1 // Copyright Jim Bosch 2010-2012.
2 // Distributed under the Boost Software License, Version 1.0.
3 // (See accompanying file LICENSE_1_0.txt or copy at
4 // http://www.boost.org/LICENSE_1_0.txt)
5
6 #include <boost/python/numpy.hpp>
7
8 #include <cmath>
9 #include <memory>
10
11 #ifndef M_PI
12 #include <boost/math/constants/constants.hpp>
13 const double M_PI = boost::math::constants::pi<double>();
14 #endif
15
16 namespace bp = boost::python;
17 namespace bn = boost::python::numpy;
18
19 /**
20 * A 2x2 matrix class, purely for demonstration purposes.
21 *
22 * Instead of wrapping this class with Boost.Python, we'll convert it to/from numpy.ndarray.
23 */
24 class matrix2 {
25 public:
26
operator ()(int i,int j)27 double & operator()(int i, int j) {
28 return _data[i*2 + j];
29 }
30
operator ()(int i,int j) const31 double const & operator()(int i, int j) const {
32 return _data[i*2 + j];
33 }
34
data() const35 double const * data() const { return _data; }
36
37 private:
38 double _data[4];
39 };
40
41 /**
42 * A 2-element vector class, purely for demonstration purposes.
43 *
44 * Instead of wrapping this class with Boost.Python, we'll convert it to/from numpy.ndarray.
45 */
46 class vector2 {
47 public:
48
operator [](int i)49 double & operator[](int i) {
50 return _data[i];
51 }
52
operator [](int i) const53 double const & operator[](int i) const {
54 return _data[i];
55 }
56
data() const57 double const * data() const { return _data; }
58
operator +(vector2 const & other) const59 vector2 operator+(vector2 const & other) const {
60 vector2 r;
61 r[0] = _data[0] + other[0];
62 r[1] = _data[1] + other[1];
63 return r;
64 }
65
operator -(vector2 const & other) const66 vector2 operator-(vector2 const & other) const {
67 vector2 r;
68 r[0] = _data[0] - other[0];
69 r[1] = _data[1] - other[1];
70 return r;
71 }
72
73 private:
74 double _data[2];
75 };
76
77 /**
78 * Matrix-vector multiplication.
79 */
operator *(matrix2 const & m,vector2 const & v)80 vector2 operator*(matrix2 const & m, vector2 const & v) {
81 vector2 r;
82 r[0] = m(0, 0) * v[0] + m(0, 1) * v[1];
83 r[1] = m(1, 0) * v[0] + m(1, 1) * v[1];
84 return r;
85 }
86
87 /**
88 * Vector inner product.
89 */
dot(vector2 const & v1,vector2 const & v2)90 double dot(vector2 const & v1, vector2 const & v2) {
91 return v1[0] * v2[0] + v1[1] * v2[1];
92 }
93
94 /**
95 * This class represents a simple 2-d Gaussian (Normal) distribution, defined by a
96 * mean vector 'mu' and a covariance matrix 'sigma'.
97 */
98 class bivariate_gaussian {
99 public:
100
get_mu() const101 vector2 const & get_mu() const { return _mu; }
102
get_sigma() const103 matrix2 const & get_sigma() const { return _sigma; }
104
105 /**
106 * Evaluate the density of the distribution at a point defined by a two-element vector.
107 */
operator ()(vector2 const & p) const108 double operator()(vector2 const & p) const {
109 vector2 u = _cholesky * (p - _mu);
110 return 0.5 * _cholesky(0, 0) * _cholesky(1, 1) * std::exp(-0.5 * dot(u, u)) / M_PI;
111 }
112
113 /**
114 * Evaluate the density of the distribution at an (x, y) point.
115 */
operator ()(double x,double y) const116 double operator()(double x, double y) const {
117 vector2 p;
118 p[0] = x;
119 p[1] = y;
120 return operator()(p);
121 }
122
123 /**
124 * Construct from a mean vector and covariance matrix.
125 */
bivariate_gaussian(vector2 const & mu,matrix2 const & sigma)126 bivariate_gaussian(vector2 const & mu, matrix2 const & sigma)
127 : _mu(mu), _sigma(sigma), _cholesky(compute_inverse_cholesky(sigma))
128 {}
129
130 private:
131
132 /**
133 * This evaluates the inverse of the Cholesky factorization of a 2x2 matrix;
134 * it's just a shortcut in evaluating the density.
135 */
compute_inverse_cholesky(matrix2 const & m)136 static matrix2 compute_inverse_cholesky(matrix2 const & m) {
137 matrix2 l;
138 // First do cholesky factorization: l l^t = m
139 l(0, 0) = std::sqrt(m(0, 0));
140 l(0, 1) = m(0, 1) / l(0, 0);
141 l(1, 1) = std::sqrt(m(1, 1) - l(0,1) * l(0,1));
142 // Now do forward-substitution (in-place) to invert:
143 l(0, 0) = 1.0 / l(0, 0);
144 l(1, 0) = l(0, 1) = -l(0, 1) / l(1, 1);
145 l(1, 1) = 1.0 / l(1, 1);
146 return l;
147 }
148
149 vector2 _mu;
150 matrix2 _sigma;
151 matrix2 _cholesky;
152
153 };
154
155 /*
156 * We have a two options for wrapping get_mu and get_sigma into NumPy-returning Python methods:
157 * - we could deep-copy the data, making totally new NumPy arrays;
158 * - we could make NumPy arrays that point into the existing memory.
159 * The latter is often preferable, especially if the arrays are large, but it's dangerous unless
160 * the reference counting is correct: the returned NumPy array needs to hold a reference that
161 * keeps the memory it points to from being deallocated as long as it is alive. This is what the
162 * "owner" argument to from_data does - the NumPy array holds a reference to the owner, keeping it
163 * from being destroyed.
164 *
165 * Note that this mechanism isn't completely safe for data members that can have their internal
166 * storage reallocated. A std::vector, for instance, can be invalidated when it is resized,
167 * so holding a Python reference to a C++ class that holds a std::vector may not be a guarantee
168 * that the memory in the std::vector will remain valid.
169 */
170
171 /**
172 * These two functions are custom wrappers for get_mu and get_sigma, providing the shallow-copy
173 * conversion with reference counting described above.
174 *
175 * It's also worth noting that these return NumPy arrays that cannot be modified in Python;
176 * the const overloads of vector::data() and matrix::data() return const references,
177 * and passing a const pointer to from_data causes NumPy's 'writeable' flag to be set to false.
178 */
py_get_mu(bp::object const & self)179 static bn::ndarray py_get_mu(bp::object const & self) {
180 vector2 const & mu = bp::extract<bivariate_gaussian const &>(self)().get_mu();
181 return bn::from_data(
182 mu.data(),
183 bn::dtype::get_builtin<double>(),
184 bp::make_tuple(2),
185 bp::make_tuple(sizeof(double)),
186 self
187 );
188 }
py_get_sigma(bp::object const & self)189 static bn::ndarray py_get_sigma(bp::object const & self) {
190 matrix2 const & sigma = bp::extract<bivariate_gaussian const &>(self)().get_sigma();
191 return bn::from_data(
192 sigma.data(),
193 bn::dtype::get_builtin<double>(),
194 bp::make_tuple(2, 2),
195 bp::make_tuple(2 * sizeof(double), sizeof(double)),
196 self
197 );
198 }
199
200 /**
201 * To allow the constructor to work, we need to define some from-Python converters from NumPy arrays
202 * to the matrix/vector types. The rvalue-from-python functionality is not well-documented in Boost.Python
203 * itself; you can learn more from boost/python/converter/rvalue_from_python_data.hpp.
204 */
205
206 /**
207 * We start with two functions that just copy a NumPy array into matrix/vector objects. These will be used
208 * in the templated converted below. The first just uses the operator[] overloads provided by
209 * bp::object.
210 */
copy_ndarray_to_mv2(bn::ndarray const & array,vector2 & vec)211 static void copy_ndarray_to_mv2(bn::ndarray const & array, vector2 & vec) {
212 vec[0] = bp::extract<double>(array[0]);
213 vec[1] = bp::extract<double>(array[1]);
214 }
215
216 /**
217 * Here, we'll take the alternate approach of using the strides to access the array's memory directly.
218 * This can be much faster for large arrays.
219 */
copy_ndarray_to_mv2(bn::ndarray const & array,matrix2 & mat)220 static void copy_ndarray_to_mv2(bn::ndarray const & array, matrix2 & mat) {
221 // Unfortunately, get_strides() can't be inlined, so it's best to call it once up-front.
222 Py_intptr_t const * strides = array.get_strides();
223 for (int i = 0; i < 2; ++i) {
224 for (int j = 0; j < 2; ++j) {
225 mat(i, j) = *reinterpret_cast<double const *>(array.get_data() + i * strides[0] + j * strides[1]);
226 }
227 }
228 }
229
230 /**
231 * Here's the actual converter. Because we've separated the differences into the above functions,
232 * we can write a single template class that works for both matrix2 and vector2.
233 */
234 template <typename T, int N>
235 struct mv2_from_python {
236
237 /**
238 * Register the converter.
239 */
mv2_from_pythonmv2_from_python240 mv2_from_python() {
241 bp::converter::registry::push_back(
242 &convertible,
243 &construct,
244 bp::type_id< T >()
245 );
246 }
247
248 /**
249 * Test to see if we can convert this to the desired type; if not return zero.
250 * If we can convert, returned pointer can be used by construct().
251 */
convertiblemv2_from_python252 static void * convertible(PyObject * p) {
253 try {
254 bp::object obj(bp::handle<>(bp::borrowed(p)));
255 std::auto_ptr<bn::ndarray> array(
256 new bn::ndarray(
257 bn::from_object(obj, bn::dtype::get_builtin<double>(), N, N, bn::ndarray::V_CONTIGUOUS)
258 )
259 );
260 if (array->shape(0) != 2) return 0;
261 if (N == 2 && array->shape(1) != 2) return 0;
262 return array.release();
263 } catch (bp::error_already_set & err) {
264 bp::handle_exception();
265 return 0;
266 }
267 }
268
269 /**
270 * Finish the conversion by initializing the C++ object into memory prepared by Boost.Python.
271 */
constructmv2_from_python272 static void construct(PyObject * obj, bp::converter::rvalue_from_python_stage1_data * data) {
273 // Extract the array we passed out of the convertible() member function.
274 std::auto_ptr<bn::ndarray> array(reinterpret_cast<bn::ndarray*>(data->convertible));
275 // Find the memory block Boost.Python has prepared for the result.
276 typedef bp::converter::rvalue_from_python_storage<T> storage_t;
277 storage_t * storage = reinterpret_cast<storage_t*>(data);
278 // Use placement new to initialize the result.
279 T * m_or_v = new (storage->storage.bytes) T();
280 // Fill the result with the values from the NumPy array.
281 copy_ndarray_to_mv2(*array, *m_or_v);
282 // Finish up.
283 data->convertible = storage->storage.bytes;
284 }
285
286 };
287
288
BOOST_PYTHON_MODULE(gaussian)289 BOOST_PYTHON_MODULE(gaussian) {
290 bn::initialize();
291
292 // Register the from-python converters
293 mv2_from_python< vector2, 1 >();
294 mv2_from_python< matrix2, 2 >();
295
296 typedef double (bivariate_gaussian::*call_vector)(vector2 const &) const;
297
298 bp::class_<bivariate_gaussian>("bivariate_gaussian", bp::init<bivariate_gaussian const &>())
299
300 // Declare the constructor (wouldn't work without the from-python converters).
301 .def(bp::init< vector2 const &, matrix2 const & >())
302
303 // Use our custom reference-counting getters
304 .add_property("mu", &py_get_mu)
305 .add_property("sigma", &py_get_sigma)
306
307 // First overload accepts a two-element array argument
308 .def("__call__", (call_vector)&bivariate_gaussian::operator())
309
310 // This overload works like a binary NumPy universal function: you can pass
311 // in scalars or arrays, and the C++ function will automatically be called
312 // on each element of an array argument.
313 .def("__call__", bn::binary_ufunc<bivariate_gaussian,double,double,double>::make())
314 ;
315 }
316