• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkRandom_DEFINED
9 #define SkRandom_DEFINED
10 
11 #include "include/core/SkScalar.h"
12 #include "include/private/SkFixed.h"
13 #include "include/private/SkFloatBits.h"
14 
15 /** \class SkRandom
16 
17  Utility class that implements pseudo random 32bit numbers using Marsaglia's
18  multiply-with-carry "mother of all" algorithm. Unlike rand(), this class holds
19  its own state, so that multiple instances can be used with no side-effects.
20 
21  Has a large period and all bits are well-randomized.
22  */
23 class SkRandom {
24 public:
SkRandom()25     SkRandom() { init(0); }
SkRandom(uint32_t seed)26     SkRandom(uint32_t seed) { init(seed); }
SkRandom(const SkRandom & rand)27     SkRandom(const SkRandom& rand) : fK(rand.fK), fJ(rand.fJ) {}
28 
29     SkRandom& operator=(const SkRandom& rand) {
30         fK = rand.fK;
31         fJ = rand.fJ;
32 
33         return *this;
34     }
35 
36     /** Return the next pseudo random number as an unsigned 32bit value.
37      */
nextU()38     uint32_t nextU() {
39         fK = kKMul*(fK & 0xffff) + (fK >> 16);
40         fJ = kJMul*(fJ & 0xffff) + (fJ >> 16);
41         return (((fK << 16) | (fK >> 16)) + fJ);
42     }
43 
44     /** Return the next pseudo random number as a signed 32bit value.
45      */
nextS()46     int32_t nextS() { return (int32_t)this->nextU(); }
47 
48     /**
49      *  Returns value [0...1) as an IEEE float
50      */
nextF()51     float nextF() {
52         unsigned int floatint = 0x3f800000 | (this->nextU() >> 9);
53         float f = SkBits2Float(floatint) - 1.0f;
54         return f;
55     }
56 
57     /**
58      *  Returns value [min...max) as a float
59      */
nextRangeF(float min,float max)60     float nextRangeF(float min, float max) {
61         return min + this->nextF() * (max - min);
62     }
63 
64     /** Return the next pseudo random number, as an unsigned value of
65      at most bitCount bits.
66      @param bitCount The maximum number of bits to be returned
67      */
nextBits(unsigned bitCount)68     uint32_t nextBits(unsigned bitCount) {
69         SkASSERT(bitCount > 0 && bitCount <= 32);
70         return this->nextU() >> (32 - bitCount);
71     }
72 
73     /** Return the next pseudo random unsigned number, mapped to lie within
74      [min, max] inclusive.
75      */
nextRangeU(uint32_t min,uint32_t max)76     uint32_t nextRangeU(uint32_t min, uint32_t max) {
77         SkASSERT(min <= max);
78         uint32_t range = max - min + 1;
79         if (0 == range) {
80             return this->nextU();
81         } else {
82             return min + this->nextU() % range;
83         }
84     }
85 
86     /** Return the next pseudo random unsigned number, mapped to lie within
87      [0, count).
88      */
nextULessThan(uint32_t count)89     uint32_t nextULessThan(uint32_t count) {
90         SkASSERT(count > 0);
91         return this->nextRangeU(0, count - 1);
92     }
93 
94     /** Return the next pseudo random number expressed as a SkScalar
95      in the range [0..SK_Scalar1).
96      */
nextUScalar1()97     SkScalar nextUScalar1() { return SkFixedToScalar(this->nextUFixed1()); }
98 
99     /** Return the next pseudo random number expressed as a SkScalar
100      in the range [min..max).
101      */
nextRangeScalar(SkScalar min,SkScalar max)102     SkScalar nextRangeScalar(SkScalar min, SkScalar max) {
103         return this->nextUScalar1() * (max - min) + min;
104     }
105 
106     /** Return the next pseudo random number expressed as a SkScalar
107      in the range [-SK_Scalar1..SK_Scalar1).
108      */
nextSScalar1()109     SkScalar nextSScalar1() { return SkFixedToScalar(this->nextSFixed1()); }
110 
111     /** Return the next pseudo random number as a bool.
112      */
nextBool()113     bool nextBool() { return this->nextU() >= 0x80000000; }
114 
115     /** A biased version of nextBool().
116      */
nextBiasedBool(SkScalar fractionTrue)117     bool nextBiasedBool(SkScalar fractionTrue) {
118         SkASSERT(fractionTrue >= 0 && fractionTrue <= SK_Scalar1);
119         return this->nextUScalar1() <= fractionTrue;
120     }
121 
122     /** Reset the random object.
123      */
setSeed(uint32_t seed)124     void setSeed(uint32_t seed) { init(seed); }
125 
126 private:
127     // Initialize state variables with LCG.
128     // We must ensure that both J and K are non-zero, otherwise the
129     // multiply-with-carry step will forevermore return zero.
init(uint32_t seed)130     void init(uint32_t seed) {
131         fK = NextLCG(seed);
132         if (0 == fK) {
133             fK = NextLCG(fK);
134         }
135         fJ = NextLCG(fK);
136         if (0 == fJ) {
137             fJ = NextLCG(fJ);
138         }
139         SkASSERT(0 != fK && 0 != fJ);
140     }
NextLCG(uint32_t seed)141     static uint32_t NextLCG(uint32_t seed) { return kMul*seed + kAdd; }
142 
143     /** Return the next pseudo random number expressed as an unsigned SkFixed
144      in the range [0..SK_Fixed1).
145      */
nextUFixed1()146     SkFixed nextUFixed1() { return this->nextU() >> 16; }
147 
148     /** Return the next pseudo random number expressed as a signed SkFixed
149      in the range [-SK_Fixed1..SK_Fixed1).
150      */
nextSFixed1()151     SkFixed nextSFixed1() { return this->nextS() >> 15; }
152 
153     //  See "Numerical Recipes in C", 1992 page 284 for these constants
154     //  For the LCG that sets the initial state from a seed
155     enum {
156         kMul = 1664525,
157         kAdd = 1013904223
158     };
159     // Constants for the multiply-with-carry steps
160     enum {
161         kKMul = 30345,
162         kJMul = 18000,
163     };
164 
165     uint32_t fK;
166     uint32_t fJ;
167 };
168 
169 #endif
170