• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Boost.MultiIndex performance test.
2  *
3  * Copyright 2003-2013 Joaquin M Lopez Munoz.
4  * Distributed under the Boost Software License, Version 1.0.
5  * (See accompanying file LICENSE_1_0.txt or copy at
6  * http://www.boost.org/LICENSE_1_0.txt)
7  *
8  * See http://www.boost.org/libs/multi_index for library home page.
9  */
10 
11 #include <boost/config.hpp> /* keep it first to prevent nasty warns in MSVC */
12 
13 #include <algorithm>
14 #include <assert.h>
15 #include <boost/multi_index_container.hpp>
16 #include <boost/multi_index/identity.hpp>
17 #include <boost/multi_index/ordered_index.hpp>
18 #include <boost/multi_index/sequenced_index.hpp>
19 #include <boost/next_prior.hpp>
20 #include <climits>
21 #include <ctime>
22 #include <iomanip>
23 #include <iostream>
24 #include <list>
25 #include <set>
26 #include <string>
27 #include <vector>
28 
29 using namespace std;
30 using namespace boost::multi_index;
31 
32 /* Measurement harness by Andrew Koenig, extracted from companion code to
33  *   Stroustrup, B.: "Wrapping C++ Member Function Calls", The C++ Report,
34  *     June 2000, Vol 12/No 6.
35  * Original code retrievable at: http://www.research.att.com/~bs/wrap_code.cpp
36  */
37 
38 // How many clock units does it take to interrogate the clock?
clock_overhead()39 static double clock_overhead()
40 {
41     clock_t k = clock(), start, limit;
42 
43     // Wait for the clock to tick
44     do start = clock();
45     while (start == k);
46 
47     // interrogate the clock until it has advanced at least a second
48     // (for reasonable accuracy)
49     limit = start + CLOCKS_PER_SEC;
50 
51     unsigned long r = 0;
52     while ((k = clock()) < limit)
53         ++r;
54 
55     return double(k - start) / r;
56 }
57 
58 // We'd like the odds to be factor:1 that the result is
59 // within percent% of the median
60 const int factor = 10;
61 const int percent = 20;
62 
63 // Measure a function (object) factor*2 times,
64 // appending the measurements to the second argument
65 template<class F>
measure_aux(F f,vector<double> & mv)66 void measure_aux(F f, vector<double>& mv)
67 {
68     static double ovhd = clock_overhead();
69 
70     // Ensure we don't reallocate in mid-measurement
71     mv.reserve(mv.size() + factor*2);
72 
73     // Wait for the clock to tick
74     clock_t k = clock();
75     clock_t start;
76 
77     do start = clock();
78     while (start == k);
79 
80     // Do 2*factor measurements
81     for (int i = 2*factor; i; --i) {
82         unsigned long count = 0, limit = 1, tcount = 0;
83 
84         // Original code used CLOCKS_PER_SEC/100
85         const clock_t clocklimit = start + CLOCKS_PER_SEC/10;
86         clock_t t;
87 
88         do {
89             while (count < limit) {
90                 f();
91                 ++count;
92             }
93             limit *= 2;
94             ++tcount;
95         } while ((t = clock()) < clocklimit);
96 
97         // Wait for the clock to tick again;
98         clock_t t2;
99         do ++tcount;
100         while ((t2 = clock()) == t);
101 
102         // Append the measurement to the vector
103         mv.push_back(((t2 - start) - (tcount * ovhd)) / count);
104 
105         // Establish a new starting point
106         start = t2;
107     }
108 }
109 
110 // Returns the number of clock units per iteration
111 // With odds of factor:1, the measurement is within percent% of
112 // the value returned, which is also the median of all measurements.
113 template<class F>
measure(F f)114 double measure(F f)
115 {
116     vector<double> mv;
117 
118     int n = 0;                        // iteration counter
119     do {
120         ++n;
121 
122         // Try 2*factor measurements
123         measure_aux(f, mv);
124         assert(mv.size() == 2*n*factor);
125 
126         // Compute the median.  We know the size is even, so we cheat.
127         sort(mv.begin(), mv.end());
128         double median = (mv[n*factor] + mv[n*factor-1])/2;
129 
130         // If the extrema are within threshold of the median, we're done
131         if (mv[n] > (median * (100-percent))/100 &&
132             mv[mv.size() - n - 1] < (median * (100+percent))/100)
133             return median;
134 
135     } while (mv.size() < factor * 200);
136 
137     // Give up!
138     clog << "Help!\n\n";
139     exit(1);
140 }
141 
142 /* dereferencing compare predicate */
143 
144 template <typename Iterator,typename Compare>
145 struct it_compare
146 {
operator ()it_compare147   bool operator()(const Iterator& x,const Iterator& y)const{return comp(*x,*y);}
148 
149 private:
150   Compare comp;
151 };
152 
153 /* list_wrapper and multiset_wrapper adapt std::lists and std::multisets
154  * to make them conform to a set-like insert interface which test
155  * routines do assume.
156  */
157 
158 template <typename List>
159 struct list_wrapper:List
160 {
161   typedef typename List::value_type value_type;
162   typedef typename List::iterator   iterator;
163 
insertlist_wrapper164   pair<iterator,bool> insert(const value_type& v)
165   {
166     List::push_back(v);
167     return pair<iterator,bool>(boost::prior(List::end()),true);
168   }
169 };
170 
171 template <typename Multiset>
172 struct multiset_wrapper:Multiset
173 {
174   typedef typename Multiset::value_type value_type;
175   typedef typename Multiset::iterator   iterator;
176 
insertmultiset_wrapper177   pair<iterator,bool> insert(const value_type& v)
178   {
179     return pair<iterator,bool>(Multiset::insert(v),true);
180   }
181 };
182 
183 /* space comsumption of manual simulations is determined by checking
184  * the node sizes of the containers involved. This cannot be done in a
185  * portable manner, so node_size has to be written on a per stdlibrary
186  * basis. Add your own versions if necessary.
187  */
188 
189 #if defined(BOOST_DINKUMWARE_STDLIB)
190 
191 template<typename Container>
node_size(const Container &)192 size_t node_size(const Container&)
193 {
194   return sizeof(*Container().begin()._Mynode());
195 }
196 
197 #elif defined(__GLIBCPP__) || defined(__GLIBCXX__)
198 
199 template<typename Container>
node_size(const Container &)200 size_t node_size(const Container&)
201 {
202   typedef typename Container::iterator::_Link_type node_ptr;
203   node_ptr p=0;
204   return sizeof(*p);
205 }
206 
207 template<typename Value,typename Allocator>
node_size(const list<Value,Allocator> &)208 size_t node_size(const list<Value,Allocator>&)
209 {
210   return sizeof(typename list<Value,Allocator>::iterator::_Node);
211 }
212 
213 template<typename List>
node_size(const list_wrapper<List> &)214 size_t node_size(const list_wrapper<List>&)
215 {
216   return sizeof(typename List::iterator::_Node);
217 }
218 
219 #else
220 
221 /* default version returns 0 by convention */
222 
223 template<typename Container>
node_size(const Container &)224 size_t node_size(const Container&)
225 {
226   return 0;
227 }
228 
229 #endif
230 
231 /* mono_container runs the tested routine on multi_index and manual
232  * simulations comprised of one standard container.
233  * bi_container and tri_container run the equivalent routine for manual
234  * compositions of two and three standard containers, respectively.
235  */
236 
237 template <typename Container>
238 struct mono_container
239 {
mono_containermono_container240   mono_container(int n_):n(n_){}
241 
operator ()mono_container242   void operator()()
243   {
244     typedef typename Container::iterator iterator;
245 
246     Container c;
247 
248     for(int i=0;i<n;++i)c.insert(i);
249     for(iterator it=c.begin();it!=c.end();)c.erase(it++);
250   }
251 
multi_index_node_sizemono_container252   static size_t multi_index_node_size()
253   {
254     return sizeof(*Container().begin().get_node());
255   }
256 
node_sizemono_container257   static size_t node_size()
258   {
259     return ::node_size(Container());
260   }
261 
262 private:
263   int n;
264 };
265 
266 template <typename Container1,typename Container2>
267 struct bi_container
268 {
bi_containerbi_container269   bi_container(int n_):n(n_){}
270 
operator ()bi_container271   void operator()()
272   {
273     typedef typename Container1::iterator iterator1;
274     typedef typename Container2::iterator iterator2;
275 
276     Container1 c1;
277     Container2 c2;
278 
279     for(int i=0;i<n;++i){
280       iterator1 it1=c1.insert(i).first;
281       c2.insert(it1);
282     }
283     for(iterator2 it2=c2.begin();it2!=c2.end();)
284     {
285       c1.erase(*it2);
286       c2.erase(it2++);
287     }
288   }
289 
node_sizebi_container290   static size_t node_size()
291   {
292     return ::node_size(Container1())+::node_size(Container2());
293   }
294 
295 private:
296   int n;
297 };
298 
299 template <typename Container1,typename Container2,typename Container3>
300 struct tri_container
301 {
tri_containertri_container302   tri_container(int n_):n(n_){}
303 
operator ()tri_container304   void operator()()
305   {
306     typedef typename Container1::iterator iterator1;
307     typedef typename Container2::iterator iterator2;
308     typedef typename Container3::iterator iterator3;
309 
310     Container1 c1;
311     Container2 c2;
312     Container3 c3;
313 
314     for(int i=0;i<n;++i){
315       iterator1 it1=c1.insert(i).first;
316       iterator2 it2=c2.insert(it1).first;
317       c3.insert(it2);
318     }
319     for(iterator3 it3=c3.begin();it3!=c3.end();)
320     {
321       c1.erase(**it3);
322       c2.erase(*it3);
323       c3.erase(it3++);
324     }
325   }
326 
node_sizetri_container327   static size_t node_size()
328   {
329     return ::node_size(Container1())+
330            ::node_size(Container2())+::node_size(Container3());
331   }
332 
333 private:
334   int n;
335 };
336 
337 /* measure and compare two routines for several numbers of elements
338  * and also estimates relative memory consumption.
339  */
340 
341 template <typename IndexedTest,typename ManualTest>
run_tests(const char * title)342 void run_tests(const char* title)
343 {
344   cout<<fixed<<setprecision(2);
345   cout<<title<<endl;
346   int n=1000;
347   for(int i=0;i<3;++i){
348     double indexed_t=measure(IndexedTest(n));
349     double manual_t=measure(ManualTest(n));
350     cout<<"  10^"<<i+3<<" elmts: "
351         <<setw(6)<<100.0*indexed_t/manual_t<<"% "
352         <<"("
353           <<setw(6)<<1000.0*indexed_t/CLOCKS_PER_SEC<<" ms / "
354           <<setw(6)<<1000.0*manual_t/CLOCKS_PER_SEC<<" ms)"
355         <<endl;
356     n*=10;
357   }
358 
359   size_t indexed_t_node_size=IndexedTest::multi_index_node_size();
360   size_t manual_t_node_size=ManualTest::node_size();
361 
362   if(manual_t_node_size){
363     cout<<"  space gain: "
364         <<setw(6)<<100.0*indexed_t_node_size/manual_t_node_size<<"%"<<endl;
365   }
366 }
367 
368 /* compare_structures accept a multi_index_container instantiation and
369  * several standard containers, builds a manual simulation out of the
370  * latter and run the tests.
371  */
372 
373 template <typename IndexedType,typename ManualType>
compare_structures(const char * title)374 void compare_structures(const char* title)
375 {
376   run_tests<
377     mono_container<IndexedType>,
378     mono_container<ManualType>
379   >(title);
380 }
381 
382 template <typename IndexedType,typename ManualType1,typename ManualType2>
compare_structures2(const char * title)383 void compare_structures2(const char* title)
384 {
385   run_tests<
386     mono_container<IndexedType>,
387     bi_container<ManualType1,ManualType2>
388   >(title);
389 }
390 
391 template <
392   typename IndexedType,
393   typename ManualType1,typename ManualType2,typename ManualType3
394 >
compare_structures3(const char * title)395 void compare_structures3(const char* title)
396 {
397   run_tests<
398     mono_container<IndexedType>,
399     tri_container<ManualType1,ManualType2,ManualType3>
400   >(title);
401 }
402 
main()403 int main()
404 {
405   /* some stdlibs provide the discussed but finally rejected std::identity */
406   using boost::multi_index::identity;
407 
408   {
409     /* 1 ordered index */
410 
411     typedef multi_index_container<int> indexed_t;
412     typedef set<int>                   manual_t;
413 
414     compare_structures<indexed_t,manual_t>(
415       "1 ordered index");
416   }
417   {
418     /* 1 sequenced index */
419 
420     typedef list_wrapper<
421       multi_index_container<
422         int,
423         indexed_by<sequenced<> >
424       >
425     >                                  indexed_t;
426     typedef list_wrapper<list<int> >   manual_t;
427 
428     compare_structures<indexed_t,manual_t>(
429       "1 sequenced index");
430   }
431   {
432     /* 2 ordered indices */
433 
434     typedef multi_index_container<
435       int,
436       indexed_by<
437         ordered_unique<identity<int> >,
438         ordered_non_unique<identity<int> >
439       >
440     >                                  indexed_t;
441     typedef set<int>                   manual_t1;
442     typedef multiset<
443       manual_t1::iterator,
444       it_compare<
445         manual_t1::iterator,
446         manual_t1::key_compare
447       >
448     >                                  manual_t2;
449 
450     compare_structures2<indexed_t,manual_t1,manual_t2>(
451       "2 ordered indices");
452   }
453   {
454     /* 1 ordered index + 1 sequenced index */
455 
456     typedef multi_index_container<
457       int,
458       indexed_by<
459         boost::multi_index::ordered_unique<identity<int> >,
460         sequenced<>
461       >
462     >                                  indexed_t;
463     typedef list_wrapper<
464       list<int>
465     >                                  manual_t1;
466     typedef multiset<
467       manual_t1::iterator,
468       it_compare<
469         manual_t1::iterator,
470         std::less<int>
471       >
472     >                                  manual_t2;
473 
474     compare_structures2<indexed_t,manual_t1,manual_t2>(
475       "1 ordered index + 1 sequenced index");
476   }
477   {
478     /* 3 ordered indices */
479 
480     typedef multi_index_container<
481       int,
482       indexed_by<
483         ordered_unique<identity<int> >,
484         ordered_non_unique<identity<int> >,
485         ordered_non_unique<identity<int> >
486       >
487     >                                  indexed_t;
488     typedef set<int>                   manual_t1;
489     typedef multiset_wrapper<
490       multiset<
491         manual_t1::iterator,
492         it_compare<
493           manual_t1::iterator,
494           manual_t1::key_compare
495         >
496       >
497     >                                  manual_t2;
498     typedef multiset<
499       manual_t2::iterator,
500       it_compare<
501         manual_t2::iterator,
502         manual_t2::key_compare
503       >
504     >                                  manual_t3;
505 
506     compare_structures3<indexed_t,manual_t1,manual_t2,manual_t3>(
507       "3 ordered indices");
508   }
509   {
510     /* 2 ordered indices + 1 sequenced index */
511 
512     typedef multi_index_container<
513       int,
514       indexed_by<
515         ordered_unique<identity<int> >,
516         ordered_non_unique<identity<int> >,
517         sequenced<>
518       >
519     >                                  indexed_t;
520     typedef list_wrapper<
521       list<int>
522     >                                  manual_t1;
523     typedef multiset_wrapper<
524       multiset<
525         manual_t1::iterator,
526         it_compare<
527           manual_t1::iterator,
528           std::less<int>
529         >
530       >
531     >                                  manual_t2;
532     typedef multiset<
533       manual_t2::iterator,
534       it_compare<
535         manual_t2::iterator,
536         manual_t2::key_compare
537       >
538     >                                  manual_t3;
539 
540     compare_structures3<indexed_t,manual_t1,manual_t2,manual_t3>(
541       "2 ordered indices + 1 sequenced index");
542   }
543 
544   return 0;
545 }
546