_CLOSE(z[0], y_copy[i][0], 100*numeric_limits<Real>::epsilon());
135 BOOST_CHECK_CLOSE(z[1], y_copy[i][1], 100*numeric_limits<Real>::epsilon());
136 }
137 }
138
139
140 template<class Real>
test_interpolation_condition_ublas()141 void test_interpolation_condition_ublas()
142 {
143 std::cout << "Testing interpolation condition for barycentric interpolation ublas vectors of type "
144 << boost::typeindex::type_id<Real>().pretty_name() << "\n";
145 std::mt19937 gen(4723);
146 boost::random::uniform_real_distribution<Real> dis(0.1f, 1);
147 std::vector<Real> t(100);
148 std::vector<boost::numeric::ublas::vector<Real>> y(100);
149 t[0] = dis(gen);
150 y[0].resize(2);
151 y[0][0] = dis(gen);
152 y[0][1] = dis(gen);
153 for (size_t i = 1; i < t.size(); ++i)
154 {
155 t[i] = t[i-1] + dis(gen);
156 y[i].resize(2);
157 y[i][0] = dis(gen);
158 y[i][1] = dis(gen);
159 }
160
161 std::vector<Real> t_copy = t;
162 std::vector<boost::numeric::ublas::vector<Real>> y_copy = y;
163
164 boost::math::vector_barycentric_rational<decltype(t), decltype(y)> interpolator(std::move(t), std::move(y));
165
166 boost::numeric::ublas::vector<Real> z(2);
167 for (size_t i = 0; i < t_copy.size(); ++i)
168 {
169 interpolator(z, t_copy[i]);
170 BOOST_CHECK_CLOSE(z[0], y_copy[i][0], 100*numeric_limits<Real>::epsilon());
171 BOOST_CHECK_CLOSE(z[1], y_copy[i][1], 100*numeric_limits<Real>::epsilon());
172 }
173 }
174
175 template<class Real>
test_interpolation_condition_high_order()176 void test_interpolation_condition_high_order()
177 {
178 std::cout << "Testing interpolation condition in high order for barycentric interpolation on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
179 std::mt19937 gen(5);
180 boost::random::uniform_real_distribution<Real> dis(0.1f, 1);
181 std::vector<Real> t(100);
182 std::vector<Eigen::Vector2d> y(100);
183 t[0] = dis(gen);
184 y[0][0] = dis(gen);
185 y[0][1] = dis(gen);
186 for (size_t i = 1; i < t.size(); ++i)
187 {
188 t[i] = t[i-1] + dis(gen);
189 y[i][0] = dis(gen);
190 y[i][1] = dis(gen);
191 }
192
193 std::vector<Eigen::Vector2d> y_copy = y;
194 std::vector<Real> t_copy = t;
195 boost::math::vector_barycentric_rational<decltype(t), decltype(y)> interpolator(std::move(t), std::move(y), 5);
196
197 Eigen::Vector2d z;
198 for (size_t i = 0; i < t_copy.size(); ++i)
199 {
200 interpolator(z, t_copy[i]);
201 BOOST_CHECK_CLOSE(z[0], y_copy[i][0], 100*numeric_limits<Real>::epsilon());
202 BOOST_CHECK_CLOSE(z[1], y_copy[i][1], 100*numeric_limits<Real>::epsilon());
203 }
204 }
205
206
207 template<class Real>
test_constant_eigen()208 void test_constant_eigen()
209 {
210 std::cout << "Testing that constants are interpolated correctly using barycentric interpolation on Eigen vectors of type "
211 << boost::typeindex::type_id<Real>().pretty_name() << "\n";
212
213 std::mt19937 gen(6);
214 boost::random::uniform_real_distribution<Real> dis(0.1f, 1);
215 std::vector<Real> t(100);
216 std::vector<Eigen::Vector2d> y(100);
217 t[0] = dis(gen);
218 Real constant0 = dis(gen);
219 Real constant1 = dis(gen);
220 y[0][0] = constant0;
221 y[0][1] = constant1;
222 for (size_t i = 1; i < t.size(); ++i)
223 {
224 t[i] = t[i-1] + dis(gen);
225 y[i][0] = constant0;
226 y[i][1] = constant1;
227 }
228
229 std::vector<Eigen::Vector2d> y_copy = y;
230 std::vector<Real> t_copy = t;
231 boost::math::vector_barycentric_rational<decltype(t), decltype(y)> interpolator(std::move(t), std::move(y));
232
233 Eigen::Vector2d z;
234 for (size_t i = 0; i < t_copy.size(); ++i)
235 {
236 // Don't evaluate the constant at x[i]; that's already tested in the interpolation condition test.
237 Real t = t_copy[i] + dis(gen);
238 z = interpolator(t);
239 BOOST_CHECK_CLOSE(z[0], constant0, 100*sqrt(numeric_limits<Real>::epsilon()));
240 BOOST_CHECK_CLOSE(z[1], constant1, 100*sqrt(numeric_limits<Real>::epsilon()));
241 Eigen::Vector2d zprime = interpolator.prime(t);
242 Real zero_0 = zprime[0];
243 Real zero_1 = zprime[1];
244 BOOST_CHECK_SMALL(zero_0, sqrt(numeric_limits<Real>::epsilon()));
245 BOOST_CHECK_SMALL(zero_1, sqrt(numeric_limits<Real>::epsilon()));
246 }
247 }
248
249
250 template<class Real>
test_constant_std_array()251 void test_constant_std_array()
252 {
253 std::cout << "Testing that constants are interpolated correctly using barycentric interpolation on std::array vectors of type "
254 << boost::typeindex::type_id<Real>().pretty_name() << "\n";
255
256 std::mt19937 gen(6);
257 boost::random::uniform_real_distribution<Real> dis(0.1f, 1);
258 std::vector<Real> t(100);
259 std::vector<std::array<Real, 2>> y(100);
260 t[0] = dis(gen);
261 Real constant0 = dis(gen);
262 Real constant1 = dis(gen);
263 y[0][0] = constant0;
264 y[0][1] = constant1;
265 for (size_t i = 1; i < t.size(); ++i)
266 {
267 t[i] = t[i-1] + dis(gen);
268 y[i][0] = constant0;
269 y[i][1] = constant1;
270 }
271
272 std::vector<std::array<Real,2>> y_copy = y;
273 std::vector<Real> t_copy = t;
274 boost::math::vector_barycentric_rational<decltype(t), decltype(y)> interpolator(std::move(t), std::move(y));
275
276 std::array<Real, 2> z;
277 for (size_t i = 0; i < t_copy.size(); ++i)
278 {
279 // Don't evaluate the constant at x[i]; that's already tested in the interpolation condition test.
280 Real t = t_copy[i] + dis(gen);
281 z = interpolator(t);
282 BOOST_CHECK_CLOSE(z[0], constant0, 100*sqrt(numeric_limits<Real>::epsilon()));
283 BOOST_CHECK_CLOSE(z[1], constant1, 100*sqrt(numeric_limits<Real>::epsilon()));
284 std::array<Real, 2> zprime = interpolator.prime(t);
285 Real zero_0 = zprime[0];
286 Real zero_1 = zprime[1];
287 BOOST_CHECK_SMALL(zero_0, sqrt(numeric_limits<Real>::epsilon()));
288 BOOST_CHECK_SMALL(zero_1, sqrt(numeric_limits<Real>::epsilon()));
289 }
290 }
291
292
293 template<class Real>
test_constant_high_order()294 void test_constant_high_order()
295 {
296 std::cout << "Testing that constants are interpolated correctly using barycentric interpolation on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
297
298 std::mt19937 gen(6);
299 boost::random::uniform_real_distribution<Real> dis(0.1f, 1);
300 std::vector<Real> t(100);
301 std::vector<Eigen::Vector2d> y(100);
302 t[0] = dis(gen);
303 Real constant0 = dis(gen);
304 Real constant1 = dis(gen);
305 y[0][0] = constant0;
306 y[0][1] = constant1;
307 for (size_t i = 1; i < t.size(); ++i)
308 {
309 t[i] = t[i-1] + dis(gen);
310 y[i][0] = constant0;
311 y[i][1] = constant1;
312 }
313
314 std::vector<Eigen::Vector2d> y_copy = y;
315 std::vector<Real> t_copy = t;
316 boost::math::vector_barycentric_rational<decltype(t), decltype(y)> interpolator(std::move(t), std::move(y), 5);
317
318 Eigen::Vector2d z;
319 for (size_t i = 0; i < t_copy.size(); ++i)
320 {
321 // Don't evaluate the constant at x[i]; that's already tested in the interpolation condition test.
322 Real t = t_copy[i] + dis(gen);
323 z = interpolator(t);
324 BOOST_CHECK_CLOSE(z[0], constant0, 100*sqrt(numeric_limits<Real>::epsilon()));
325 BOOST_CHECK_CLOSE(z[1], constant1, 100*sqrt(numeric_limits<Real>::epsilon()));
326 Eigen::Vector2d zprime = interpolator.prime(t);
327 Real zero_0 = zprime[0];
328 Real zero_1 = zprime[1];
329 BOOST_CHECK_SMALL(zero_0, sqrt(numeric_limits<Real>::epsilon()));
330 BOOST_CHECK_SMALL(zero_1, sqrt(numeric_limits<Real>::epsilon()));
331 }
332 }
333
334
335 template<class Real>
test_weights()336 void test_weights()
337 {
338 std::cout << "Testing weights are calculated correctly using barycentric interpolation on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
339
340 std::mt19937 gen(9);
341 boost::random::uniform_real_distribution<Real> dis(0.005, 0.01);
342 std::vector<Real> t(100);
343 std::vector<Eigen::Vector2d> y(100);
344 t[0] = dis(gen);
345 y[0][0] = dis(gen);
346 y[0][1] = dis(gen);
347 for (size_t i = 1; i < t.size(); ++i)
348 {
349 t[i] = t[i-1] + dis(gen);
350 y[i][0] = dis(gen);
351 y[i][1] = dis(gen);
352 }
353
354 std::vector<Eigen::Vector2d> y_copy = y;
355 std::vector<Real> t_copy = t;
356 boost::math::detail::vector_barycentric_rational_imp<decltype(t), decltype(y)> interpolator(std::move(t), std::move(y), 1);
357
358 for (size_t i = 1; i < t_copy.size() - 1; ++i)
359 {
360 Real w = interpolator.weight(i);
361 Real w_expect = 1/(t_copy[i] - t_copy[i - 1]) + 1/(t_copy[i+1] - t_copy[i]);
362 if (i % 2 == 0)
363 {
364 BOOST_CHECK_CLOSE(w, -w_expect, 0.00001);
365 }
366 else
367 {
368 BOOST_CHECK_CLOSE(w, w_expect, 0.00001);
369 }
370 }
371 }
372
373
BOOST_AUTO_TEST_CASE(vector_barycentric_rational)374 BOOST_AUTO_TEST_CASE(vector_barycentric_rational)
375 {
376 test_weights<double>();
377 test_constant_eigen<double>();
378 test_constant_std_array<double>();
379 test_constant_high_order<double>();
380 test_interpolation_condition_eigen<double>();
381 test_interpolation_condition_ublas<double>();
382 test_interpolation_condition_std_array<double>();
383 test_interpolation_condition_high_order<double>();
384 test_agreement_with_1d<double>();
385 }
386