1 // \modular-boost\libs\math\test\lambert_w_high_reference_values.cpp
2
3 // Copyright Paul A. Bristow 2017.
4 // Distributed under the Boost Software License, Version 1.0.
5 // (See accompanying file LICENSE_1_0.txt
6 // or copy at http://www.boost.org/LICENSE_1_0.txt)
7
8 // Write a C++ file \lambert_w_mp_hi_values.ipp
9 // containing arrays of z arguments and 100 decimal digit precision lambert_w0(z) reference values.
10 // These can be used in tests of precision of less-precise types like
11 // built-in float, double, long double and quad and cpp_dec_float_50.
12
13 // These cover the range from 0.5 to (std::numeric_limits<>::max)();
14 // The Fukushima algorithm changes from a series function for all z > 0.5.
15
16 // Multiprecision types:
17 //#include <boost/multiprecision/cpp_bin_float.hpp>
18 #include <boost/multiprecision/cpp_dec_float.hpp> // boost::multiprecision::cpp_dec_float_100
19 using boost::multiprecision::cpp_dec_float_100;
20
21 #include <boost/math/special_functions/lambert_w.hpp> //
22 using boost::math::lambert_w0;
23 using boost::math::lambert_wm1;
24
25 #include <iostream>
26 // using std::cout; using std::std::endl; using std::ios; using std::std::cerr;
27 #include <iomanip>
28 using std::setprecision;
29 using std::showpoint;
30 #include <fstream>
31 using std::ofstream;
32 #include <cassert>
33 #include <cfloat> // for DBL_EPS etc
34 #include <limits> // for numeric limits.
35 //#include <ctype>
36 #include <string>
37
38 const long double eps = std::numeric_limits<long double>::epsilon();
39
40 // Creates if no file exists, & uses default overwrite/ ios::replace.
41 const char filename[] = "lambert_w_high_reference_values.ipp"; //
42 std::ofstream fout(filename, std::ios::out);
43
44 typedef cpp_dec_float_100 RealType; // 100 decimal digits for the value fed to macro BOOST_MATH_TEST_VALUE.
45 // Could also use cpp_dec_float_50 or cpp_bin_float types.
46
47 const int no_of_tests = 450; // 500 overflows float.
48
49 static const float min_z = 0.5F; // for element[0]
50
main()51 int main()
52 { // Make C++ file containing Lambert W test values.
53 std::cout << filename << " ";
54 std::cout << std::endl;
55 std::cout << "Lambert W0 decimal digit precision values for high z argument values." << std::endl;
56
57 if (!fout.is_open())
58 { // File failed to open OK.
59 std::cerr << "Open file " << filename << " failed!" << std::endl;
60 std::cerr << "errno " << errno << std::endl;
61 return -1;
62 }
63 try
64 {
65 int output_precision = std::numeric_limits<RealType>::digits10;
66 // cpp_dec_float_100 is ample precision and
67 // has several extra bits internally so max_digits10 are not needed.
68 fout.precision(output_precision);
69 fout << std::showpoint << std::endl; // Do show trailing zeros.
70
71 // Intro for RealType values.
72 std::cout << "Lambert W test values written to file " << filename << std::endl;
73 fout <<
74 "\n"
75 "// A collection of big Lambert W test values computed using "
76 << output_precision << " decimal digits precision.\n"
77 "// C++ floating-point type is " << "RealType." "\n"
78 "\n"
79 "// Written by " << __FILE__ << " " << __TIMESTAMP__ << "\n"
80
81 "\n"
82 "// Copyright Paul A. Bristow 2017." "\n"
83 "// Distributed under the Boost Software License, Version 1.0." "\n"
84 "// (See accompanying file LICENSE_1_0.txt" "\n"
85 "// or copy at http://www.boost.org/LICENSE_1_0.txt)" "\n"
86 << std::endl;
87
88 fout << "// Size of arrays of arguments z and Lambert W" << std::endl;
89 fout << "static const unsigned int noof_tests = " << no_of_tests << ";" << std::endl;
90
91 // Declare arrays of z and Lambert W.
92 fout << "\n// Declare arrays of arguments z and Lambert W(z)" << std::endl;
93 fout <<
94 "\n"
95 "template <typename RealType>""\n"
96 "static RealType zs[" << no_of_tests << "];"
97 << std::endl;
98
99 fout <<
100 "\n"
101 "template <typename RealType>""\n"
102 "static RealType ws[" << no_of_tests << "];"
103 << std::endl;
104
105 fout << "// The values are defined using the macro BOOST_MATH_TEST_VALUE to ensure\n"
106 "// that both built-in and multiprecision types are correctly initialiased with full precision.\n"
107 "// built-in types like float, double require a floating-point literal like 3.14,\n"
108 "// but multiprecision types require a decimal digit string like \"3.14\".\n"
109 "// Numerical values are chosen to avoid exactly representable values."
110 << std::endl;
111
112 static const RealType min_z = 0.6; // for element[0]
113
114 const RealType max_z = (std::numeric_limits<float>::max)() / 10; // (std::numeric_limits<float>::max)() to make sure is OK for all floating-point types.
115 // Less a bit as lambert_w0(max) may be inaccurate.
116 const RealType step_size = 0.5F; // Increment step size.
117 const RealType step_factor = 2.f; // Multiple factor, typically 2, 5 or 10.
118 const int step_modulo = 5;
119
120 RealType z = min_z;
121
122 // Output function to initialize array of arguments z and Lambert W.
123 fout <<
124 "\n"
125 << "template <typename RealType>\n"
126 "void init_zws()\n"
127 "{\n";
128
129 for (size_t index = 0; (index != no_of_tests); index++)
130 {
131 fout
132 << " zs<RealType>[" << index << "] = BOOST_MATH_TEST_VALUE(RealType, "
133 << z // Since start with converting a float may get lots of usefully random digits.
134 << ");"
135 << std::endl;
136
137 fout
138 << " ws<RealType>[" << index << "] = BOOST_MATH_TEST_VALUE(RealType, "
139 << lambert_w0(z)
140 << ");"
141 << std::endl;
142
143 if ((index % step_modulo) == 0)
144 {
145 z *= step_factor; //
146 }
147 z += step_size;
148 if (z >= max_z)
149 { // Don't go over max for float.
150 std::cout << "too big z" << std::endl;
151 break;
152 }
153 } // for index
154 fout << "};" << std::endl;
155
156 fout << "// End of lambert_w_mp_high_values.ipp " << std::endl;
157 }
158 catch (std::exception& ex)
159 {
160 std::cout << "Exception " << ex.what() << std::endl;
161 }
162
163 fout.close();
164
165 std::cout << no_of_tests << " Lambert_w0 values written to files " << __TIMESTAMP__ << std::endl;
166 return 0;
167 } // main
168
169
170 /*
171 A few spot checks again Wolfram:
172
173 zs<RealType>[1] = BOOST_MATH_TEST_VALUE(RealType, 1.6999999999999999555910790149937383830547332763671875);
174 ws<RealType>[1] = BOOST_MATH_TEST_VALUE(RealType, 0.7796011225311008662356536916883580556792500749037209859530390902424444585607630246126725241921761054);
175 Wolfram 0.7796011225311008662356536916883580556792500749037209859530390902424444585607630246126725241921761054
176
177 zs<RealType>[99] = BOOST_MATH_TEST_VALUE(RealType, 3250582.599999999976716935634613037109375);
178 ws<RealType>[99] = BOOST_MATH_TEST_VALUE(RealType, 12.47094339016839065212822905567651460418204106065566910956134121802725695306834966790193342511971825);
179 Wolfram 12.47094339016839065212822905567651460418204106065566910956134121802725695306834966790193342511971825
180
181 */
182
183