• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * AAC encoder long term prediction extension
3  * Copyright (C) 2015 Rostislav Pehlivanov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * AAC encoder long term prediction extension
25  * @author Rostislav Pehlivanov ( atomnuker gmail com )
26  */
27 
28 #include "aacenc_ltp.h"
29 #include "aacenc_quantization.h"
30 #include "aacenc_utils.h"
31 
32 /**
33  * Encode LTP data.
34  */
ff_aac_encode_ltp_info(AACEncContext * s,SingleChannelElement * sce,int common_window)35 void ff_aac_encode_ltp_info(AACEncContext *s, SingleChannelElement *sce,
36                             int common_window)
37 {
38     int i;
39     IndividualChannelStream *ics = &sce->ics;
40     if (s->profile != FF_PROFILE_AAC_LTP || !ics->predictor_present)
41         return;
42     if (common_window)
43         put_bits(&s->pb, 1, 0);
44     put_bits(&s->pb, 1, ics->ltp.present);
45     if (!ics->ltp.present)
46         return;
47     put_bits(&s->pb, 11, ics->ltp.lag);
48     put_bits(&s->pb, 3,  ics->ltp.coef_idx);
49     for (i = 0; i < FFMIN(ics->max_sfb, MAX_LTP_LONG_SFB); i++)
50         put_bits(&s->pb, 1, ics->ltp.used[i]);
51 }
52 
ff_aac_ltp_insert_new_frame(AACEncContext * s)53 void ff_aac_ltp_insert_new_frame(AACEncContext *s)
54 {
55     int i, ch, tag, chans, cur_channel, start_ch = 0;
56     ChannelElement *cpe;
57     SingleChannelElement *sce;
58     for (i = 0; i < s->chan_map[0]; i++) {
59         cpe = &s->cpe[i];
60         tag      = s->chan_map[i+1];
61         chans    = tag == TYPE_CPE ? 2 : 1;
62         for (ch = 0; ch < chans; ch++) {
63             sce = &cpe->ch[ch];
64             cur_channel = start_ch + ch;
65             /* New sample + overlap */
66             memcpy(&sce->ltp_state[0],    &sce->ltp_state[1024], 1024*sizeof(sce->ltp_state[0]));
67             memcpy(&sce->ltp_state[1024], &s->planar_samples[cur_channel][2048], 1024*sizeof(sce->ltp_state[0]));
68             memcpy(&sce->ltp_state[2048], &sce->ret_buf[0], 1024*sizeof(sce->ltp_state[0]));
69             sce->ics.ltp.lag = 0;
70         }
71         start_ch += chans;
72     }
73 }
74 
get_lag(float * buf,const float * new,LongTermPrediction * ltp)75 static void get_lag(float *buf, const float *new, LongTermPrediction *ltp)
76 {
77     int i, j, lag = 0, max_corr = 0;
78     float max_ratio = 0.0f;
79     for (i = 0; i < 2048; i++) {
80         float corr, s0 = 0.0f, s1 = 0.0f;
81         const int start = FFMAX(0, i - 1024);
82         for (j = start; j < 2048; j++) {
83             const int idx = j - i + 1024;
84             s0 += new[j]*buf[idx];
85             s1 += buf[idx]*buf[idx];
86         }
87         corr = s1 > 0.0f ? s0/sqrt(s1) : 0.0f;
88         if (corr > max_corr) {
89             max_corr = corr;
90             lag = i;
91             max_ratio = corr/(2048-start);
92         }
93     }
94     ltp->lag = FFMAX(av_clip_uintp2(lag, 11), 0);
95     ltp->coef_idx = quant_array_idx(max_ratio, ltp_coef, 8);
96     ltp->coef = ltp_coef[ltp->coef_idx];
97 }
98 
generate_samples(float * buf,LongTermPrediction * ltp)99 static void generate_samples(float *buf, LongTermPrediction *ltp)
100 {
101     int i, samples_num = 2048;
102     if (!ltp->lag) {
103         ltp->present = 0;
104         return;
105     } else if (ltp->lag < 1024) {
106         samples_num = ltp->lag + 1024;
107     }
108     for (i = 0; i < samples_num; i++)
109         buf[i] = ltp->coef*buf[i + 2048 - ltp->lag];
110     memset(&buf[i], 0, (2048 - i)*sizeof(float));
111 }
112 
113 /**
114  * Process LTP parameters
115  * @see Patent WO2006070265A1
116  */
ff_aac_update_ltp(AACEncContext * s,SingleChannelElement * sce)117 void ff_aac_update_ltp(AACEncContext *s, SingleChannelElement *sce)
118 {
119     float *pred_signal = &sce->ltp_state[0];
120     const float *samples = &s->planar_samples[s->cur_channel][1024];
121 
122     if (s->profile != FF_PROFILE_AAC_LTP)
123         return;
124 
125     /* Calculate lag */
126     get_lag(pred_signal, samples, &sce->ics.ltp);
127     generate_samples(pred_signal, &sce->ics.ltp);
128 }
129 
ff_aac_adjust_common_ltp(AACEncContext * s,ChannelElement * cpe)130 void ff_aac_adjust_common_ltp(AACEncContext *s, ChannelElement *cpe)
131 {
132     int sfb, count = 0;
133     SingleChannelElement *sce0 = &cpe->ch[0];
134     SingleChannelElement *sce1 = &cpe->ch[1];
135 
136     if (!cpe->common_window ||
137         sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE ||
138         sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
139         sce0->ics.ltp.present = 0;
140         return;
141     }
142 
143     for (sfb = 0; sfb < FFMIN(sce0->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) {
144         int sum = sce0->ics.ltp.used[sfb] + sce1->ics.ltp.used[sfb];
145         if (sum != 2) {
146             sce0->ics.ltp.used[sfb] = 0;
147         } else {
148             count++;
149         }
150     }
151 
152     sce0->ics.ltp.present = !!count;
153     sce0->ics.predictor_present = !!count;
154 }
155 
156 /**
157  * Mark LTP sfb's
158  */
ff_aac_search_for_ltp(AACEncContext * s,SingleChannelElement * sce,int common_window)159 void ff_aac_search_for_ltp(AACEncContext *s, SingleChannelElement *sce,
160                            int common_window)
161 {
162     int w, g, w2, i, start = 0, count = 0;
163     int saved_bits = -(15 + FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB));
164     float *C34 = &s->scoefs[128*0], *PCD = &s->scoefs[128*1];
165     float *PCD34 = &s->scoefs[128*2];
166     const int max_ltp = FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB);
167 
168     if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
169         if (sce->ics.ltp.lag) {
170             memset(&sce->ltp_state[0], 0, 3072*sizeof(sce->ltp_state[0]));
171             memset(&sce->ics.ltp, 0, sizeof(LongTermPrediction));
172         }
173         return;
174     }
175 
176     if (!sce->ics.ltp.lag || s->lambda > 120.0f)
177         return;
178 
179     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
180         start = 0;
181         for (g = 0;  g < sce->ics.num_swb; g++) {
182             int bits1 = 0, bits2 = 0;
183             float dist1 = 0.0f, dist2 = 0.0f;
184             if (w*16+g > max_ltp) {
185                 start += sce->ics.swb_sizes[g];
186                 continue;
187             }
188             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
189                 int bits_tmp1, bits_tmp2;
190                 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
191                 for (i = 0; i < sce->ics.swb_sizes[g]; i++)
192                     PCD[i] = sce->coeffs[start+(w+w2)*128+i] - sce->lcoeffs[start+(w+w2)*128+i];
193                 s->abs_pow34(C34,  &sce->coeffs[start+(w+w2)*128],  sce->ics.swb_sizes[g]);
194                 s->abs_pow34(PCD34, PCD, sce->ics.swb_sizes[g]);
195                 dist1 += quantize_band_cost(s, &sce->coeffs[start+(w+w2)*128], C34, sce->ics.swb_sizes[g],
196                                             sce->sf_idx[(w+w2)*16+g], sce->band_type[(w+w2)*16+g],
197                                             s->lambda/band->threshold, INFINITY, &bits_tmp1, NULL, 0);
198                 dist2 += quantize_band_cost(s, PCD, PCD34, sce->ics.swb_sizes[g],
199                                             sce->sf_idx[(w+w2)*16+g],
200                                             sce->band_type[(w+w2)*16+g],
201                                             s->lambda/band->threshold, INFINITY, &bits_tmp2, NULL, 0);
202                 bits1 += bits_tmp1;
203                 bits2 += bits_tmp2;
204             }
205             if (dist2 < dist1 && bits2 < bits1) {
206                 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
207                     for (i = 0; i < sce->ics.swb_sizes[g]; i++)
208                         sce->coeffs[start+(w+w2)*128+i] -= sce->lcoeffs[start+(w+w2)*128+i];
209                 sce->ics.ltp.used[w*16+g] = 1;
210                 saved_bits += bits1 - bits2;
211                 count++;
212             }
213             start += sce->ics.swb_sizes[g];
214         }
215     }
216 
217     sce->ics.ltp.present = !!count && (saved_bits >= 0);
218     sce->ics.predictor_present = !!sce->ics.ltp.present;
219 
220     /* Reset any marked sfbs */
221     if (!sce->ics.ltp.present && !!count) {
222         for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
223             start = 0;
224             for (g = 0;  g < sce->ics.num_swb; g++) {
225                 if (sce->ics.ltp.used[w*16+g]) {
226                     for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
227                         for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
228                             sce->coeffs[start+(w+w2)*128+i] += sce->lcoeffs[start+(w+w2)*128+i];
229                         }
230                     }
231                 }
232                 start += sce->ics.swb_sizes[g];
233             }
234         }
235     }
236 }
237