1 // Copyright Jim Bosch 2010-2012.
2 // Copyright Stefan Seefeld 2016.
3 // Distributed under the Boost Software License, Version 1.0.
4 // (See accompanying file LICENSE_1_0.txt or copy at
5 // http://www.boost.org/LICENSE_1_0.txt)
6
7 #define BOOST_PYTHON_NUMPY_INTERNAL
8 #include <boost/python/numpy/internal.hpp>
9 #include <boost/scoped_array.hpp>
10
11 namespace boost { namespace python {
12 namespace converter
13 {
14 NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyArray_Type, numpy::ndarray)
15 } // namespace boost::python::converter
16
17 namespace numpy
18 {
19 namespace detail
20 {
21
numpy_to_bitflag(int const f)22 ndarray::bitflag numpy_to_bitflag(int const f)
23 {
24 ndarray::bitflag r = ndarray::NONE;
25 if (f & NPY_ARRAY_C_CONTIGUOUS) r = (r | ndarray::C_CONTIGUOUS);
26 if (f & NPY_ARRAY_F_CONTIGUOUS) r = (r | ndarray::F_CONTIGUOUS);
27 if (f & NPY_ARRAY_ALIGNED) r = (r | ndarray::ALIGNED);
28 if (f & NPY_ARRAY_WRITEABLE) r = (r | ndarray::WRITEABLE);
29 return r;
30 }
31
bitflag_to_numpy(ndarray::bitflag f)32 int bitflag_to_numpy(ndarray::bitflag f)
33 {
34 int r = 0;
35 if (f & ndarray::C_CONTIGUOUS) r |= NPY_ARRAY_C_CONTIGUOUS;
36 if (f & ndarray::F_CONTIGUOUS) r |= NPY_ARRAY_F_CONTIGUOUS;
37 if (f & ndarray::ALIGNED) r |= NPY_ARRAY_ALIGNED;
38 if (f & ndarray::WRITEABLE) r |= NPY_ARRAY_WRITEABLE;
39 return r;
40 }
41
is_c_contiguous(std::vector<Py_intptr_t> const & shape,std::vector<Py_intptr_t> const & strides,int itemsize)42 bool is_c_contiguous(std::vector<Py_intptr_t> const & shape,
43 std::vector<Py_intptr_t> const & strides,
44 int itemsize)
45 {
46 std::vector<Py_intptr_t>::const_reverse_iterator j = strides.rbegin();
47 int total = itemsize;
48 for (std::vector<Py_intptr_t>::const_reverse_iterator i = shape.rbegin(); i != shape.rend(); ++i, ++j)
49 {
50 if (total != *j) return false;
51 total *= (*i);
52 }
53 return true;
54 }
55
is_f_contiguous(std::vector<Py_intptr_t> const & shape,std::vector<Py_intptr_t> const & strides,int itemsize)56 bool is_f_contiguous(std::vector<Py_intptr_t> const & shape,
57 std::vector<Py_intptr_t> const & strides,
58 int itemsize)
59 {
60 std::vector<Py_intptr_t>::const_iterator j = strides.begin();
61 int total = itemsize;
62 for (std::vector<Py_intptr_t>::const_iterator i = shape.begin(); i != shape.end(); ++i, ++j)
63 {
64 if (total != *j) return false;
65 total *= (*i);
66 }
67 return true;
68 }
69
is_aligned(std::vector<Py_intptr_t> const & strides,int itemsize)70 bool is_aligned(std::vector<Py_intptr_t> const & strides,
71 int itemsize)
72 {
73 for (std::vector<Py_intptr_t>::const_iterator i = strides.begin(); i != strides.end(); ++i)
74 {
75 if (*i % itemsize) return false;
76 }
77 return true;
78 }
79
incref_dtype(dtype const & dt)80 inline PyArray_Descr * incref_dtype(dtype const & dt)
81 {
82 Py_INCREF(dt.ptr());
83 return reinterpret_cast<PyArray_Descr*>(dt.ptr());
84 }
85
from_data_impl(void * data,dtype const & dt,python::object const & shape,python::object const & strides,python::object const & owner,bool writeable)86 ndarray from_data_impl(void * data,
87 dtype const & dt,
88 python::object const & shape,
89 python::object const & strides,
90 python::object const & owner,
91 bool writeable)
92 {
93 std::vector<Py_intptr_t> shape_(len(shape));
94 std::vector<Py_intptr_t> strides_(len(strides));
95 if (shape_.size() != strides_.size())
96 {
97 PyErr_SetString(PyExc_ValueError, "Length of shape and strides arrays do not match.");
98 python::throw_error_already_set();
99 }
100 for (std::size_t i = 0; i < shape_.size(); ++i)
101 {
102 shape_[i] = python::extract<Py_intptr_t>(shape[i]);
103 strides_[i] = python::extract<Py_intptr_t>(strides[i]);
104 }
105 return from_data_impl(data, dt, shape_, strides_, owner, writeable);
106 }
107
from_data_impl(void * data,dtype const & dt,std::vector<Py_intptr_t> const & shape,std::vector<Py_intptr_t> const & strides,python::object const & owner,bool writeable)108 ndarray from_data_impl(void * data,
109 dtype const & dt,
110 std::vector<Py_intptr_t> const & shape,
111 std::vector<Py_intptr_t> const & strides,
112 python::object const & owner,
113 bool writeable)
114 {
115 if (shape.size() != strides.size())
116 {
117 PyErr_SetString(PyExc_ValueError, "Length of shape and strides arrays do not match.");
118 python::throw_error_already_set();
119 }
120 int itemsize = dt.get_itemsize();
121 int flags = 0;
122 if (writeable) flags |= NPY_ARRAY_WRITEABLE;
123 if (is_c_contiguous(shape, strides, itemsize)) flags |= NPY_ARRAY_C_CONTIGUOUS;
124 if (is_f_contiguous(shape, strides, itemsize)) flags |= NPY_ARRAY_F_CONTIGUOUS;
125 if (is_aligned(strides, itemsize)) flags |= NPY_ARRAY_ALIGNED;
126 ndarray r(python::detail::new_reference
127 (PyArray_NewFromDescr(&PyArray_Type,
128 incref_dtype(dt),
129 shape.size(),
130 const_cast<Py_intptr_t*>(&shape.front()),
131 const_cast<Py_intptr_t*>(&strides.front()),
132 data,
133 flags,
134 NULL)));
135 r.set_base(owner);
136 return r;
137 }
138
139 } // namespace detail
140
141 namespace {
normalize_index(int n,int nlim)142 int normalize_index(int n,int nlim) // wraps [-nlim:nlim) into [0:nlim), throw IndexError otherwise
143 {
144 if (n<0)
145 n += nlim; // negative indices work backwards from end
146 if (n < 0 || n >= nlim)
147 {
148 PyErr_SetObject(PyExc_IndexError, Py_None);
149 throw_error_already_set();
150 }
151 return n;
152 }
153 }
154
shape(int n) const155 Py_intptr_t ndarray::shape(int n) const
156 {
157 return get_shape()[normalize_index(n,get_nd())];
158 }
159
strides(int n) const160 Py_intptr_t ndarray::strides(int n) const
161 {
162 return get_strides()[normalize_index(n,get_nd())];
163 }
164
view(dtype const & dt) const165 ndarray ndarray::view(dtype const & dt) const
166 {
167 return ndarray(python::detail::new_reference
168 (PyObject_CallMethod(this->ptr(), const_cast<char*>("view"), const_cast<char*>("O"), dt.ptr())));
169 }
170
astype(dtype const & dt) const171 ndarray ndarray::astype(dtype const & dt) const
172 {
173 return ndarray(python::detail::new_reference
174 (PyObject_CallMethod(this->ptr(), const_cast<char*>("astype"), const_cast<char*>("O"), dt.ptr())));
175 }
176
copy() const177 ndarray ndarray::copy() const
178 {
179 return ndarray(python::detail::new_reference
180 (PyObject_CallMethod(this->ptr(), const_cast<char*>("copy"), const_cast<char*>(""))));
181 }
182
get_dtype() const183 dtype ndarray::get_dtype() const
184 {
185 return dtype(python::detail::borrowed_reference(get_struct()->descr));
186 }
187
get_base() const188 python::object ndarray::get_base() const
189 {
190 if (get_struct()->base == NULL) return object();
191 return python::object(python::detail::borrowed_reference(get_struct()->base));
192 }
193
set_base(object const & base)194 void ndarray::set_base(object const & base)
195 {
196 Py_XDECREF(get_struct()->base);
197 if (base.ptr())
198 {
199 Py_INCREF(base.ptr());
200 get_struct()->base = base.ptr();
201 }
202 else
203 {
204 get_struct()->base = NULL;
205 }
206 }
207
get_flags() const208 ndarray::bitflag ndarray::get_flags() const
209 {
210 return numpy::detail::numpy_to_bitflag(get_struct()->flags);
211 }
212
transpose() const213 ndarray ndarray::transpose() const
214 {
215 return ndarray(python::detail::new_reference
216 (PyArray_Transpose(reinterpret_cast<PyArrayObject*>(this->ptr()), NULL)));
217 }
218
squeeze() const219 ndarray ndarray::squeeze() const
220 {
221 return ndarray(python::detail::new_reference
222 (PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(this->ptr()))));
223 }
224
reshape(python::tuple const & shape) const225 ndarray ndarray::reshape(python::tuple const & shape) const
226 {
227 return ndarray(python::detail::new_reference
228 (PyArray_Reshape(reinterpret_cast<PyArrayObject*>(this->ptr()), shape.ptr())));
229 }
230
scalarize() const231 python::object ndarray::scalarize() const
232 {
233 Py_INCREF(ptr());
234 return python::object(python::detail::new_reference(PyArray_Return(reinterpret_cast<PyArrayObject*>(ptr()))));
235 }
236
zeros(python::tuple const & shape,dtype const & dt)237 ndarray zeros(python::tuple const & shape, dtype const & dt)
238 {
239 int nd = len(shape);
240 boost::scoped_array<Py_intptr_t> dims(new Py_intptr_t[nd]);
241 for (int n=0; n<nd; ++n) dims[n] = python::extract<Py_intptr_t>(shape[n]);
242 return ndarray(python::detail::new_reference
243 (PyArray_Zeros(nd, dims.get(), detail::incref_dtype(dt), 0)));
244 }
245
zeros(int nd,Py_intptr_t const * shape,dtype const & dt)246 ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt)
247 {
248 return ndarray(python::detail::new_reference
249 (PyArray_Zeros(nd, const_cast<Py_intptr_t*>(shape), detail::incref_dtype(dt), 0)));
250 }
251
empty(python::tuple const & shape,dtype const & dt)252 ndarray empty(python::tuple const & shape, dtype const & dt)
253 {
254 int nd = len(shape);
255 boost::scoped_array<Py_intptr_t> dims(new Py_intptr_t[nd]);
256 for (int n=0; n<nd; ++n) dims[n] = python::extract<Py_intptr_t>(shape[n]);
257 return ndarray(python::detail::new_reference
258 (PyArray_Empty(nd, dims.get(), detail::incref_dtype(dt), 0)));
259 }
260
empty(int nd,Py_intptr_t const * shape,dtype const & dt)261 ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt)
262 {
263 return ndarray(python::detail::new_reference
264 (PyArray_Empty(nd, const_cast<Py_intptr_t*>(shape), detail::incref_dtype(dt), 0)));
265 }
266
array(python::object const & obj)267 ndarray array(python::object const & obj)
268 {
269 return ndarray(python::detail::new_reference
270 (PyArray_FromAny(obj.ptr(), NULL, 0, 0, NPY_ARRAY_ENSUREARRAY, NULL)));
271 }
272
array(python::object const & obj,dtype const & dt)273 ndarray array(python::object const & obj, dtype const & dt)
274 {
275 return ndarray(python::detail::new_reference
276 (PyArray_FromAny(obj.ptr(), detail::incref_dtype(dt), 0, 0, NPY_ARRAY_ENSUREARRAY, NULL)));
277 }
278
from_object(python::object const & obj,dtype const & dt,int nd_min,int nd_max,ndarray::bitflag flags)279 ndarray from_object(python::object const & obj, dtype const & dt, int nd_min, int nd_max, ndarray::bitflag flags)
280 {
281 int requirements = detail::bitflag_to_numpy(flags);
282 return ndarray(python::detail::new_reference
283 (PyArray_FromAny(obj.ptr(),
284 detail::incref_dtype(dt),
285 nd_min, nd_max,
286 requirements,
287 NULL)));
288 }
289
from_object(python::object const & obj,int nd_min,int nd_max,ndarray::bitflag flags)290 ndarray from_object(python::object const & obj, int nd_min, int nd_max, ndarray::bitflag flags)
291 {
292 int requirements = detail::bitflag_to_numpy(flags);
293 return ndarray(python::detail::new_reference
294 (PyArray_FromAny(obj.ptr(),
295 NULL,
296 nd_min, nd_max,
297 requirements,
298 NULL)));
299 }
300
301 }}} // namespace boost::python::numpy
302