• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Simulation of an ensemble of Roessler attractors
3  *
4  * Copyright 2014 Mario Mulansky
5  *
6  * Distributed under the Boost Software License, Version 1.0.
7  * (See accompanying file LICENSE_1_0.txt or
8  * copy at http://www.boost.org/LICENSE_1_0.txt)
9  *
10  */
11 
12 
13 #include <iostream>
14 #include <vector>
15 #include <random>
16 
17 #include <boost/timer.hpp>
18 #include <boost/array.hpp>
19 
20 #include <boost/numeric/odeint.hpp>
21 
22 namespace odeint = boost::numeric::odeint;
23 
24 typedef boost::timer timer_type;
25 
26 typedef double fp_type;
27 //typedef float fp_type;
28 
29 typedef boost::array<fp_type, 3> state_type;
30 typedef std::vector<state_type> state_vec;
31 
32 //---------------------------------------------------------------------------
33 struct roessler_system {
34     const fp_type m_a, m_b, m_c;
35 
roessler_systemroessler_system36     roessler_system(const fp_type a, const fp_type b, const fp_type c)
37         : m_a(a), m_b(b), m_c(c)
38     {}
39 
operator ()roessler_system40     void operator()(const state_type &x, state_type &dxdt, const fp_type t) const
41     {
42         dxdt[0] = -x[1] - x[2];
43         dxdt[1] = x[0] + m_a * x[1];
44         dxdt[2] = m_b + x[2] * (x[0] - m_c);
45     }
46 };
47 
48 //---------------------------------------------------------------------------
main(int argc,char * argv[])49 int main(int argc, char *argv[]) {
50 if(argc<3)
51 {
52     std::cerr << "Expected size and steps as parameter" << std::endl;
53     exit(1);
54 }
55 const size_t n = atoi(argv[1]);
56 const size_t steps = atoi(argv[2]);
57 //const size_t steps = 50;
58 
59 const fp_type dt = 0.01;
60 
61 const fp_type a = 0.2;
62 const fp_type b = 1.0;
63 const fp_type c = 9.0;
64 
65 // random initial conditions on the device
66 std::vector<fp_type> x(n), y(n), z(n);
67 std::default_random_engine generator;
68 std::uniform_real_distribution<fp_type> distribution_xy(-8.0, 8.0);
69 std::uniform_real_distribution<fp_type> distribution_z(0.0, 20.0);
70 auto rand_xy = std::bind(distribution_xy, std::ref(generator));
71 auto rand_z = std::bind(distribution_z, std::ref(generator));
72 std::generate(x.begin(), x.end(), rand_xy);
73 std::generate(y.begin(), y.end(), rand_xy);
74 std::generate(z.begin(), z.end(), rand_z);
75 
76 state_vec state(n);
77 for(size_t i=0; i<n; ++i)
78 {
79     state[i][0] = x[i];
80     state[i][1] = y[i];
81     state[i][2] = z[i];
82 }
83 
84 std::cout.precision(16);
85 
86 std::cout << "# n: " << n << std::endl;
87 
88 std::cout << x[0] << std::endl;
89 
90 
91 // Stepper type - use never_resizer for slight performance improvement
92 odeint::runge_kutta4_classic<state_type, fp_type, state_type, fp_type,
93                              odeint::array_algebra,
94                              odeint::default_operations,
95                              odeint::never_resizer> stepper;
96 
97 roessler_system sys(a, b, c);
98 
99 timer_type timer;
100 
101 fp_type t = 0.0;
102 
103 for (int step = 0; step < steps; step++)
104 {
105     for(size_t i=0; i<n; ++i)
106     {
107         stepper.do_step(sys, state[i], t, dt);
108     }
109     t += dt;
110 }
111 
112 std::cout << "Integration finished, runtime for " << steps << " steps: ";
113 std::cout << timer.elapsed() << " s" << std::endl;
114 
115 // compute some accumulation to make sure all results have been computed
116 fp_type s = 0.0;
117 for(size_t i = 0; i < n; ++i)
118 {
119     s += state[i][0];
120 }
121 
122 std::cout << state[0][0] << std::endl;
123 std::cout << s/n << std::endl;
124 
125 }
126