• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 
31 // Google Mock - a framework for writing C++ mock classes.
32 //
33 // This file implements Matcher<const string&>, Matcher<string>, and
34 // utilities for defining matchers.
35 
36 #include "gmock/gmock-matchers.h"
37 
38 #include <string.h>
39 #include <iostream>
40 #include <sstream>
41 #include <string>
42 
43 namespace testing {
44 namespace internal {
45 
46 // Returns the description for a matcher defined using the MATCHER*()
47 // macro where the user-supplied description string is "", if
48 // 'negation' is false; otherwise returns the description of the
49 // negation of the matcher.  'param_values' contains a list of strings
50 // that are the print-out of the matcher's parameters.
FormatMatcherDescription(bool negation,const char * matcher_name,const Strings & param_values)51 GTEST_API_ std::string FormatMatcherDescription(bool negation,
52                                                 const char* matcher_name,
53                                                 const Strings& param_values) {
54   std::string result = ConvertIdentifierNameToWords(matcher_name);
55   if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values);
56   return negation ? "not (" + result + ")" : result;
57 }
58 
59 // FindMaxBipartiteMatching and its helper class.
60 //
61 // Uses the well-known Ford-Fulkerson max flow method to find a maximum
62 // bipartite matching. Flow is considered to be from left to right.
63 // There is an implicit source node that is connected to all of the left
64 // nodes, and an implicit sink node that is connected to all of the
65 // right nodes. All edges have unit capacity.
66 //
67 // Neither the flow graph nor the residual flow graph are represented
68 // explicitly. Instead, they are implied by the information in 'graph' and
69 // a vector<int> called 'left_' whose elements are initialized to the
70 // value kUnused. This represents the initial state of the algorithm,
71 // where the flow graph is empty, and the residual flow graph has the
72 // following edges:
73 //   - An edge from source to each left_ node
74 //   - An edge from each right_ node to sink
75 //   - An edge from each left_ node to each right_ node, if the
76 //     corresponding edge exists in 'graph'.
77 //
78 // When the TryAugment() method adds a flow, it sets left_[l] = r for some
79 // nodes l and r. This induces the following changes:
80 //   - The edges (source, l), (l, r), and (r, sink) are added to the
81 //     flow graph.
82 //   - The same three edges are removed from the residual flow graph.
83 //   - The reverse edges (l, source), (r, l), and (sink, r) are added
84 //     to the residual flow graph, which is a directional graph
85 //     representing unused flow capacity.
86 //
87 // When the method augments a flow (moving left_[l] from some r1 to some
88 // other r2), this can be thought of as "undoing" the above steps with
89 // respect to r1 and "redoing" them with respect to r2.
90 //
91 // It bears repeating that the flow graph and residual flow graph are
92 // never represented explicitly, but can be derived by looking at the
93 // information in 'graph' and in left_.
94 //
95 // As an optimization, there is a second vector<int> called right_ which
96 // does not provide any new information. Instead, it enables more
97 // efficient queries about edges entering or leaving the right-side nodes
98 // of the flow or residual flow graphs. The following invariants are
99 // maintained:
100 //
101 // left[l] == kUnused or right[left[l]] == l
102 // right[r] == kUnused or left[right[r]] == r
103 //
104 // . [ source ]                                        .
105 // .   |||                                             .
106 // .   |||                                             .
107 // .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     .
108 // .   ||                   |                    |     .
109 // .   |\---> left[1]=-1    \--> right[1]=0  ---\|     .
110 // .   |                                        ||     .
111 // .   \----> left[2]=2  ------> right[2]=2  --\||     .
112 // .                                           |||     .
113 // .         elements           matchers       vvv     .
114 // .                                         [ sink ]  .
115 //
116 // See Also:
117 //   [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
118 //       "Introduction to Algorithms (Second ed.)", pp. 651-664.
119 //   [2] "Ford-Fulkerson algorithm", Wikipedia,
120 //       'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
121 class MaxBipartiteMatchState {
122  public:
MaxBipartiteMatchState(const MatchMatrix & graph)123   explicit MaxBipartiteMatchState(const MatchMatrix& graph)
124       : graph_(&graph),
125         left_(graph_->LhsSize(), kUnused),
126         right_(graph_->RhsSize(), kUnused) {}
127 
128   // Returns the edges of a maximal match, each in the form {left, right}.
Compute()129   ElementMatcherPairs Compute() {
130     // 'seen' is used for path finding { 0: unseen, 1: seen }.
131     ::std::vector<char> seen;
132     // Searches the residual flow graph for a path from each left node to
133     // the sink in the residual flow graph, and if one is found, add flow
134     // to the graph. It's okay to search through the left nodes once. The
135     // edge from the implicit source node to each previously-visited left
136     // node will have flow if that left node has any path to the sink
137     // whatsoever. Subsequent augmentations can only add flow to the
138     // network, and cannot take away that previous flow unit from the source.
139     // Since the source-to-left edge can only carry one flow unit (or,
140     // each element can be matched to only one matcher), there is no need
141     // to visit the left nodes more than once looking for augmented paths.
142     // The flow is known to be possible or impossible by looking at the
143     // node once.
144     for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
145       // Reset the path-marking vector and try to find a path from
146       // source to sink starting at the left_[ilhs] node.
147       GTEST_CHECK_(left_[ilhs] == kUnused)
148           << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
149       // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
150       seen.assign(graph_->RhsSize(), 0);
151       TryAugment(ilhs, &seen);
152     }
153     ElementMatcherPairs result;
154     for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
155       size_t irhs = left_[ilhs];
156       if (irhs == kUnused) continue;
157       result.push_back(ElementMatcherPair(ilhs, irhs));
158     }
159     return result;
160   }
161 
162  private:
163   static const size_t kUnused = static_cast<size_t>(-1);
164 
165   // Perform a depth-first search from left node ilhs to the sink.  If a
166   // path is found, flow is added to the network by linking the left and
167   // right vector elements corresponding each segment of the path.
168   // Returns true if a path to sink was found, which means that a unit of
169   // flow was added to the network. The 'seen' vector elements correspond
170   // to right nodes and are marked to eliminate cycles from the search.
171   //
172   // Left nodes will only be explored at most once because they
173   // are accessible from at most one right node in the residual flow
174   // graph.
175   //
176   // Note that left_[ilhs] is the only element of left_ that TryAugment will
177   // potentially transition from kUnused to another value. Any other
178   // left_ element holding kUnused before TryAugment will be holding it
179   // when TryAugment returns.
180   //
TryAugment(size_t ilhs,::std::vector<char> * seen)181   bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
182     for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
183       if ((*seen)[irhs]) continue;
184       if (!graph_->HasEdge(ilhs, irhs)) continue;
185       // There's an available edge from ilhs to irhs.
186       (*seen)[irhs] = 1;
187       // Next a search is performed to determine whether
188       // this edge is a dead end or leads to the sink.
189       //
190       // right_[irhs] == kUnused means that there is residual flow from
191       // right node irhs to the sink, so we can use that to finish this
192       // flow path and return success.
193       //
194       // Otherwise there is residual flow to some ilhs. We push flow
195       // along that path and call ourselves recursively to see if this
196       // ultimately leads to sink.
197       if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
198         // Add flow from left_[ilhs] to right_[irhs].
199         left_[ilhs] = irhs;
200         right_[irhs] = ilhs;
201         return true;
202       }
203     }
204     return false;
205   }
206 
207   const MatchMatrix* graph_;  // not owned
208   // Each element of the left_ vector represents a left hand side node
209   // (i.e. an element) and each element of right_ is a right hand side
210   // node (i.e. a matcher). The values in the left_ vector indicate
211   // outflow from that node to a node on the right_ side. The values
212   // in the right_ indicate inflow, and specify which left_ node is
213   // feeding that right_ node, if any. For example, left_[3] == 1 means
214   // there's a flow from element #3 to matcher #1. Such a flow would also
215   // be redundantly represented in the right_ vector as right_[1] == 3.
216   // Elements of left_ and right_ are either kUnused or mutually
217   // referent. Mutually referent means that left_[right_[i]] = i and
218   // right_[left_[i]] = i.
219   ::std::vector<size_t> left_;
220   ::std::vector<size_t> right_;
221 };
222 
223 const size_t MaxBipartiteMatchState::kUnused;
224 
FindMaxBipartiteMatching(const MatchMatrix & g)225 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
226   return MaxBipartiteMatchState(g).Compute();
227 }
228 
LogElementMatcherPairVec(const ElementMatcherPairs & pairs,::std::ostream * stream)229 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
230                                      ::std::ostream* stream) {
231   typedef ElementMatcherPairs::const_iterator Iter;
232   ::std::ostream& os = *stream;
233   os << "{";
234   const char* sep = "";
235   for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
236     os << sep << "\n  ("
237        << "element #" << it->first << ", "
238        << "matcher #" << it->second << ")";
239     sep = ",";
240   }
241   os << "\n}";
242 }
243 
NextGraph()244 bool MatchMatrix::NextGraph() {
245   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
246     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
247       char& b = matched_[SpaceIndex(ilhs, irhs)];
248       if (!b) {
249         b = 1;
250         return true;
251       }
252       b = 0;
253     }
254   }
255   return false;
256 }
257 
Randomize()258 void MatchMatrix::Randomize() {
259   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
260     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
261       char& b = matched_[SpaceIndex(ilhs, irhs)];
262       b = static_cast<char>(rand() & 1);  // NOLINT
263     }
264   }
265 }
266 
DebugString() const267 std::string MatchMatrix::DebugString() const {
268   ::std::stringstream ss;
269   const char* sep = "";
270   for (size_t i = 0; i < LhsSize(); ++i) {
271     ss << sep;
272     for (size_t j = 0; j < RhsSize(); ++j) {
273       ss << HasEdge(i, j);
274     }
275     sep = ";";
276   }
277   return ss.str();
278 }
279 
DescribeToImpl(::std::ostream * os) const280 void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
281     ::std::ostream* os) const {
282   switch (match_flags()) {
283     case UnorderedMatcherRequire::ExactMatch:
284       if (matcher_describers_.empty()) {
285         *os << "is empty";
286         return;
287       }
288       if (matcher_describers_.size() == 1) {
289         *os << "has " << Elements(1) << " and that element ";
290         matcher_describers_[0]->DescribeTo(os);
291         return;
292       }
293       *os << "has " << Elements(matcher_describers_.size())
294           << " and there exists some permutation of elements such that:\n";
295       break;
296     case UnorderedMatcherRequire::Superset:
297       *os << "a surjection from elements to requirements exists such that:\n";
298       break;
299     case UnorderedMatcherRequire::Subset:
300       *os << "an injection from elements to requirements exists such that:\n";
301       break;
302   }
303 
304   const char* sep = "";
305   for (size_t i = 0; i != matcher_describers_.size(); ++i) {
306     *os << sep;
307     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
308       *os << " - element #" << i << " ";
309     } else {
310       *os << " - an element ";
311     }
312     matcher_describers_[i]->DescribeTo(os);
313     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
314       sep = ", and\n";
315     } else {
316       sep = "\n";
317     }
318   }
319 }
320 
DescribeNegationToImpl(::std::ostream * os) const321 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
322     ::std::ostream* os) const {
323   switch (match_flags()) {
324     case UnorderedMatcherRequire::ExactMatch:
325       if (matcher_describers_.empty()) {
326         *os << "isn't empty";
327         return;
328       }
329       if (matcher_describers_.size() == 1) {
330         *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
331             << " that ";
332         matcher_describers_[0]->DescribeNegationTo(os);
333         return;
334       }
335       *os << "doesn't have " << Elements(matcher_describers_.size())
336           << ", or there exists no permutation of elements such that:\n";
337       break;
338     case UnorderedMatcherRequire::Superset:
339       *os << "no surjection from elements to requirements exists such that:\n";
340       break;
341     case UnorderedMatcherRequire::Subset:
342       *os << "no injection from elements to requirements exists such that:\n";
343       break;
344   }
345   const char* sep = "";
346   for (size_t i = 0; i != matcher_describers_.size(); ++i) {
347     *os << sep;
348     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
349       *os << " - element #" << i << " ";
350     } else {
351       *os << " - an element ";
352     }
353     matcher_describers_[i]->DescribeTo(os);
354     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
355       sep = ", and\n";
356     } else {
357       sep = "\n";
358     }
359   }
360 }
361 
362 // Checks that all matchers match at least one element, and that all
363 // elements match at least one matcher. This enables faster matching
364 // and better error reporting.
365 // Returns false, writing an explanation to 'listener', if and only
366 // if the success criteria are not met.
VerifyMatchMatrix(const::std::vector<std::string> & element_printouts,const MatchMatrix & matrix,MatchResultListener * listener) const367 bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
368     const ::std::vector<std::string>& element_printouts,
369     const MatchMatrix& matrix, MatchResultListener* listener) const {
370   bool result = true;
371   ::std::vector<char> element_matched(matrix.LhsSize(), 0);
372   ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
373 
374   for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
375     for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
376       char matched = matrix.HasEdge(ilhs, irhs);
377       element_matched[ilhs] |= matched;
378       matcher_matched[irhs] |= matched;
379     }
380   }
381 
382   if (match_flags() & UnorderedMatcherRequire::Superset) {
383     const char* sep =
384         "where the following matchers don't match any elements:\n";
385     for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
386       if (matcher_matched[mi]) continue;
387       result = false;
388       if (listener->IsInterested()) {
389         *listener << sep << "matcher #" << mi << ": ";
390         matcher_describers_[mi]->DescribeTo(listener->stream());
391         sep = ",\n";
392       }
393     }
394   }
395 
396   if (match_flags() & UnorderedMatcherRequire::Subset) {
397     const char* sep =
398         "where the following elements don't match any matchers:\n";
399     const char* outer_sep = "";
400     if (!result) {
401       outer_sep = "\nand ";
402     }
403     for (size_t ei = 0; ei < element_matched.size(); ++ei) {
404       if (element_matched[ei]) continue;
405       result = false;
406       if (listener->IsInterested()) {
407         *listener << outer_sep << sep << "element #" << ei << ": "
408                   << element_printouts[ei];
409         sep = ",\n";
410         outer_sep = "";
411       }
412     }
413   }
414   return result;
415 }
416 
FindPairing(const MatchMatrix & matrix,MatchResultListener * listener) const417 bool UnorderedElementsAreMatcherImplBase::FindPairing(
418     const MatchMatrix& matrix, MatchResultListener* listener) const {
419   ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
420 
421   size_t max_flow = matches.size();
422   if ((match_flags() & UnorderedMatcherRequire::Superset) &&
423       max_flow < matrix.RhsSize()) {
424     if (listener->IsInterested()) {
425       *listener << "where no permutation of the elements can satisfy all "
426                    "matchers, and the closest match is "
427                 << max_flow << " of " << matrix.RhsSize()
428                 << " matchers with the pairings:\n";
429       LogElementMatcherPairVec(matches, listener->stream());
430     }
431     return false;
432   }
433   if ((match_flags() & UnorderedMatcherRequire::Subset) &&
434       max_flow < matrix.LhsSize()) {
435     if (listener->IsInterested()) {
436       *listener
437           << "where not all elements can be matched, and the closest match is "
438           << max_flow << " of " << matrix.RhsSize()
439           << " matchers with the pairings:\n";
440       LogElementMatcherPairVec(matches, listener->stream());
441     }
442     return false;
443   }
444 
445   if (matches.size() > 1) {
446     if (listener->IsInterested()) {
447       const char* sep = "where:\n";
448       for (size_t mi = 0; mi < matches.size(); ++mi) {
449         *listener << sep << " - element #" << matches[mi].first
450                   << " is matched by matcher #" << matches[mi].second;
451         sep = ",\n";
452       }
453     }
454   }
455   return true;
456 }
457 
458 }  // namespace internal
459 }  // namespace testing
460