1 /*
2 * AAC encoder TNS
3 * Copyright (C) 2015 Rostislav Pehlivanov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * AAC encoder temporal noise shaping
25 * @author Rostislav Pehlivanov ( atomnuker gmail com )
26 */
27
28 #include "libavutil/libm.h"
29 #include "aacenc.h"
30 #include "aacenc_tns.h"
31 #include "aactab.h"
32 #include "aacenc_utils.h"
33 #include "aacenc_quantization.h"
34
35 /* Could be set to 3 to save an additional bit at the cost of little quality */
36 #define TNS_Q_BITS 4
37
38 /* Coefficient resolution in short windows */
39 #define TNS_Q_BITS_IS8 4
40
41 /* We really need the bits we save here elsewhere */
42 #define TNS_ENABLE_COEF_COMPRESSION
43
44 /* TNS will only be used if the LPC gain is within these margins */
45 #define TNS_GAIN_THRESHOLD_LOW 1.4f
46 #define TNS_GAIN_THRESHOLD_HIGH 1.16f*TNS_GAIN_THRESHOLD_LOW
47
compress_coeffs(int * coef,int order,int c_bits)48 static inline int compress_coeffs(int *coef, int order, int c_bits)
49 {
50 int i;
51 const int low_idx = c_bits ? 4 : 2;
52 const int shift_val = c_bits ? 8 : 4;
53 const int high_idx = c_bits ? 11 : 5;
54 #ifndef TNS_ENABLE_COEF_COMPRESSION
55 return 0;
56 #endif /* TNS_ENABLE_COEF_COMPRESSION */
57 for (i = 0; i < order; i++)
58 if (coef[i] >= low_idx && coef[i] <= high_idx)
59 return 0;
60 for (i = 0; i < order; i++)
61 coef[i] -= (coef[i] > high_idx) ? shift_val : 0;
62 return 1;
63 }
64
65 /**
66 * Encode TNS data.
67 * Coefficient compression is simply not lossless as it should be
68 * on any decoder tested and as such is not active.
69 */
ff_aac_encode_tns_info(AACEncContext * s,SingleChannelElement * sce)70 void ff_aac_encode_tns_info(AACEncContext *s, SingleChannelElement *sce)
71 {
72 TemporalNoiseShaping *tns = &sce->tns;
73 int i, w, filt, coef_compress = 0, coef_len;
74 const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE;
75 const int c_bits = is8 ? TNS_Q_BITS_IS8 == 4 : TNS_Q_BITS == 4;
76
77 if (!sce->tns.present)
78 return;
79
80 for (i = 0; i < sce->ics.num_windows; i++) {
81 put_bits(&s->pb, 2 - is8, sce->tns.n_filt[i]);
82 if (!tns->n_filt[i])
83 continue;
84 put_bits(&s->pb, 1, c_bits);
85 for (filt = 0; filt < tns->n_filt[i]; filt++) {
86 put_bits(&s->pb, 6 - 2 * is8, tns->length[i][filt]);
87 put_bits(&s->pb, 5 - 2 * is8, tns->order[i][filt]);
88 if (!tns->order[i][filt])
89 continue;
90 put_bits(&s->pb, 1, tns->direction[i][filt]);
91 coef_compress = compress_coeffs(tns->coef_idx[i][filt],
92 tns->order[i][filt], c_bits);
93 put_bits(&s->pb, 1, coef_compress);
94 coef_len = c_bits + 3 - coef_compress;
95 for (w = 0; w < tns->order[i][filt]; w++)
96 put_bits(&s->pb, coef_len, tns->coef_idx[i][filt][w]);
97 }
98 }
99 }
100
101 /* Apply TNS filter */
ff_aac_apply_tns(AACEncContext * s,SingleChannelElement * sce)102 void ff_aac_apply_tns(AACEncContext *s, SingleChannelElement *sce)
103 {
104 TemporalNoiseShaping *tns = &sce->tns;
105 IndividualChannelStream *ics = &sce->ics;
106 int w, filt, m, i, top, order, bottom, start, end, size, inc;
107 const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
108 float lpc[TNS_MAX_ORDER];
109
110 for (w = 0; w < ics->num_windows; w++) {
111 bottom = ics->num_swb;
112 for (filt = 0; filt < tns->n_filt[w]; filt++) {
113 top = bottom;
114 bottom = FFMAX(0, top - tns->length[w][filt]);
115 order = tns->order[w][filt];
116 if (order == 0)
117 continue;
118
119 // tns_decode_coef
120 compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
121
122 start = ics->swb_offset[FFMIN(bottom, mmm)];
123 end = ics->swb_offset[FFMIN( top, mmm)];
124 if ((size = end - start) <= 0)
125 continue;
126 if (tns->direction[w][filt]) {
127 inc = -1;
128 start = end - 1;
129 } else {
130 inc = 1;
131 }
132 start += w * 128;
133
134 /* AR filter */
135 for (m = 0; m < size; m++, start += inc) {
136 for (i = 1; i <= FFMIN(m, order); i++) {
137 sce->coeffs[start] += lpc[i-1]*sce->pcoeffs[start - i*inc];
138 }
139 }
140 }
141 }
142 }
143
144 /*
145 * c_bits - 1 if 4 bit coefficients, 0 if 3 bit coefficients
146 */
quantize_coefs(double * coef,int * idx,float * lpc,int order,int c_bits)147 static inline void quantize_coefs(double *coef, int *idx, float *lpc, int order,
148 int c_bits)
149 {
150 int i;
151 const float *quant_arr = tns_tmp2_map[c_bits];
152 for (i = 0; i < order; i++) {
153 idx[i] = quant_array_idx(coef[i], quant_arr, c_bits ? 16 : 8);
154 lpc[i] = quant_arr[idx[i]];
155 }
156 }
157
158 /*
159 * 3 bits per coefficient with 8 short windows
160 */
ff_aac_search_for_tns(AACEncContext * s,SingleChannelElement * sce)161 void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce)
162 {
163 TemporalNoiseShaping *tns = &sce->tns;
164 int w, g, count = 0;
165 double gain, coefs[MAX_LPC_ORDER];
166 const int mmm = FFMIN(sce->ics.tns_max_bands, sce->ics.max_sfb);
167 const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE;
168 const int c_bits = is8 ? TNS_Q_BITS_IS8 == 4 : TNS_Q_BITS == 4;
169 const int sfb_start = av_clip(tns_min_sfb[is8][s->samplerate_index], 0, mmm);
170 const int sfb_end = av_clip(sce->ics.num_swb, 0, mmm);
171 const int order = is8 ? 7 : s->profile == FF_PROFILE_AAC_LOW ? 12 : TNS_MAX_ORDER;
172 const int slant = sce->ics.window_sequence[0] == LONG_STOP_SEQUENCE ? 1 :
173 sce->ics.window_sequence[0] == LONG_START_SEQUENCE ? 0 : 2;
174 const int sfb_len = sfb_end - sfb_start;
175 const int coef_len = sce->ics.swb_offset[sfb_end] - sce->ics.swb_offset[sfb_start];
176
177 if (coef_len <= 0 || sfb_len <= 0) {
178 sce->tns.present = 0;
179 return;
180 }
181
182 for (w = 0; w < sce->ics.num_windows; w++) {
183 float en[2] = {0.0f, 0.0f};
184 int oc_start = 0, os_start = 0;
185 int coef_start = sce->ics.swb_offset[sfb_start];
186
187 for (g = sfb_start; g < sce->ics.num_swb && g <= sfb_end; g++) {
188 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[w*16+g];
189 if (g > sfb_start + (sfb_len/2))
190 en[1] += band->energy;
191 else
192 en[0] += band->energy;
193 }
194
195 /* LPC */
196 gain = ff_lpc_calc_ref_coefs_f(&s->lpc, &sce->coeffs[w*128 + coef_start],
197 coef_len, order, coefs);
198
199 if (!order || !isfinite(gain) || gain < TNS_GAIN_THRESHOLD_LOW || gain > TNS_GAIN_THRESHOLD_HIGH)
200 continue;
201
202 tns->n_filt[w] = is8 ? 1 : order != TNS_MAX_ORDER ? 2 : 3;
203 for (g = 0; g < tns->n_filt[w]; g++) {
204 tns->direction[w][g] = slant != 2 ? slant : en[g] < en[!g];
205 tns->order[w][g] = g < tns->n_filt[w] ? order/tns->n_filt[w] : order - oc_start;
206 tns->length[w][g] = g < tns->n_filt[w] ? sfb_len/tns->n_filt[w] : sfb_len - os_start;
207 quantize_coefs(&coefs[oc_start], tns->coef_idx[w][g], tns->coef[w][g],
208 tns->order[w][g], c_bits);
209 oc_start += tns->order[w][g];
210 os_start += tns->length[w][g];
211 }
212 count++;
213 }
214 sce->tns.present = !!count;
215 }
216