1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef SkBlitRow_opts_DEFINED
9 #define SkBlitRow_opts_DEFINED
10
11 #include "include/private/SkColorData.h"
12 #include "include/private/SkVx.h"
13 #include "src/core/SkMSAN.h"
14 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
15 #include <immintrin.h>
16
SkPMSrcOver_AVX2(const __m256i & src,const __m256i & dst)17 static inline __m256i SkPMSrcOver_AVX2(const __m256i& src, const __m256i& dst) {
18 // Abstractly srcover is
19 // b = s + d*(1-srcA)
20 //
21 // In terms of unorm8 bytes, that works out to
22 // b = s + (d*(255-srcA) + 127) / 255
23 //
24 // But we approximate that to within a bit with
25 // b = s + (d*(255-srcA) + d) / 256
26 // a.k.a
27 // b = s + (d*(256-srcA)) >> 8
28
29 // The bottleneck of this math is the multiply, and we want to do it as
30 // narrowly as possible, here getting inputs into 16-bit lanes and
31 // using 16-bit multiplies. We can do twice as many multiplies at once
32 // as using naive 32-bit multiplies, and on top of that, the 16-bit multiplies
33 // are themselves a couple cycles quicker. Win-win.
34
35 // We'll get everything in 16-bit lanes for two multiplies, one
36 // handling dst red and blue, the other green and alpha. (They're
37 // conveniently 16-bits apart, you see.) We don't need the individual
38 // src channels beyond alpha until the very end when we do the "s + "
39 // add, and we don't even need to unpack them; the adds cannot overflow.
40
41 // Shuffle each pixel's srcA to the low byte of each 16-bit half of the pixel.
42 const int _ = -1; // fills a literal 0 byte.
43 __m256i srcA_x2 = _mm256_shuffle_epi8(src,
44 _mm256_setr_epi8(3,_,3,_, 7,_,7,_, 11,_,11,_, 15,_,15,_,
45 3,_,3,_, 7,_,7,_, 11,_,11,_, 15,_,15,_));
46 __m256i scale_x2 = _mm256_sub_epi16(_mm256_set1_epi16(256),
47 srcA_x2);
48
49 // Scale red and blue, leaving results in the low byte of each 16-bit lane.
50 __m256i rb = _mm256_and_si256(_mm256_set1_epi32(0x00ff00ff), dst);
51 rb = _mm256_mullo_epi16(rb, scale_x2);
52 rb = _mm256_srli_epi16 (rb, 8);
53
54 // Scale green and alpha, leaving results in the high byte, masking off the low bits.
55 __m256i ga = _mm256_srli_epi16(dst, 8);
56 ga = _mm256_mullo_epi16(ga, scale_x2);
57 ga = _mm256_andnot_si256(_mm256_set1_epi32(0x00ff00ff), ga);
58
59 return _mm256_add_epi32(src, _mm256_or_si256(rb, ga));
60 }
61
62 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
63 #include <immintrin.h>
64
SkPMSrcOver_SSE2(const __m128i & src,const __m128i & dst)65 static inline __m128i SkPMSrcOver_SSE2(const __m128i& src, const __m128i& dst) {
66 auto SkAlphaMulQ_SSE2 = [](const __m128i& c, const __m128i& scale) {
67 const __m128i mask = _mm_set1_epi32(0xFF00FF);
68 __m128i s = _mm_or_si128(_mm_slli_epi32(scale, 16), scale);
69
70 // uint32_t rb = ((c & mask) * scale) >> 8
71 __m128i rb = _mm_and_si128(mask, c);
72 rb = _mm_mullo_epi16(rb, s);
73 rb = _mm_srli_epi16(rb, 8);
74
75 // uint32_t ag = ((c >> 8) & mask) * scale
76 __m128i ag = _mm_srli_epi16(c, 8);
77 ag = _mm_mullo_epi16(ag, s);
78
79 // (rb & mask) | (ag & ~mask)
80 ag = _mm_andnot_si128(mask, ag);
81 return _mm_or_si128(rb, ag);
82 };
83 return _mm_add_epi32(src,
84 SkAlphaMulQ_SSE2(dst, _mm_sub_epi32(_mm_set1_epi32(256),
85 _mm_srli_epi32(src, 24))));
86 }
87 #endif
88
89 namespace SK_OPTS_NS {
90
91 // Blend constant color over count src pixels, writing into dst.
blit_row_color32(SkPMColor * dst,const SkPMColor * src,int count,SkPMColor color)92 inline void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) {
93 constexpr int N = 4; // 8, 16 also reasonable choices
94 using U32 = skvx::Vec< N, uint32_t>;
95 using U16 = skvx::Vec<4*N, uint16_t>;
96 using U8 = skvx::Vec<4*N, uint8_t>;
97
98 auto kernel = [color](U32 src) {
99 unsigned invA = 255 - SkGetPackedA32(color);
100 invA += invA >> 7;
101 SkASSERT(0 < invA && invA < 256); // We handle alpha == 0 or alpha == 255 specially.
102
103 // (src * invA + (color << 8) + 128) >> 8
104 // Should all fit in 16 bits.
105 U8 s = skvx::bit_pun<U8>(src),
106 a = U8(invA);
107 U16 c = skvx::cast<uint16_t>(skvx::bit_pun<U8>(U32(color))),
108 d = (mull(s,a) + (c << 8) + 128)>>8;
109 return skvx::bit_pun<U32>(skvx::cast<uint8_t>(d));
110 };
111
112 while (count >= N) {
113 kernel(U32::Load(src)).store(dst);
114 src += N;
115 dst += N;
116 count -= N;
117 }
118 while (count --> 0) {
119 *dst++ = kernel(U32{*src++})[0];
120 }
121 }
122
123 #if defined(SK_ARM_HAS_NEON)
124
125 // Return a uint8x8_t value, r, computed as r[i] = SkMulDiv255Round(x[i], y[i]), where r[i], x[i],
126 // y[i] are the i-th lanes of the corresponding NEON vectors.
SkMulDiv255Round_neon8(uint8x8_t x,uint8x8_t y)127 static inline uint8x8_t SkMulDiv255Round_neon8(uint8x8_t x, uint8x8_t y) {
128 uint16x8_t prod = vmull_u8(x, y);
129 return vraddhn_u16(prod, vrshrq_n_u16(prod, 8));
130 }
131
132 // The implementations of SkPMSrcOver below perform alpha blending consistently with
133 // SkMulDiv255Round. They compute the color components (numbers in the interval [0, 255]) as:
134 //
135 // result_i = src_i + rint(g(src_alpha, dst_i))
136 //
137 // where g(x, y) = ((255.0 - x) * y) / 255.0 and rint rounds to the nearest integer.
138
139 // In this variant of SkPMSrcOver each NEON register, dst.val[i], src.val[i], contains the value
140 // of the same color component for 8 consecutive pixels. The result of this function follows the
141 // same convention.
SkPMSrcOver_neon8(uint8x8x4_t dst,uint8x8x4_t src)142 static inline uint8x8x4_t SkPMSrcOver_neon8(uint8x8x4_t dst, uint8x8x4_t src) {
143 uint8x8_t nalphas = vmvn_u8(src.val[3]);
144 uint8x8x4_t result;
145 result.val[0] = vadd_u8(src.val[0], SkMulDiv255Round_neon8(nalphas, dst.val[0]));
146 result.val[1] = vadd_u8(src.val[1], SkMulDiv255Round_neon8(nalphas, dst.val[1]));
147 result.val[2] = vadd_u8(src.val[2], SkMulDiv255Round_neon8(nalphas, dst.val[2]));
148 result.val[3] = vadd_u8(src.val[3], SkMulDiv255Round_neon8(nalphas, dst.val[3]));
149 return result;
150 }
151
152 // In this variant of SkPMSrcOver dst and src contain the color components of two consecutive
153 // pixels. The return value follows the same convention.
SkPMSrcOver_neon2(uint8x8_t dst,uint8x8_t src)154 static inline uint8x8_t SkPMSrcOver_neon2(uint8x8_t dst, uint8x8_t src) {
155 const uint8x8_t alpha_indices = vcreate_u8(0x0707070703030303);
156 uint8x8_t nalphas = vmvn_u8(vtbl1_u8(src, alpha_indices));
157 return vadd_u8(src, SkMulDiv255Round_neon8(nalphas, dst));
158 }
159
160 #endif
161
162 /*not static*/ inline
blit_row_s32a_opaque(SkPMColor * dst,const SkPMColor * src,int len,U8CPU alpha)163 void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) {
164 SkASSERT(alpha == 0xFF);
165 sk_msan_assert_initialized(src, src+len);
166 // Require AVX2 because of AVX2 integer calculation intrinsics in SrcOver
167 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
168 while (len >= 32) {
169 // Load 32 source pixels.
170 auto s0 = _mm256_loadu_si256((const __m256i*)(src) + 0),
171 s1 = _mm256_loadu_si256((const __m256i*)(src) + 1),
172 s2 = _mm256_loadu_si256((const __m256i*)(src) + 2),
173 s3 = _mm256_loadu_si256((const __m256i*)(src) + 3);
174
175 const auto alphaMask = _mm256_set1_epi32(0xFF000000);
176
177 auto ORed = _mm256_or_si256(s3, _mm256_or_si256(s2, _mm256_or_si256(s1, s0)));
178 if (_mm256_testz_si256(ORed, alphaMask)) {
179 // All 32 source pixels are transparent. Nothing to do.
180 src += 32;
181 dst += 32;
182 len -= 32;
183 continue;
184 }
185
186 auto d0 = (__m256i*)(dst) + 0,
187 d1 = (__m256i*)(dst) + 1,
188 d2 = (__m256i*)(dst) + 2,
189 d3 = (__m256i*)(dst) + 3;
190
191 auto ANDed = _mm256_and_si256(s3, _mm256_and_si256(s2, _mm256_and_si256(s1, s0)));
192 if (_mm256_testc_si256(ANDed, alphaMask)) {
193 // All 32 source pixels are opaque. SrcOver becomes Src.
194 _mm256_storeu_si256(d0, s0);
195 _mm256_storeu_si256(d1, s1);
196 _mm256_storeu_si256(d2, s2);
197 _mm256_storeu_si256(d3, s3);
198 src += 32;
199 dst += 32;
200 len -= 32;
201 continue;
202 }
203
204 // TODO: This math is wrong.
205 // Do SrcOver.
206 _mm256_storeu_si256(d0, SkPMSrcOver_AVX2(s0, _mm256_loadu_si256(d0)));
207 _mm256_storeu_si256(d1, SkPMSrcOver_AVX2(s1, _mm256_loadu_si256(d1)));
208 _mm256_storeu_si256(d2, SkPMSrcOver_AVX2(s2, _mm256_loadu_si256(d2)));
209 _mm256_storeu_si256(d3, SkPMSrcOver_AVX2(s3, _mm256_loadu_si256(d3)));
210 src += 32;
211 dst += 32;
212 len -= 32;
213 }
214
215 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
216 while (len >= 16) {
217 // Load 16 source pixels.
218 auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0),
219 s1 = _mm_loadu_si128((const __m128i*)(src) + 1),
220 s2 = _mm_loadu_si128((const __m128i*)(src) + 2),
221 s3 = _mm_loadu_si128((const __m128i*)(src) + 3);
222
223 const auto alphaMask = _mm_set1_epi32(0xFF000000);
224
225 auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
226 if (_mm_testz_si128(ORed, alphaMask)) {
227 // All 16 source pixels are transparent. Nothing to do.
228 src += 16;
229 dst += 16;
230 len -= 16;
231 continue;
232 }
233
234 auto d0 = (__m128i*)(dst) + 0,
235 d1 = (__m128i*)(dst) + 1,
236 d2 = (__m128i*)(dst) + 2,
237 d3 = (__m128i*)(dst) + 3;
238
239 auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
240 if (_mm_testc_si128(ANDed, alphaMask)) {
241 // All 16 source pixels are opaque. SrcOver becomes Src.
242 _mm_storeu_si128(d0, s0);
243 _mm_storeu_si128(d1, s1);
244 _mm_storeu_si128(d2, s2);
245 _mm_storeu_si128(d3, s3);
246 src += 16;
247 dst += 16;
248 len -= 16;
249 continue;
250 }
251
252 // TODO: This math is wrong.
253 // Do SrcOver.
254 _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0)));
255 _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1)));
256 _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2)));
257 _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3)));
258 src += 16;
259 dst += 16;
260 len -= 16;
261 }
262
263 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
264 while (len >= 16) {
265 // Load 16 source pixels.
266 auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0),
267 s1 = _mm_loadu_si128((const __m128i*)(src) + 1),
268 s2 = _mm_loadu_si128((const __m128i*)(src) + 2),
269 s3 = _mm_loadu_si128((const __m128i*)(src) + 3);
270
271 const auto alphaMask = _mm_set1_epi32(0xFF000000);
272
273 auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
274 if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ORed, alphaMask),
275 _mm_setzero_si128()))) {
276 // All 16 source pixels are transparent. Nothing to do.
277 src += 16;
278 dst += 16;
279 len -= 16;
280 continue;
281 }
282
283 auto d0 = (__m128i*)(dst) + 0,
284 d1 = (__m128i*)(dst) + 1,
285 d2 = (__m128i*)(dst) + 2,
286 d3 = (__m128i*)(dst) + 3;
287
288 auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
289 if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ANDed, alphaMask),
290 alphaMask))) {
291 // All 16 source pixels are opaque. SrcOver becomes Src.
292 _mm_storeu_si128(d0, s0);
293 _mm_storeu_si128(d1, s1);
294 _mm_storeu_si128(d2, s2);
295 _mm_storeu_si128(d3, s3);
296 src += 16;
297 dst += 16;
298 len -= 16;
299 continue;
300 }
301
302 // TODO: This math is wrong.
303 // Do SrcOver.
304 _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0)));
305 _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1)));
306 _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2)));
307 _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3)));
308
309 src += 16;
310 dst += 16;
311 len -= 16;
312 }
313
314 #elif defined(SK_ARM_HAS_NEON)
315 // Do 8-pixels at a time. A 16-pixels at a time version of this code was also tested, but it
316 // underperformed on some of the platforms under test for inputs with frequent transitions of
317 // alpha (corresponding to changes of the conditions [~]alpha_u64 == 0 below). It may be worth
318 // revisiting the situation in the future.
319 while (len >= 8) {
320 // Load 8 pixels in 4 NEON registers. src_col.val[i] will contain the same color component
321 // for 8 consecutive pixels (e.g. src_col.val[3] will contain all alpha components of 8
322 // pixels).
323 uint8x8x4_t src_col = vld4_u8(reinterpret_cast<const uint8_t*>(src));
324 src += 8;
325 len -= 8;
326
327 // We now detect 2 special cases: the first occurs when all alphas are zero (the 8 pixels
328 // are all transparent), the second when all alphas are fully set (they are all opaque).
329 uint8x8_t alphas = src_col.val[3];
330 uint64_t alphas_u64 = vget_lane_u64(vreinterpret_u64_u8(alphas), 0);
331 if (alphas_u64 == 0) {
332 // All pixels transparent.
333 dst += 8;
334 continue;
335 }
336
337 if (~alphas_u64 == 0) {
338 // All pixels opaque.
339 vst4_u8(reinterpret_cast<uint8_t*>(dst), src_col);
340 dst += 8;
341 continue;
342 }
343
344 uint8x8x4_t dst_col = vld4_u8(reinterpret_cast<uint8_t*>(dst));
345 vst4_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon8(dst_col, src_col));
346 dst += 8;
347 }
348
349 // Deal with leftover pixels.
350 for (; len >= 2; len -= 2, src += 2, dst += 2) {
351 uint8x8_t src2 = vld1_u8(reinterpret_cast<const uint8_t*>(src));
352 uint8x8_t dst2 = vld1_u8(reinterpret_cast<const uint8_t*>(dst));
353 vst1_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon2(dst2, src2));
354 }
355
356 if (len != 0) {
357 uint8x8_t result = SkPMSrcOver_neon2(vcreate_u8(*dst), vcreate_u8(*src));
358 vst1_lane_u32(dst, vreinterpret_u32_u8(result), 0);
359 }
360 return;
361 #endif
362
363 while (len-- > 0) {
364 // This 0xFF000000 is not semantically necessary, but for compatibility
365 // with chromium:611002 we need to keep it until we figure out where
366 // the non-premultiplied src values (like 0x00FFFFFF) are coming from.
367 // TODO(mtklein): sort this out and assert *src is premul here.
368 if (*src & 0xFF000000) {
369 *dst = (*src >= 0xFF000000) ? *src : SkPMSrcOver(*src, *dst);
370 }
371 src++;
372 dst++;
373 }
374 }
375
376 } // SK_OPTS_NS
377
378 #endif//SkBlitRow_opts_DEFINED
379