• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1;******************************************************************************
2;* SIMD optimized Opus encoder DSP function
3;*
4;* Copyright (C) 2017 Ivan Kalvachev <ikalvachev@gmail.com>
5;*
6;* This file is part of FFmpeg.
7;*
8;* FFmpeg is free software; you can redistribute it and/or
9;* modify it under the terms of the GNU Lesser General Public
10;* License as published by the Free Software Foundation; either
11;* version 2.1 of the License, or (at your option) any later version.
12;*
13;* FFmpeg is distributed in the hope that it will be useful,
14;* but WITHOUT ANY WARRANTY; without even the implied warranty of
15;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16;* Lesser General Public License for more details.
17;*
18;* You should have received a copy of the GNU Lesser General Public
19;* License along with FFmpeg; if not, write to the Free Software
20;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21;******************************************************************************
22
23%include "config.asm"
24%include "libavutil/x86/x86util.asm"
25
26%ifdef __NASM_VER__
27%use "smartalign"
28ALIGNMODE p6
29%endif
30
31SECTION_RODATA 64
32
33const_float_abs_mask:   times 8 dd 0x7fffffff
34const_align_abs_edge:   times 8 dd 0
35
36const_float_0_5:        times 8 dd 0.5
37const_float_1:          times 8 dd 1.0
38const_float_sign_mask:  times 8 dd 0x80000000
39
40const_int32_offsets:
41                        %rep 8
42                                dd $-const_int32_offsets
43                        %endrep
44SECTION .text
45
46;
47;   Setup High Register to be used
48;   for holding memory constants
49;
50; %1 - the register to be used, assmues it is >= mm8
51; %2 - name of the constant.
52;
53; Subsequent opcodes are going to use the constant in the form
54; "addps m0, mm_const_name" and it would be turned into:
55; "addps m0, [const_name]" on 32 bit arch or
56; "addps m0, m8" on 64 bit arch
57%macro SET_HI_REG_MM_CONSTANT 3 ; movop, reg, const_name
58%if num_mmregs > 8
59    %define  mm_%3   %2
60    %{1}        %2, [%3]    ; movaps m8, [const_name]
61%else
62    %define  mm_%3  [%3]
63%endif
64%endmacro
65
66;
67;   Set Position Independent Code
68;       Base address of a constant
69; %1 - the register to be used, if PIC is set
70; %2 - name of the constant.
71;
72; Subsequent opcode are going to use the base address in the form
73; "movaps m0, [pic_base_constant_name+r4]" and it would be turned into
74; "movaps m0, [r5 + r4]" if PIC is enabled
75; "movaps m0, [constant_name + r4]" if texrel are used
76%macro SET_PIC_BASE 3; reg, const_label
77%ifdef PIC
78    %{1}     %2, [%3]      ; lea r5, [rip+const]
79    %define  pic_base_%3 %2
80%else
81    %define  pic_base_%3 %3
82%endif
83%endmacro
84
85%macro PULSES_SEARCH 1
86; m6 Syy_norm
87; m7 Sxy_norm
88    addps          m6, mm_const_float_0_5   ; Syy_norm += 1.0/2
89    pxor           m1, m1                   ; max_idx
90    xorps          m3, m3                   ; p_max
91    xor           r4d, r4d
92align 16
93%%distortion_search:
94    movd          xm2, dword r4d    ; movd zero extends
95%ifidn %1,add
96    movaps         m4, [tmpY + r4]  ; y[i]
97    movaps         m5, [tmpX + r4]  ; X[i]
98
99  %if USE_APPROXIMATION == 1
100    xorps          m0, m0
101    cmpps          m0, m0, m5, 4    ; m0 = (X[i] != 0.0)
102  %endif
103
104    addps          m4, m6           ; m4 = Syy_new = y[i] + Syy_norm
105    addps          m5, m7           ; m5 = Sxy_new = X[i] + Sxy_norm
106
107  %if USE_APPROXIMATION == 1
108    andps          m5, m0           ; if(X[i] == 0) Sxy_new = 0; Prevent aproximation error from setting pulses in array padding.
109  %endif
110
111%else
112    movaps         m5, [tmpY + r4]      ; m5 = y[i]
113
114    xorps          m0, m0               ; m0 = 0;
115    cmpps          m0, m0, m5, 1        ; m0 = (0<y)
116
117    subps          m4, m6, m5           ; m4 = Syy_new = Syy_norm - y[i]
118    subps          m5, m7, [tmpX + r4]  ; m5 = Sxy_new = Sxy_norm - X[i]
119    andps          m5, m0               ; (0<y)?m5:0
120%endif
121
122%if USE_APPROXIMATION == 1
123    rsqrtps        m4, m4
124    mulps          m5, m4           ; m5 = p = Sxy_new*approx(1/sqrt(Syy) )
125%else
126    mulps          m5, m5
127    divps          m5, m4           ; m5 = p = Sxy_new*Sxy_new/Syy
128%endif
129    VPBROADCASTD   m2, xm2          ; m2=i (all lanes get same values, we add the offset-per-lane, later)
130
131    cmpps          m0, m3, m5, 1    ; m0 = (m3 < m5) ; (p_max < p) ; (p > p_max)
132    maxps          m3, m5           ; m3=max(p_max,p)
133                                    ; maxps here is faster than blendvps, despite blend having lower latency.
134
135    pand           m2, m0           ; This version seems faster than sse41 pblendvb
136    pmaxsw         m1, m2           ; SSE2 signed word, so it would work for N < 32768/4
137
138    add           r4d, mmsize
139    cmp           r4d, Nd
140    jb   %%distortion_search
141
142    por            m1, mm_const_int32_offsets  ; max_idx offsets per individual lane (skipped in the inner loop)
143    movdqa         m4, m1                      ; needed for the aligned y[max_idx]+=1; processing
144
145%if mmsize >= 32
146; Merge parallel maximums round 8 (4 vs 4)
147
148    vextractf128  xm5, ym3, 1       ; xmm5 = ymm3[1x128] = ymm3[255..128b]
149    cmpps         xm0, xm3, xm5, 1  ; m0 = (m3 < m5) = ( p[0x128] < p[1x128] )
150
151    vextracti128  xm2, ym1, 1       ; xmm2 = ymm1[1x128] = ymm1[255..128b]
152    BLENDVPS      xm3, xm5, xm0     ; max_idx = m0 ? max_idx[1x128] : max_idx[0x128]
153    PBLENDVB      xm1, xm2, xm0     ; p       = m0 ? p[1x128]       : p[0x128]
154%endif
155
156; Merge parallel maximums round 4 (2 vs 2)
157                                    ; m3=p[3210]
158    movhlps       xm5, xm3          ; m5=p[xx32]
159    cmpps         xm0, xm3, xm5, 1  ; m0 = (m3 < m5) = ( p[1,0] < p[3,2] )
160
161    pshufd        xm2, xm1, q3232
162    BLENDVPS      xm3, xm5, xm0     ; max_idx = m0 ? max_idx[3,2] : max_idx[1,0]
163    PBLENDVB      xm1, xm2, xm0     ; p       = m0 ? p[3,2]       : p[1,0]
164
165; Merge parallel maximums final round (1 vs 1)
166    shufps        xm0, xm3, xm3, q1111  ; m0 = m3[1] = p[1]
167    cmpss         xm0, xm3, 5           ; m0 = !(m0 >= m3) = !( p[1] >= p[0] )
168
169    pshufd        xm2, xm1, q1111
170    PBLENDVB      xm1, xm2, xm0
171
172    movd    dword r4d, xm1          ; zero extends to the rest of r4q
173
174    VBROADCASTSS   m3, [tmpX + r4]
175    %{1}ps         m7, m3           ; Sxy += X[max_idx]
176
177    VBROADCASTSS   m5, [tmpY + r4]
178    %{1}ps         m6, m5           ; Syy += Y[max_idx]
179
180    ; We have to update a single element in Y[i]
181    ; However writing 4 bytes and then doing 16 byte load in the inner loop
182    ; could cause a stall due to breaking write forwarding.
183    VPBROADCASTD   m1, xm1
184    pcmpeqd        m1, m1, m4           ; exactly 1 element matches max_idx and this finds it
185
186    and           r4d, ~(mmsize-1)      ; align address down, so the value pointed by max_idx is inside a mmsize load
187    movaps         m5, [tmpY + r4]      ; m5 = Y[y3...ym...y0]
188    andps          m1, mm_const_float_1 ; m1 =  [ 0...1.0...0]
189    %{1}ps         m5, m1               ; m5 = Y[y3...ym...y0] +/- [0...1.0...0]
190    movaps [tmpY + r4], m5              ; Y[max_idx] +-= 1.0;
191%endmacro
192
193;
194; We need one more register for
195; PIC relative addressing. Use this
196; to count it in cglobal
197;
198%ifdef PIC
199  %define num_pic_regs 1
200%else
201  %define num_pic_regs 0
202%endif
203
204;
205; Pyramid Vector Quantization Search implementation
206;
207; float * inX   - Unaligned (SIMD) access, it will be overread,
208;                 but extra data is masked away.
209; int32 * outY  - Should be aligned and padded buffer.
210;                 It is used as temp buffer.
211; uint32 K      - Number of pulses to have after quantizations.
212; uint32 N      - Number of vector elements. Must be 0 < N < 256
213;
214%macro PVQ_FAST_SEARCH 1
215cglobal pvq_search%1, 4, 5+num_pic_regs, 11, 256*4, inX, outY, K, N
216%define tmpX rsp
217%define tmpY outYq
218
219    movaps     m0, [const_float_abs_mask]
220    shl        Nd, 2    ; N *= sizeof(float); also 32 bit operation zeroes the high 32 bits in 64 bit mode.
221    mov       r4d, Nd
222
223    neg       r4d
224    and       r4d, mmsize-1
225
226    SET_PIC_BASE lea, r5, const_align_abs_edge  ; rip+const
227    movups     m2, [pic_base_const_align_abs_edge + r4 - mmsize]
228
229    add        Nd, r4d              ; N = align(N, mmsize)
230
231    lea       r4d, [Nd - mmsize]    ; N is rounded up (aligned up) to mmsize, so r4 can't become negative here, unless N=0.
232    movups     m1, [inXq + r4]
233    andps      m1, m2
234    movaps  [tmpX + r4], m1         ; Sx = abs( X[N-1] )
235
236align 16
237%%loop_abs_sum:
238    sub       r4d, mmsize
239    jc   %%end_loop_abs_sum
240
241    movups     m2, [inXq + r4]
242    andps      m2, m0
243
244    movaps  [tmpX + r4], m2 ; tmpX[i]=abs(X[i])
245    addps      m1, m2       ; Sx += abs(X[i])
246    jmp  %%loop_abs_sum
247
248align 16
249%%end_loop_abs_sum:
250
251    HSUMPS     m1, m2       ; m1  = Sx
252
253    xorps      m0, m0
254    comiss    xm0, xm1      ;
255    jz   %%zero_input       ; if (Sx==0) goto zero_input
256
257    cvtsi2ss  xm0, dword Kd ; m0 = K
258%if USE_APPROXIMATION == 1
259    rcpss     xm1, xm1      ; m1 = approx(1/Sx)
260    mulss     xm0, xm1      ; m0 = K*(1/Sx)
261%else
262    divss     xm0, xm1      ; b = K/Sx
263                            ; b = K/max_x
264%endif
265
266    VBROADCASTSS  m0, xm0
267
268    lea       r4d, [Nd - mmsize]
269    pxor       m5, m5             ; Sy    ( Sum of abs( y[i]) )
270    xorps      m6, m6             ; Syy   ( Sum of y[i]*y[i]  )
271    xorps      m7, m7             ; Sxy   ( Sum of X[i]*y[i]  )
272align 16
273%%loop_guess:
274    movaps     m1, [tmpX + r4]    ; m1   = X[i]
275    mulps      m2, m0, m1         ; m2   = res*X[i]
276    cvtps2dq   m2, m2             ; yt   = (int)lrintf( res*X[i] )
277    paddd      m5, m2             ; Sy  += yt
278    cvtdq2ps   m2, m2             ; yt   = (float)yt
279    mulps      m1, m2             ; m1   = X[i]*yt
280    movaps  [tmpY + r4], m2       ; y[i] = m2
281    addps      m7, m1             ; Sxy += m1;
282    mulps      m2, m2             ; m2   = yt*yt
283    addps      m6, m2             ; Syy += m2
284
285    sub       r4d, mmsize
286    jnc  %%loop_guess
287
288    HSUMPS     m6, m1       ; Syy_norm
289    HADDD      m5, m4       ; pulses
290
291    movd  dword r4d, xm5    ; zero extends to the rest of r4q
292
293    sub        Kd, r4d      ; K -= pulses , also 32 bit operation zeroes high 32 bit in 64 bit mode.
294    jz   %%finish           ; K - pulses == 0
295
296    SET_HI_REG_MM_CONSTANT movaps,  m8, const_float_0_5
297    SET_HI_REG_MM_CONSTANT movaps,  m9, const_float_1
298    SET_HI_REG_MM_CONSTANT movdqa, m10, const_int32_offsets
299    ; Use Syy/2 in distortion parameter calculations.
300    ; Saves pre and post-caclulation to correct Y[] values.
301    ; Same precision, since float mantisa is normalized.
302    ; The SQRT approximation does differ.
303    HSUMPS     m7, m0         ; Sxy_norm
304    mulps      m6, mm_const_float_0_5
305
306    jc   %%remove_pulses_loop   ; K - pulses < 0
307
308align 16                        ; K - pulses > 0
309%%add_pulses_loop:
310
311    PULSES_SEARCH add   ; m6 Syy_norm ; m7 Sxy_norm
312
313    sub        Kd, 1
314    jnz  %%add_pulses_loop
315
316    addps      m6, m6 ; Syy*=2
317
318    jmp  %%finish
319
320align 16
321%%remove_pulses_loop:
322
323    PULSES_SEARCH sub   ; m6 Syy_norm ; m7 Sxy_norm
324
325    add        Kd, 1
326    jnz  %%remove_pulses_loop
327
328    addps      m6, m6 ; Syy*=2
329
330align 16
331%%finish:
332    lea       r4d, [Nd - mmsize]
333    movaps     m2, [const_float_sign_mask]
334
335align 16
336%%restore_sign_loop:
337    movaps     m0, [tmpY + r4]    ; m0 = Y[i]
338    movups     m1, [inXq + r4]    ; m1 = X[i]
339    andps      m1, m2             ; m1 = sign(X[i])
340    orps       m0, m1             ; m0 = Y[i]*sign
341    cvtps2dq   m3, m0             ; m3 = (int)m0
342    movaps  [outYq + r4], m3
343
344    sub       r4d, mmsize
345    jnc  %%restore_sign_loop
346%%return:
347
348%if ARCH_X86_64 == 0    ; sbrdsp
349    movss     r0m, xm6  ; return (float)Syy_norm
350    fld dword r0m
351%else
352    movaps     m0, m6   ; return (float)Syy_norm
353%endif
354
355    RET
356
357align 16
358%%zero_input:
359    lea       r4d, [Nd - mmsize]
360    xorps      m0, m0
361%%zero_loop:
362    movaps  [outYq + r4], m0
363    sub       r4d, mmsize
364    jnc  %%zero_loop
365
366    movaps     m6, [const_float_1]
367    jmp  %%return
368%endmacro
369
370; if 1, use a float op that give half precision but execute for around 3 cycles.
371; On Skylake & Ryzen the division is much faster (around 11c/3),
372; that makes the full precision code about 2% slower.
373; Opus also does use rsqrt approximation in their intrinsics code.
374%define USE_APPROXIMATION   1
375
376INIT_XMM sse2
377PVQ_FAST_SEARCH _approx
378
379INIT_XMM sse4
380PVQ_FAST_SEARCH _approx
381
382%define USE_APPROXIMATION   0
383
384INIT_XMM avx
385PVQ_FAST_SEARCH _exact
386