• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2018 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/gradients/GrGradientShader.h"
9 
10 #include "src/gpu/gradients/generated/GrClampedGradientEffect.h"
11 #include "src/gpu/gradients/generated/GrTiledGradientEffect.h"
12 
13 #include "src/gpu/gradients/generated/GrLinearGradientLayout.h"
14 #include "src/gpu/gradients/generated/GrRadialGradientLayout.h"
15 #include "src/gpu/gradients/generated/GrSweepGradientLayout.h"
16 #include "src/gpu/gradients/generated/GrTwoPointConicalGradientLayout.h"
17 
18 #include "src/gpu/gradients/GrGradientBitmapCache.h"
19 #include "src/gpu/gradients/generated/GrDualIntervalGradientColorizer.h"
20 #include "src/gpu/gradients/generated/GrSingleIntervalGradientColorizer.h"
21 #include "src/gpu/gradients/generated/GrTextureGradientColorizer.h"
22 #include "src/gpu/gradients/generated/GrUnrolledBinaryGradientColorizer.h"
23 
24 #include "include/private/GrRecordingContext.h"
25 #include "src/gpu/GrCaps.h"
26 #include "src/gpu/GrColor.h"
27 #include "src/gpu/GrColorSpaceInfo.h"
28 #include "src/gpu/GrRecordingContextPriv.h"
29 #include "src/gpu/SkGr.h"
30 
31 // Intervals smaller than this (that aren't hard stops) on low-precision-only devices force us to
32 // use the textured gradient
33 static const SkScalar kLowPrecisionIntervalLimit = 0.01f;
34 
35 // Each cache entry costs 1K or 2K of RAM. Each bitmap will be 1x256 at either 32bpp or 64bpp.
36 static const int kMaxNumCachedGradientBitmaps = 32;
37 static const int kGradientTextureSize = 256;
38 
39 // NOTE: signature takes raw pointers to the color/pos arrays and a count to make it easy for
40 // MakeColorizer to transparently take care of hard stops at the end points of the gradient.
make_textured_colorizer(const SkPMColor4f * colors,const SkScalar * positions,int count,bool premul,const GrFPArgs & args)41 static std::unique_ptr<GrFragmentProcessor> make_textured_colorizer(const SkPMColor4f* colors,
42         const SkScalar* positions, int count, bool premul, const GrFPArgs& args) {
43     static GrGradientBitmapCache gCache(kMaxNumCachedGradientBitmaps, kGradientTextureSize);
44 
45     // Use 8888 or F16, depending on the destination config.
46     // TODO: Use 1010102 for opaque gradients, at least if destination is 1010102?
47     SkColorType colorType = kRGBA_8888_SkColorType;
48     if (GrColorTypeIsWiderThan(args.fDstColorSpaceInfo->colorType(), 8)) {
49         auto f16Format = args.fContext->priv().caps()->getDefaultBackendFormat(
50                 GrColorType::kRGBA_F16, GrRenderable::kNo);
51         if (f16Format.isValid()) {
52             colorType = kRGBA_F16_SkColorType;
53         }
54     }
55     SkAlphaType alphaType = premul ? kPremul_SkAlphaType : kUnpremul_SkAlphaType;
56 
57     SkBitmap bitmap;
58     gCache.getGradient(colors, positions, count, colorType, alphaType, &bitmap);
59     SkASSERT(1 == bitmap.height() && SkIsPow2(bitmap.width()));
60     SkASSERT(bitmap.isImmutable());
61 
62     sk_sp<GrTextureProxy> proxy = GrMakeCachedBitmapProxy(
63             args.fContext->priv().proxyProvider(), bitmap);
64     if (proxy == nullptr) {
65         SkDebugf("Gradient won't draw. Could not create texture.");
66         return nullptr;
67     }
68 
69     return GrTextureGradientColorizer::Make(std::move(proxy));
70 }
71 
72 // Analyze the shader's color stops and positions and chooses an appropriate colorizer to represent
73 // the gradient.
make_colorizer(const SkPMColor4f * colors,const SkScalar * positions,int count,bool premul,const GrFPArgs & args)74 static std::unique_ptr<GrFragmentProcessor> make_colorizer(const SkPMColor4f* colors,
75         const SkScalar* positions, int count, bool premul, const GrFPArgs& args) {
76     // If there are hard stops at the beginning or end, the first and/or last color should be
77     // ignored by the colorizer since it should only be used in a clamped border color. By detecting
78     // and removing these stops at the beginning, it makes optimizing the remaining color stops
79     // simpler.
80 
81     // SkGradientShaderBase guarantees that pos[0] == 0 by adding a dummy
82     bool bottomHardStop = SkScalarNearlyEqual(positions[0], positions[1]);
83     // The same is true for pos[end] == 1
84     bool topHardStop = SkScalarNearlyEqual(positions[count - 2], positions[count - 1]);
85 
86     int offset = 0;
87     if (bottomHardStop) {
88         offset += 1;
89         count--;
90     }
91     if (topHardStop) {
92         count--;
93     }
94 
95     // Two remaining colors means a single interval from 0 to 1
96     // (but it may have originally been a 3 or 4 color gradient with 1-2 hard stops at the ends)
97     if (count == 2) {
98         return GrSingleIntervalGradientColorizer::Make(colors[offset], colors[offset + 1]);
99     }
100 
101     // Do an early test for the texture fallback to skip all of the other tests for specific
102     // analytic support of the gradient (and compatibility with the hardware), when it's definitely
103     // impossible to use an analytic solution.
104     bool tryAnalyticColorizer = count <= GrUnrolledBinaryGradientColorizer::kMaxColorCount;
105 
106     // The remaining analytic colorizers use scale*t+bias, and the scale/bias values can become
107     // quite large when thresholds are close (but still outside the hardstop limit). If float isn't
108     // 32-bit, output can be incorrect if the thresholds are too close together. However, the
109     // analytic shaders are higher quality, so they can be used with lower precision hardware when
110     // the thresholds are not ill-conditioned.
111     const GrShaderCaps* caps = args.fContext->priv().caps()->shaderCaps();
112     if (!caps->floatIs32Bits() && tryAnalyticColorizer) {
113         // Could run into problems, check if thresholds are close together (with a limit of .01, so
114         // that scales will be less than 100, which leaves 4 decimals of precision on 16-bit).
115         for (int i = offset; i < count - 1; i++) {
116             SkScalar dt = SkScalarAbs(positions[i] - positions[i + 1]);
117             if (dt <= kLowPrecisionIntervalLimit && dt > SK_ScalarNearlyZero) {
118                 tryAnalyticColorizer = false;
119                 break;
120             }
121         }
122     }
123 
124     if (tryAnalyticColorizer) {
125         if (count == 3) {
126             // Must be a dual interval gradient, where the middle point is at offset+1 and the two
127             // intervals share the middle color stop.
128             return GrDualIntervalGradientColorizer::Make(colors[offset], colors[offset + 1],
129                                                          colors[offset + 1], colors[offset + 2],
130                                                          positions[offset + 1]);
131         } else if (count == 4 && SkScalarNearlyEqual(positions[offset + 1],
132                                                      positions[offset + 2])) {
133             // Two separate intervals that join at the same threshold position
134             return GrDualIntervalGradientColorizer::Make(colors[offset], colors[offset + 1],
135                                                          colors[offset + 2], colors[offset + 3],
136                                                          positions[offset + 1]);
137         }
138 
139         // The single and dual intervals are a specialized case of the unrolled binary search
140         // colorizer which can analytically render gradients of up to 8 intervals (up to 9 or 16
141         // colors depending on how many hard stops are inserted).
142         std::unique_ptr<GrFragmentProcessor> unrolled = GrUnrolledBinaryGradientColorizer::Make(
143                 colors + offset, positions + offset, count);
144         if (unrolled) {
145             return unrolled;
146         }
147     }
148 
149     // Otherwise fall back to a rasterized gradient sampled by a texture, which can handle
150     // arbitrary gradients (the only downside being sampling resolution).
151     return make_textured_colorizer(colors + offset, positions + offset, count, premul, args);
152 }
153 
154 // Combines the colorizer and layout with an appropriately configured master effect based on the
155 // gradient's tile mode
make_gradient(const SkGradientShaderBase & shader,const GrFPArgs & args,std::unique_ptr<GrFragmentProcessor> layout)156 static std::unique_ptr<GrFragmentProcessor> make_gradient(const SkGradientShaderBase& shader,
157         const GrFPArgs& args, std::unique_ptr<GrFragmentProcessor> layout) {
158     // No shader is possible if a layout couldn't be created, e.g. a layout-specific Make() returned
159     // null.
160     if (layout == nullptr) {
161         return nullptr;
162     }
163 
164     // Convert all colors into destination space and into SkPMColor4fs, and handle
165     // premul issues depending on the interpolation mode
166     bool inputPremul = shader.getGradFlags() & SkGradientShader::kInterpolateColorsInPremul_Flag;
167     bool allOpaque = true;
168     SkAutoSTMalloc<4, SkPMColor4f> colors(shader.fColorCount);
169     SkColor4fXformer xformedColors(shader.fOrigColors4f, shader.fColorCount,
170             shader.fColorSpace.get(), args.fDstColorSpaceInfo->colorSpace());
171     for (int i = 0; i < shader.fColorCount; i++) {
172         const SkColor4f& upmColor = xformedColors.fColors[i];
173         colors[i] = inputPremul ? upmColor.premul()
174                                 : SkPMColor4f{ upmColor.fR, upmColor.fG, upmColor.fB, upmColor.fA };
175         if (allOpaque && !SkScalarNearlyEqual(colors[i].fA, 1.0)) {
176             allOpaque = false;
177         }
178     }
179 
180     // SkGradientShader stores positions implicitly when they are evenly spaced, but the getPos()
181     // implementation performs a branch for every position index. Since the shader conversion
182     // requires lots of position tests, calculate all of the positions up front if needed.
183     SkTArray<SkScalar, true> implicitPos;
184     SkScalar* positions;
185     if (shader.fOrigPos) {
186         positions = shader.fOrigPos;
187     } else {
188         implicitPos.reserve(shader.fColorCount);
189         SkScalar posScale = SK_Scalar1 / (shader.fColorCount - 1);
190         for (int i = 0 ; i < shader.fColorCount; i++) {
191             implicitPos.push_back(SkIntToScalar(i) * posScale);
192         }
193         positions = implicitPos.begin();
194     }
195 
196     // All gradients are colorized the same way, regardless of layout
197     std::unique_ptr<GrFragmentProcessor> colorizer = make_colorizer(
198             colors.get(), positions, shader.fColorCount, inputPremul, args);
199     if (colorizer == nullptr) {
200         return nullptr;
201     }
202 
203     // The master effect has to export premul colors, but under certain conditions it doesn't need
204     // to do anything to achieve that: i.e. its interpolating already premul colors (inputPremul)
205     // or all the colors have a = 1, in which case premul is a no op. Note that this allOpaque
206     // check is more permissive than SkGradientShaderBase's isOpaque(), since we can optimize away
207     // the make-premul op for two point conical gradients (which report false for isOpaque).
208     bool makePremul = !inputPremul && !allOpaque;
209 
210     // All tile modes are supported (unless something was added to SkShader)
211     std::unique_ptr<GrFragmentProcessor> master;
212     switch(shader.getTileMode()) {
213         case SkTileMode::kRepeat:
214             master = GrTiledGradientEffect::Make(std::move(colorizer), std::move(layout),
215                                                  /* mirror */ false, makePremul, allOpaque);
216             break;
217         case SkTileMode::kMirror:
218             master = GrTiledGradientEffect::Make(std::move(colorizer), std::move(layout),
219                                                  /* mirror */ true, makePremul, allOpaque);
220             break;
221         case SkTileMode::kClamp:
222             // For the clamped mode, the border colors are the first and last colors, corresponding
223             // to t=0 and t=1, because SkGradientShaderBase enforces that by adding color stops as
224             // appropriate. If there is a hard stop, this grabs the expected outer colors for the
225             // border.
226             master = GrClampedGradientEffect::Make(std::move(colorizer), std::move(layout),
227                     colors[0], colors[shader.fColorCount - 1], makePremul, allOpaque);
228             break;
229         case SkTileMode::kDecal:
230             // Even if the gradient colors are opaque, the decal borders are transparent so
231             // disable that optimization
232             master = GrClampedGradientEffect::Make(std::move(colorizer), std::move(layout),
233                     SK_PMColor4fTRANSPARENT, SK_PMColor4fTRANSPARENT,
234                     makePremul, /* colorsAreOpaque */ false);
235             break;
236     }
237 
238     if (master == nullptr) {
239         // Unexpected tile mode
240         return nullptr;
241     }
242     if (args.fInputColorIsOpaque) {
243         return GrFragmentProcessor::OverrideInput(std::move(master), SK_PMColor4fWHITE, false);
244     }
245     return GrFragmentProcessor::MulChildByInputAlpha(std::move(master));
246 }
247 
248 namespace GrGradientShader {
249 
MakeLinear(const SkLinearGradient & shader,const GrFPArgs & args)250 std::unique_ptr<GrFragmentProcessor> MakeLinear(const SkLinearGradient& shader,
251                                                 const GrFPArgs& args) {
252     return make_gradient(shader, args, GrLinearGradientLayout::Make(shader, args));
253 }
254 
MakeRadial(const SkRadialGradient & shader,const GrFPArgs & args)255 std::unique_ptr<GrFragmentProcessor> MakeRadial(const SkRadialGradient& shader,
256                                                 const GrFPArgs& args) {
257     return make_gradient(shader,args, GrRadialGradientLayout::Make(shader, args));
258 }
259 
MakeSweep(const SkSweepGradient & shader,const GrFPArgs & args)260 std::unique_ptr<GrFragmentProcessor> MakeSweep(const SkSweepGradient& shader,
261                                                const GrFPArgs& args) {
262     return make_gradient(shader,args, GrSweepGradientLayout::Make(shader, args));
263 }
264 
MakeConical(const SkTwoPointConicalGradient & shader,const GrFPArgs & args)265 std::unique_ptr<GrFragmentProcessor> MakeConical(const SkTwoPointConicalGradient& shader,
266                                                  const GrFPArgs& args) {
267     return make_gradient(shader, args, GrTwoPointConicalGradientLayout::Make(shader, args));
268 }
269 
270 #if GR_TEST_UTILS
RandomParams(SkRandom * random)271 RandomParams::RandomParams(SkRandom* random) {
272     // Set color count to min of 2 so that we don't trigger the const color optimization and make
273     // a non-gradient processor.
274     fColorCount = random->nextRangeU(2, kMaxRandomGradientColors);
275     fUseColors4f = random->nextBool();
276 
277     // if one color, omit stops, otherwise randomly decide whether or not to
278     if (fColorCount == 1 || (fColorCount >= 2 && random->nextBool())) {
279         fStops = nullptr;
280     } else {
281         fStops = fStopStorage;
282     }
283 
284     // if using SkColor4f, attach a random (possibly null) color space (with linear gamma)
285     if (fUseColors4f) {
286         fColorSpace = GrTest::TestColorSpace(random);
287     }
288 
289     SkScalar stop = 0.f;
290     for (int i = 0; i < fColorCount; ++i) {
291         if (fUseColors4f) {
292             fColors4f[i].fR = random->nextUScalar1();
293             fColors4f[i].fG = random->nextUScalar1();
294             fColors4f[i].fB = random->nextUScalar1();
295             fColors4f[i].fA = random->nextUScalar1();
296         } else {
297             fColors[i] = random->nextU();
298         }
299         if (fStops) {
300             fStops[i] = stop;
301             stop = i < fColorCount - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f;
302         }
303     }
304     fTileMode = static_cast<SkTileMode>(random->nextULessThan(kSkTileModeCount));
305 }
306 #endif
307 
308 }
309